
JOURNAL OF FORMALIZED MATHEMATICS

Volume13, Released 2001, Published 2003

Inst. of Computer Science, Univ. of Białystok

Concrete Categories

Grzegorz Bancerek
University of Białystok

Shinshu University, Nagano

Summary. In the paper, we develop the notation of duality and equivalence of cate-
gories and concrete categories based on [22]. The development was motivated by the duality
theory for continuous lattices (see [10, p. 189]), where we need to cope with concrete cat-
egories of lattices and maps preserving their properties. For example, the categoryUPSof
complete lattices and directed suprema preserving maps; or the categoryINF of complete
lattices and infima preserving maps. As the main result of this paper it is shown that every cat-
egory is isomorphic to its concretization (the concrete category with the same objects). Some
useful schemes to construct categories and functors are also presented.

MML Identifier: YELLOW18.

WWW: http://mizar.org/JFM/Vol13/yellow18.html

The articles [18], [9], [26], [25], [27], [28], [6], [8], [7], [16], [19], [5], [15], [2], [1], [20], [13],
[21], [12], [4], [3], [22], [23], [24], [14], [17], and [11] provide the notation and terminology for
this paper.

1. DEFINABILITY OF CATEGORIES ANDFUNCTORS

In this article we present several logical schemes. The schemeAltCatStrLambdadeals with a non
empty setA , a binary functorF yielding a set, and a 5-ary functorG yielding a set, and states that:

There exists a strict non empty transitive category structureC such that
(i) the carrier ofC = A ,

(ii) for all objectsa, b of C holds〈a,b〉= F (a,b), and
(iii) for all objectsa, b, c of C such that〈a,b〉 6= /0 and〈b,c〉 6= /0 and for every mor-
phism f from a to b and for every morphismg from b to c holdsg· f = G(a,b,c, f ,g)

provided the following requirement is met:
• For all elementsa, b, c of A and for all setsf , g such thatf ∈F (a,b) andg∈F (b,c)

holdsG(a,b,c, f ,g) ∈ F (a,c).
The schemeCatAssocSchdeals with a non empty transitive category structureA and a 5-ary

functorF yielding a set, and states that:
A is associative

provided the parameters satisfy the following conditions:
• Let a, b, c be objects ofA . Suppose〈a,b〉 6= /0 and〈b,c〉 6= /0. Let f be a morphism

from a to b andg be a morphism fromb to c. Theng· f = F (a,b,c, f ,g), and
• Let a, b, c, d be objects ofA and f , g, h be sets. Iff ∈ 〈a,b〉 andg ∈ 〈b,c〉 and

h∈ 〈c,d〉, thenF (a,c,d,F (a,b,c, f ,g),h) = F (a,b,d, f ,F (b,c,d,g,h)).
The schemeCatUnitsSchdeals with a non empty transitive category structureA and a 5-ary

functorF yielding a set, and states that:
A has units
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provided the parameters satisfy the following conditions:
• Let a, b, c be objects ofA . Suppose〈a,b〉 6= /0 and〈b,c〉 6= /0. Let f be a morphism

from a to b andg be a morphism fromb to c. Theng· f = F (a,b,c, f ,g),
• Let a be an object ofA . Then there exists a setf such thatf ∈ 〈a,a〉 and for every

objectb of A and for every setg such thatg∈ 〈a,b〉 holdsF (a,a,b, f ,g) = g, and
• Let a be an object ofA . Then there exists a setf such thatf ∈ 〈a,a〉 and for every

objectb of A and for every setg such thatg∈ 〈b,a〉 holdsF (b,a,a,g, f ) = g.
The schemeCategoryLambdadeals with a non empty setA , a binary functorF yielding a set,

and a 5-ary functorG yielding a set, and states that:
There exists a strict categoryC such that

(i) the carrier ofC = A ,
(ii) for all objectsa, b of C holds〈a,b〉= F (a,b), and

(iii) for all objectsa, b, c of C such that〈a,b〉 6= /0 and〈b,c〉 6= /0 and for every mor-
phism f from a to b and for every morphismg from b to c holdsg· f = G(a,b,c, f ,g)

provided the following conditions are met:
• For all elementsa, b, c of A and for all setsf , g such thatf ∈F (a,b) andg∈F (b,c)

holdsG(a,b,c, f ,g) ∈ F (a,c),
• Let a, b, c, d be elements ofA and f , g, h be sets. Iff ∈ F (a,b) andg∈ F (b,c)

andh∈ F (c,d), thenG(a,c,d,G(a,b,c, f ,g),h) = G(a,b,d, f ,G(b,c,d,g,h)),
• Let a be an element ofA . Then there exists a setf such thatf ∈F (a,a) and for every

elementb of A and for every setg such thatg∈ F (a,b) holdsG(a,a,b, f ,g) = g,
and

• Let a be an element ofA . Then there exists a setf such thatf ∈F (a,a) and for every
elementb of A and for every setg such thatg∈ F (b,a) holdsG(b,a,a,g, f ) = g.

