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Summary. Inthe paper we show equivalence of the convergence of filters on a topo-
logical space and the convergence of nets in the space. We also give, five characterizations
of compactness. Namely, for any topological spacge proved that following condition are
equivalent:

T is compact,

every ultrafilter onT is convergent,
every proper filter o has cluster point,
every netinT has cluster point,

every netinT has convergent subnet,

[ ]
[ )
o
°
[
e every Cauchy net i is convergent.

MML Identifier: YELLOW109.
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The articles[[18],[[r],[[22],[[28],[[19],[[14] [110],[5],[[25] [[24] /6], 116]/19]/[12] [8] /. [15]/[17],
211, 130, 121, [381, [21], 4], [20], and [13] provide the notation and terminology for this paper.
One can prove the following proposition

(ZH For every non empty s&t and for every proper filteff of Zé and for every sef such that
A € F holdsA is not empty.

Let T be a non empty topological space anddéte a point ofT. The neighborhood system of
X is a subset of%T and is defined by:

(Def. 1) The neighborhood systemxf {A: Aranges over neighbourhoodsxjf

The following proposition is true

(3) LetT be a non empty topological spacebe a point ofT, andA be a set. Ther € the
neighborhood system afif and only if A is a neighbourhood of

Let T be a non empty topological space andX{dte a point ofT. Note that the neighborhood
system ofx is non empty, proper, upper, and filtered.
The following propositions are true:

(4) LetT be a non empty topological spacebe a point ofT, andF be an upper subset of
ZgT. Thenx is a convergence point &f, T if and only if the neighborhood system »fC F.

1 The proposition (1) has been removed.
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(5) For every non empty topological spatéholds every poink of T is a convergence point
of the neighborhood system »fT.

(6) LetT be a non empty topological space afddbe a subset of . ThenA is open if and
only if for every pointx of T such thatx € A and for every filterF of ZgT such thatx is a
convergence point &f, T holdsA € F.

Let Sbe a non empty 1-sorted structure andNdte a non empty net structure ov&rA subset
of Sis called a subset @reachable by if:

(Def. 2) There exists an elemeandf N such that it= rng (the mapping oN i).
Next we state the proposition

(7) LetSbe a non empty 1-sorted structuképe a non empty net structure ov&@randi be an
element ofN. Then rng (the mapping & [i) is a subset oEreachable by.

Let Sbe a non empty 1-sorted structure andNdte a reflexive non empty net structure o@er
Observe that every subset®feachable by is non empty.
The following three propositions are true:

(8) LetSbe a non empty 1-sorted structuMpe a net inS, i be an element dfil, andx be a
set. Therx € rng (the mapping oN i) if and only if there exists an elemenbf N such that
i < jandx=N(j).

(9) LetSbe a non empty 1-sorted structuM:pe a net inS, andA be a subset of reachable
by N. ThenN is eventually inA.

(10) LetShe a non empty 1-sorted structudebe a net inS, andF be a finite non empty set.
Suppose every element Bfis a subset o6 reachable byN. Then there exists a subdgof S
reachable b\ such thaB C NF.

Let T be a non empty 1-sorted structure and\Ndie a non empty net structure ovier The filter
of N is a subset ofgT and is defined as follows:

(Def. 3) The filter ofN = {A; Aranges over subsets of N is eventually inA}.
We now state the proposition

(11) LetT be a non empty 1-sorted structuhebe a non empty net structure overandA be
a set. TherA € the filter ofN if and only if N is eventually inA andAis a subset of .

Let T be a non empty 1-sorted structure andNdie a non empty net structure ovier One can

check that the filter oN is non empty and upper.
Let T be a non empty 1-sorted structure andNdie a net inT. One can verify that the filter of

N is proper and filtered.
One can prove the following propositions:

(12) LetT be a non empty topological spad¢pe a net inl, andx be a point ofT. Thenxis a
cluster point ofN if and only if x is a cluster point of the filter d¥, T.

(13) LetT be a non empty topological spadé,be a net inT, andx be a point ofT. Then
x € Lim N if and only if x is a convergence point of the filter i, T.

LetL be a non empty 1-sorted structure,@ebe a non empty subset bf and letF be a filter of
28. The net ofF is a strict non empty net structure odeand is defined by the conditions (Def. 4).

(Def. 4)(i) The carrier of the net &f = {(a, f);aranges over elements bf f ranges over elements
of F:ae f},
(i) for all elementd, j of the net ofF holdsi < j iff j, Ci,, and
(iiiy  for every element of the net ofF holds (the net oF (i) =i1.
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LetL be a non empty 1-sorted structure, @be a non empty subset bf and letF be a filter
of 22. Observe that the net & is reflexive and transitive.

Let L be a non empty 1-sorted structure,@be a non empty subset bf and letF be a proper
filter of 22. Note that the net df is directed.

