On the Characterizations of Compactness

Grzegorz Bancerek University of Białystok Noboru Endou Gifu National College of Technology

Yuji Sakai Shinshu University Nagano

Summary. In the paper we show equivalence of the convergence of filters on a topological space and the convergence of nets in the space. We also give, five characterizations of compactness. Namely, for any topological space T we proved that following condition are equivalent:

- T is compact,
- every ultrafilter on T is convergent,
- every proper filter on T has cluster point,
- every net in T has cluster point,
- every net in T has convergent subnet,
- every Cauchy net in T is convergent.

MML Identifier: YELLOW19.

WWW: http://mizar.org/JFM/Vol13/yellow19.html

The articles [18], [7], [22], [23], [19], [14], [10], [5], [25], [24], [6], [16], [9], [12], [8], [15], [17], [21], [1], [2], [3], [11], [4], [20], and [13] provide the notation and terminology for this paper.

One can prove the following proposition

(2)¹ For every non empty set X and for every proper filter F of 2_{\subseteq}^X and for every set A such that $A \in F$ holds A is not empty.

Let T be a non empty topological space and let x be a point of T. The neighborhood system of x is a subset of $2^{\Omega_T}_{\subset}$ and is defined by:

(Def. 1) The neighborhood system of $x = \{A : A \text{ ranges over neighbourhoods of } x\}$.

The following proposition is true

(3) Let T be a non empty topological space, x be a point of T, and A be a set. Then $A \in$ the neighborhood system of x if and only if A is a neighbourhood of x.

Let T be a non empty topological space and let x be a point of T. Note that the neighborhood system of x is non empty, proper, upper, and filtered.

The following propositions are true:

(4) Let T be a non empty topological space, x be a point of T, and F be an upper subset of $2^{\Omega_T}_{\subset}$. Then x is a convergence point of F, T if and only if the neighborhood system of $x \subseteq F$.

1

¹ The proposition (1) has been removed.

- (5) For every non empty topological space T holds every point x of T is a convergence point of the neighborhood system of x, T.
- (6) Let T be a non empty topological space and A be a subset of T. Then A is open if and only if for every point x of T such that $x \in A$ and for every filter F of $2^{\Omega_T}_{\subseteq}$ such that x is a convergence point of F, T holds $A \in F$.

Let *S* be a non empty 1-sorted structure and let *N* be a non empty net structure over *S*. A subset of *S* is called a subset of *S* reachable by *N* if:

(Def. 2) There exists an element i of N such that it = rng (the mapping of $N \upharpoonright i$).

Next we state the proposition

(7) Let *S* be a non empty 1-sorted structure, *N* be a non empty net structure over *S*, and *i* be an element of *N*. Then rng (the mapping of $N \mid i$) is a subset of *S* reachable by *N*.

Let S be a non empty 1-sorted structure and let N be a reflexive non empty net structure over S. Observe that every subset of S reachable by N is non empty.

The following three propositions are true:

- (8) Let *S* be a non empty 1-sorted structure, *N* be a net in *S*, *i* be an element of *N*, and *x* be a set. Then $x \in \text{rng}$ (the mapping of $N \mid i$) if and only if there exists an element *j* of *N* such that $i \leq j$ and x = N(j).
- (9) Let *S* be a non empty 1-sorted structure, *N* be a net in *S*, and *A* be a subset of *S* reachable by *N*. Then *N* is eventually in *A*.
- (10) Let *S* be a non empty 1-sorted structure, *N* be a net in *S*, and *F* be a finite non empty set. Suppose every element of *F* is a subset of *S* reachable by *N*. Then there exists a subset *B* of *S* reachable by *N* such that $B \subseteq \cap F$.

Let T be a non empty 1-sorted structure and let N be a non empty net structure over T. The filter of N is a subset of $2^{\Omega_T}_{\subset T}$ and is defined as follows:

(Def. 3) The filter of $N = \{A; A \text{ ranges over subsets of } T: N \text{ is eventually in } A\}$.

We now state the proposition

(11) Let T be a non empty 1-sorted structure, N be a non empty net structure over T, and A be a set. Then $A \in \text{the filter of } N$ if and only if N is eventually in A and A is a subset of T.

Let T be a non empty 1-sorted structure and let N be a non empty net structure over T. One can check that the filter of N is non empty and upper.

Let T be a non empty 1-sorted structure and let N be a net in T. One can verify that the filter of N is proper and filtered.

One can prove the following propositions:

- (12) Let T be a non empty topological space, N be a net in T, and x be a point of T. Then x is a cluster point of N if and only if x is a cluster point of the filter of N, T.
- (13) Let T be a non empty topological space, N be a net in T, and x be a point of T. Then $x \in \text{Lim } N$ if and only if x is a convergence point of the filter of N, T.

Let L be a non empty 1-sorted structure, let O be a non empty subset of L, and let F be a filter of 2^O_{\subset} . The net of F is a strict non empty net structure over L and is defined by the conditions (Def. 4).

- (Def. 4)(i) The carrier of the net of $F = \{ \langle a, f \rangle; a \text{ ranges over elements of } L, f \text{ ranges over elements of } F \colon a \in f \},$
 - (ii) for all elements i, j of the net of F holds $i \le j$ iff $j_2 \subseteq i_2$, and
 - (iii) for every element *i* of the net of *F* holds (the net of *F*)(*i*) = i_1 .

Let L be a non empty 1-sorted structure, let O be a non empty subset of L, and let F be a filter of 2^O_{\subset} . Observe that the net of F is reflexive and transitive.

Let L be a non empty 1-sorted structure, let O be a non empty subset of L, and let F be a proper filter of 2^{O}_{C} . Note that the net of F is directed.

