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Summary. In the paper we show equivalence of the convergence of filters on a topo-
logical space and the convergence of nets in the space. We also give, five characterizations
of compactness. Namely, for any topological spaceT we proved that following condition are
equivalent:

• T is compact,
• every ultrafilter onT is convergent,
• every proper filter onT has cluster point,
• every net inT has cluster point,
• every net inT has convergent subnet,
• every Cauchy net inT is convergent.

MML Identifier: YELLOW19.

WWW: http://mizar.org/JFM/Vol13/yellow19.html

The articles [18], [7], [22], [23], [19], [14], [10], [5], [25], [24], [6], [16], [9], [12], [8], [15], [17],
[21], [1], [2], [3], [11], [4], [20], and [13] provide the notation and terminology for this paper.

One can prove the following proposition

(2)1 For every non empty setX and for every proper filterF of 2X
⊆ and for every setA such that

A∈ F holdsA is not empty.

Let T be a non empty topological space and letx be a point ofT. The neighborhood system of
x is a subset of 2ΩT

⊆ and is defined by:

(Def. 1) The neighborhood system ofx = {A : A ranges over neighbourhoods ofx}.

The following proposition is true

(3) Let T be a non empty topological space,x be a point ofT, andA be a set. ThenA∈ the
neighborhood system ofx if and only if A is a neighbourhood ofx.

Let T be a non empty topological space and letx be a point ofT. Note that the neighborhood
system ofx is non empty, proper, upper, and filtered.

The following propositions are true:

(4) Let T be a non empty topological space,x be a point ofT, andF be an upper subset of
2ΩT
⊆ . Thenx is a convergence point ofF , T if and only if the neighborhood system ofx⊆ F.

1 The proposition (1) has been removed.
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(5) For every non empty topological spaceT holds every pointx of T is a convergence point
of the neighborhood system ofx, T.

(6) Let T be a non empty topological space andA be a subset ofT. ThenA is open if and
only if for every pointx of T such thatx ∈ A and for every filterF of 2ΩT

⊆ such thatx is a
convergence point ofF , T holdsA∈ F.

Let Sbe a non empty 1-sorted structure and letN be a non empty net structure overS. A subset
of S is called a subset ofSreachable byN if:

(Def. 2) There exists an elementi of N such that it= rng(the mapping ofN�i).

Next we state the proposition

(7) LetSbe a non empty 1-sorted structure,N be a non empty net structure overS, andi be an
element ofN. Then rng(the mapping ofN�i) is a subset ofSreachable byN.

Let Sbe a non empty 1-sorted structure and letN be a reflexive non empty net structure overS.
Observe that every subset ofSreachable byN is non empty.

The following three propositions are true:

(8) Let Sbe a non empty 1-sorted structure,N be a net inS, i be an element ofN, andx be a
set. Thenx∈ rng(the mapping ofN�i) if and only if there exists an elementj of N such that
i ≤ j andx = N( j).

(9) Let Sbe a non empty 1-sorted structure,N be a net inS, andA be a subset ofS reachable
by N. ThenN is eventually inA.

(10) LetSbe a non empty 1-sorted structure,N be a net inS, andF be a finite non empty set.
Suppose every element ofF is a subset ofSreachable byN. Then there exists a subsetB of S
reachable byN such thatB⊆

⋂
F.

Let T be a non empty 1-sorted structure and letN be a non empty net structure overT. The filter
of N is a subset of 2ΩT

⊆ and is defined as follows:

(Def. 3) The filter ofN = {A;A ranges over subsets ofT: N is eventually inA}.

We now state the proposition

(11) LetT be a non empty 1-sorted structure,N be a non empty net structure overT, andA be
a set. ThenA∈ the filter ofN if and only if N is eventually inA andA is a subset ofT.

Let T be a non empty 1-sorted structure and letN be a non empty net structure overT. One can
check that the filter ofN is non empty and upper.

Let T be a non empty 1-sorted structure and letN be a net inT. One can verify that the filter of
N is proper and filtered.

One can prove the following propositions:

(12) LetT be a non empty topological space,N be a net inT, andx be a point ofT. Thenx is a
cluster point ofN if and only if x is a cluster point of the filter ofN, T.

(13) Let T be a non empty topological space,N be a net inT, andx be a point ofT. Then
x∈ Lim N if and only if x is a convergence point of the filter ofN, T.

Let L be a non empty 1-sorted structure, letO be a non empty subset ofL, and letF be a filter of
2O
⊆. The net ofF is a strict non empty net structure overL and is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of the net ofF = {〈〈a, f 〉〉;a ranges over elements ofL, f ranges over elements
of F : a∈ f},

(ii) for all elementsi, j of the net ofF holdsi ≤ j iff j2 ⊆ i2, and

(iii) for every elementi of the net ofF holds (the net ofF)(i) = i1.
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Let L be a non empty 1-sorted structure, letO be a non empty subset ofL, and letF be a filter
of 2O

⊆. Observe that the net ofF is reflexive and transitive.
Let L be a non empty 1-sorted structure, letO be a non empty subset ofL, and letF be a proper

filter of 2O
⊆. Note that the net ofF is directed.