One can prove the following propositions:

(14) For every non empty 1-sorted structirand for every filtef= of ZgT holdsF \ {0} = the
filter of the net ofF.

(15) LetT be a non empty 1-sorted structure &be a proper filter of gT. ThenF = the filter
of the net offF.

(16) LetT be a non empty 1-sorted structukebe a filter of g, andA be a non empty subset
of T. ThenA € F if and only if the net ofF is eventually inA.

(17) LetT be a non empty topological spad¢epe a proper filter of g, andx be a point ofT .
Thenx is a cluster point of the net ¢ if and only if x is a cluster point of, T.

(18) LetT be a non empty topological spad¢epe a proper filter of g, andx be a point ofT .
Thenx € Lim (the net ofF) if and only if x is a convergence point &f, T.

(ZOE] Let T be a non empty topological spasehe a point ofT, andA be a subset of . Suppose
x € A. LetF be a proper filter of gT. If F =the neighborhood system gfthen the net oF
is often inA.

(21) LetT be a non empty 1-sorted structufebe a set, antll be a netinT. If N is eventually
in A, then every subnet df is eventually inA.

(22) LetT be a non empty topological space andG, x be sets. Suppode C G andx is a
convergence point df, T. Thenx s a convergence point @&, T.

(23) LetT be a non empty topological spadepe a subset of, andx be a point ofT. Then
x € Aif and only if there exists a néfl in T such thai is eventually inA andx is a cluster
point of N.

(24) LetT be a non empty topological spadepe a subset of , andx be a point ofT. Then
x € Aif and only if there exists a convergent Métin T such thatN is eventually inA and
x € LimN.

(25) LetT be a non empty topological space aithe a subset of . ThenA is closed if and
only if for every netN in T such thaiN is eventually inA and for every poink of T such that
xis a cluster point oN holdsx € A.

(26) LetT be a non empty topological space afdbe a subset of . ThenA is closed if and
only if for every convergent nétl in T such thalN is eventually inA and for every poink of
T such thak € Lim N holdsx € A.

(27) LetT be a non empty topological spadepe a subset of, andx be a point ofT. Then
x € Aif and only if there exists a proper filtér of zng such thatA € F andx s a cluster point
of F, T. -

(28) LetT be a non empty topological spadepe a subset of, andx be a point ofT. Then
x € Aif and only if there exists an ultra filtéf of ZgT such that € F andx is a convergence
point of F, T.

(29) LetT be a non empty topological space athe a subset of . ThenA is closed if and
only if for every proper filtef= of ZgT such thatA € F and for every poink of T such tha
is a cluster point oF, T holdsx € A.

2 The proposition (19) has been removed.



ON THE CHARACTERIZATIONS OF COMPACTNESS 4

(30) LetT be a non empty topological space ahdbe a subset of . ThenA is closed if and

only if for every ultra filterF of ZgT such thatA € F and for every poink of T such thai is
a convergence point ¢f, T holdsx € A.

(31) LetT be a non empty topological spadébe a netinT, ands be a point ofT. Thensis a
cluster point ofN if and only if for every subseA of T reachable byN holdss € A.

(32) For every non empty topological spacend for every familyF of subsets o such that
F is closed holds FinMeetQ¥F) is closed.

(33) LetT be a non empty topological space. ThHeis compact if and only if for every ultra
filter F of ZgT holds there exists a point @f which is a convergence point &f, T.

(34) LetT be a non empty topological space. Theis compact if and only if for every proper
filter F of ZgT holds there exists a point @f which is a cluster point of, T.

(35) LetT be a non empty topological space. ThHeifs compact if and only if for every néd
in T holds there exists a point @f which is a cluster point of.

(36) LetT be a non empty topological space. Theiis compact if and only if for every néd
in T such thaN € NetUniv(T ) holds there exists a point @f which is a cluster point o.

Let L be a non empty 1-sorted structure andNdbe a transitive net structure ovier Note that
every full structure of a subnet of is transitive.

LetL be a non empty 1-sorted structure andNdbe a non empty directed net structure oler
Note that there exists a structure of a subnét @fhich is strict, non empty, directed, and full.

Next we state the proposition

(37) For every non empty topological spacéoldsT is compact iff for every nell in T holds
there exists a subnet df which is convergent.

Let She a non empty 1-sorted structure andNebe a non empty net structure ov&rWe say
thatN is Cauchy if and only if:

(Def. 5) For every subsék of SholdsN is eventually inA and eventually inA°.

Let Sbe a non empty 1-sorted structure andHdbe an ultra filter of gs_ One can check that
the net ofF is Cauchy.
One can prove the following proposition

(38) LetT be a non empty topological space. ThHefis compact if and only if for every néd
in T such thalN is Cauchy hold$ is convergent.
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