One can prove the following propositions:

- (14) For every non empty 1-sorted structure T and for every filter F of $2^{\Omega_T}_{\subseteq}$ holds $F \setminus \{\emptyset\} =$ the filter of the net of F.
- (15) Let T be a non empty 1-sorted structure and F be a proper filter of $2^{\Omega_T}_{\subseteq}$. Then F = the filter of the net of F.
- (16) Let T be a non empty 1-sorted structure, F be a filter of $2^{\Omega_T}_{\subseteq}$, and A be a non empty subset of T. Then $A \in F$ if and only if the net of F is eventually in A.
- (17) Let T be a non empty topological space, F be a proper filter of $2_{\subseteq}^{\Omega_T}$, and x be a point of T. Then x is a cluster point of the net of F if and only if x is a cluster point of F, T.
- (18) Let T be a non empty topological space, F be a proper filter of $2^{\Omega_T}_{\subseteq}$, and x be a point of T. Then $x \in \text{Lim}$ (the net of F) if and only if x is a convergence point of F, T.
- (20)² Let T be a non empty topological space, x be a point of T, and A be a subset of T. Suppose $x \in \overline{A}$. Let F be a proper filter of $2^{\Omega_T}_{\subseteq}$. If F = the neighborhood system of x, then the net of F is often in A.
- (21) Let *T* be a non empty 1-sorted structure, *A* be a set, and *N* be a net in *T*. If *N* is eventually in *A*, then every subnet of *N* is eventually in *A*.
- (22) Let T be a non empty topological space and F, G, x be sets. Suppose $F \subseteq G$ and x is a convergence point of F, T. Then x is a convergence point of G, T.
- (23) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \overline{A}$ if and only if there exists a net N in T such that N is eventually in A and x is a cluster point of N.
- (24) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \overline{A}$ if and only if there exists a convergent net N in T such that N is eventually in A and $x \in \operatorname{Lim} N$.
- (25) Let T be a non empty topological space and A be a subset of T. Then A is closed if and only if for every net N in T such that N is eventually in A and for every point x of T such that x is a cluster point of N holds $x \in A$.
- (26) Let T be a non empty topological space and A be a subset of T. Then A is closed if and only if for every convergent net N in T such that N is eventually in A and for every point x of T such that $x \in \text{Lim } N$ holds $x \in A$.
- (27) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \overline{A}$ if and only if there exists a proper filter F of $2^{\Omega_T}_{\subseteq}$ such that $A \in F$ and x is a cluster point of F. T
- (28) Let T be a non empty topological space, A be a subset of T, and x be a point of T. Then $x \in \overline{A}$ if and only if there exists an ultra filter F of $2^{\Omega_T}_{\subseteq}$ such that $A \in F$ and x is a convergence point of F, T.
- (29) Let T be a non empty topological space and A be a subset of T. Then A is closed if and only if for every proper filter F of $2^{\Omega_T}_{\subseteq}$ such that $A \in F$ and for every point x of T such that x is a cluster point of F, T holds $x \in A$.

² The proposition (19) has been removed.

- (30) Let T be a non empty topological space and A be a subset of T. Then A is closed if and only if for every ultra filter F of $2^{\Omega_T}_{\subseteq}$ such that $A \in F$ and for every point x of T such that x is a convergence point of F, T holds $x \in A$.
- (31) Let T be a non empty topological space, N be a net in T, and s be a point of T. Then s is a cluster point of N if and only if for every subset A of T reachable by N holds $s \in \overline{A}$.
- (32) For every non empty topological space T and for every family F of subsets of T such that F is closed holds FinMeetCl(F) is closed.
- (33) Let T be a non empty topological space. Then T is compact if and only if for every ultra filter F of $2_C^{\Omega_T}$ holds there exists a point of T which is a convergence point of F, T.
- (34) Let T be a non empty topological space. Then T is compact if and only if for every proper filter F of $2_{\subseteq}^{\Omega_T}$ holds there exists a point of T which is a cluster point of F, T.
- (35) Let T be a non empty topological space. Then T is compact if and only if for every net N in T holds there exists a point of T which is a cluster point of N.
- (36) Let T be a non empty topological space. Then T is compact if and only if for every net N in T such that $N \in \text{NetUniv}(T)$ holds there exists a point of T which is a cluster point of N.

Let L be a non empty 1-sorted structure and let N be a transitive net structure over L. Note that every full structure of a subnet of N is transitive.

Let L be a non empty 1-sorted structure and let N be a non empty directed net structure over L. Note that there exists a structure of a subnet of N which is strict, non empty, directed, and full.

Next we state the proposition

(37) For every non empty topological space T holds T is compact iff for every net N in T holds there exists a subnet of N which is convergent.

Let *S* be a non empty 1-sorted structure and let *N* be a non empty net structure over *S*. We say that *N* is Cauchy if and only if:

(Def. 5) For every subset A of S holds N is eventually in A and eventually in A^c .

Let S be a non empty 1-sorted structure and let F be an ultra filter of $2^{\Omega_S}_{\subseteq}$. One can check that the net of F is Cauchy.

One can prove the following proposition

(38) Let *T* be a non empty topological space. Then *T* is compact if and only if for every net *N* in *T* such that *N* is Cauchy holds *N* is convergent.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel 0.html.
- [4] Grzegorz Bancerek. Prime ideals and filters. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_7. html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.

- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [12] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/tex_2.html.
- [13] Artur Korniłowicz. On the topological properties of meet-continuous lattices. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [14] Beata Padlewska. Families of sets. Journal of Formalized Mathematics. 1, 1989. http://mizar.org/JFM/Vol1/setfam 1, html.
- [15] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor 1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [20] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [21] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders_
- [22] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [23] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [24] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset 1.html.
- [25] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.

Received July 29, 2001

Published January 2, 2004