One can prove the following propositions:

(14) For every non empty 1-sorted structureT and for every filterF of 2ΩT
⊆ holdsF \{ /0}= the

filter of the net ofF .

(15) LetT be a non empty 1-sorted structure andF be a proper filter of 2ΩT
⊆ . ThenF = the filter

of the net ofF .

(16) LetT be a non empty 1-sorted structure,F be a filter of 2ΩT
⊆ , andA be a non empty subset

of T. ThenA∈ F if and only if the net ofF is eventually inA.

(17) LetT be a non empty topological space,F be a proper filter of 2ΩT
⊆ , andx be a point ofT.

Thenx is a cluster point of the net ofF if and only if x is a cluster point ofF , T.

(18) LetT be a non empty topological space,F be a proper filter of 2ΩT
⊆ , andx be a point ofT.

Thenx∈ Lim(the net ofF) if and only if x is a convergence point ofF , T.

(20)2 Let T be a non empty topological space,x be a point ofT, andA be a subset ofT. Suppose
x∈ A. Let F be a proper filter of 2ΩT

⊆ . If F = the neighborhood system ofx, then the net ofF
is often inA.

(21) LetT be a non empty 1-sorted structure,A be a set, andN be a net inT. If N is eventually
in A, then every subnet ofN is eventually inA.

(22) Let T be a non empty topological space andF , G, x be sets. SupposeF ⊆ G andx is a
convergence point ofF , T. Thenx is a convergence point ofG, T.

(23) LetT be a non empty topological space,A be a subset ofT, andx be a point ofT. Then
x∈ A if and only if there exists a netN in T such thatN is eventually inA andx is a cluster
point ofN.

(24) LetT be a non empty topological space,A be a subset ofT, andx be a point ofT. Then
x ∈ A if and only if there exists a convergent netN in T such thatN is eventually inA and
x∈ Lim N.

(25) LetT be a non empty topological space andA be a subset ofT. ThenA is closed if and
only if for every netN in T such thatN is eventually inA and for every pointx of T such that
x is a cluster point ofN holdsx∈ A.

(26) LetT be a non empty topological space andA be a subset ofT. ThenA is closed if and
only if for every convergent netN in T such thatN is eventually inA and for every pointx of
T such thatx∈ Lim N holdsx∈ A.

(27) LetT be a non empty topological space,A be a subset ofT, andx be a point ofT. Then
x∈ A if and only if there exists a proper filterF of 2ΩT

⊆ such thatA∈ F andx is a cluster point
of F , T.

(28) LetT be a non empty topological space,A be a subset ofT, andx be a point ofT. Then
x∈ A if and only if there exists an ultra filterF of 2ΩT

⊆ such thatA∈ F andx is a convergence
point ofF , T.

(29) LetT be a non empty topological space andA be a subset ofT. ThenA is closed if and
only if for every proper filterF of 2ΩT

⊆ such thatA∈ F and for every pointx of T such thatx
is a cluster point ofF , T holdsx∈ A.

2 The proposition (19) has been removed.
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(30) LetT be a non empty topological space andA be a subset ofT. ThenA is closed if and
only if for every ultra filterF of 2ΩT

⊆ such thatA∈ F and for every pointx of T such thatx is
a convergence point ofF , T holdsx∈ A.

(31) LetT be a non empty topological space,N be a net inT, ands be a point ofT. Thens is a
cluster point ofN if and only if for every subsetA of T reachable byN holdss∈ A.

(32) For every non empty topological spaceT and for every familyF of subsets ofT such that
F is closed holds FinMeetCl(F) is closed.

(33) LetT be a non empty topological space. ThenT is compact if and only if for every ultra
filter F of 2ΩT

⊆ holds there exists a point ofT which is a convergence point ofF , T.

(34) LetT be a non empty topological space. ThenT is compact if and only if for every proper
filter F of 2ΩT

⊆ holds there exists a point ofT which is a cluster point ofF , T.

(35) LetT be a non empty topological space. ThenT is compact if and only if for every netN
in T holds there exists a point ofT which is a cluster point ofN.

(36) LetT be a non empty topological space. ThenT is compact if and only if for every netN
in T such thatN ∈ NetUniv(T) holds there exists a point ofT which is a cluster point ofN.

Let L be a non empty 1-sorted structure and letN be a transitive net structure overL. Note that
every full structure of a subnet ofN is transitive.

Let L be a non empty 1-sorted structure and letN be a non empty directed net structure overL.
Note that there exists a structure of a subnet ofN which is strict, non empty, directed, and full.

Next we state the proposition

(37) For every non empty topological spaceT holdsT is compact iff for every netN in T holds
there exists a subnet ofN which is convergent.

Let Sbe a non empty 1-sorted structure and letN be a non empty net structure overS. We say
thatN is Cauchy if and only if:

(Def. 5) For every subsetA of SholdsN is eventually inA and eventually inAc.

Let Sbe a non empty 1-sorted structure and letF be an ultra filter of 2ΩS
⊆ . One can check that

the net ofF is Cauchy.
One can prove the following proposition

(38) LetT be a non empty topological space. ThenT is compact if and only if for every netN
in T such thatN is Cauchy holdsN is convergent.
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