The schemeCategoryLambdaUniqdeals with a non empty setA , a binary functorF yielding a
set, and a 5-ary functorG yielding a set, and states that:

Let C1, C2 be non empty transitive category structures. Suppose that
(i) the carrier ofC1 = A ,

(ii) for all objectsa, b of C1 holds〈a,b〉= F (a,b),
(iii) for all objectsa, b, cof C1 such that〈a,b〉 6= /0 and〈b,c〉 6= /0 and for every mor-
phism f from a to b and for every morphismg from b to c holdsg· f = G(a,b,c, f ,g),
(iv) the carrier ofC2 = A ,
(v) for all objectsa, b of C2 holds〈a,b〉= F (a,b), and

(vi) for all objectsa, b, cof C2 such that〈a,b〉 6= /0 and〈b,c〉 6= /0 and for every mor-
phism f from a to b and for every morphismg from b to c holdsg· f = G(a,b,c, f ,g).

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.
The schemeCategoryQuasiLambdadeals with a non empty setA , a binary functorF yielding

a set, a 5-ary functorG yielding a set, and a ternary predicateP , and states that:
There exists a strict categoryC such that

(i) the carrier ofC = A ,
(ii) for all objectsa, b of C and for every setf holds f ∈ 〈a,b〉 iff f ∈ F (a,b) and

P [a,b, f ], and
(iii) for all objectsa, b, c of C such that〈a,b〉 6= /0 and〈b,c〉 6= /0 and for every mor-
phism f from a to b and for every morphismg from b to c holdsg· f = G(a,b,c, f ,g)

provided the parameters meet the following requirements:
• Let a, b, c be elements ofA and f , g be sets. Supposef ∈ F (a,b) andP [a,b, f ] and

g∈ F (b,c) andP [b,c,g]. ThenG(a,b,c, f ,g) ∈ F (a,c) andP [a,c,G(a,b,c, f ,g)],
• Let a, b, c, d be elements ofA and f , g, h be sets. Supposef ∈F (a,b) andP [a,b, f ]

andg∈F (b,c) andP [b,c,g] andh∈F (c,d) andP [c,d,h]. ThenG(a,c,d,G(a,b,c, f ,g),h)=
G(a,b,d, f ,G(b,c,d,g,h)),

• Leta be an element ofA . Then there exists a setf such thatf ∈F (a,a) andP [a,a, f ]
and for every elementb of A and for every setg such thatg∈ F (a,b) andP [a,b,g]
holdsG(a,a,b, f ,g) = g, and
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• Leta be an element ofA . Then there exists a setf such thatf ∈F (a,a) andP [a,a, f ]
and for every elementb of A and for every setg such thatg∈ F (b,a) andP [b,a,g]
holdsG(b,a,a,g, f ) = g.

Let f be a function yielding function and leta, b, c be sets. Note thatf (a, b, c) is relation-like
and function-like.

Now we present two schemes. The schemeSubcategoryExdeals with a categoryA , a unary
predicateP , and a ternary predicateQ , and states that:

There exists a strict non empty subcategoryB of A such that
(i) for every objecta of A holdsa is an object ofB iff P [a], and

(ii) for all objectsa, b of A and for all objectsa′, b′ of B such thata′ = a and
b′ = b and 〈a,b〉 6= /0 and for every morphismf from a to b holds f ∈ 〈a′,b′〉 iff
Q [a,b, f ]

provided the following conditions are met:
• There exists an objecta of A such thatP [a],
• Let a, b, c be objects ofA . SupposeP [a] and P [b] and P [c] and 〈a,b〉 6= /0 and

〈b,c〉 6= /0. Let f be a morphism froma to b andg be a morphism fromb to c. If
Q [a,b, f ] andQ [b,c,g], thenQ [a,c,g· f ], and

• For every objecta of A such thatP [a] holdsQ [a,a, ida].
The schemeCovariantFunctorLambdadeals with categoriesA , B, a unary functorF yielding

a set, and a ternary functorG yielding a set, and states that:
There exists a covariant strict functorF from A to B such that

(i) for every objecta of A holdsF(a) = F (a), and
(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a

to b holdsF( f ) = G(a,b, f )
provided the parameters meet the following conditions:

• For every objecta of A holdsF (a) is an object ofB,
• Let a, b be objects ofA . Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

G(a,b, f ) ∈ (the arrows ofB)(F (a), F (b)),
• Let a, b, c be objects ofA . Suppose〈a,b〉 6= /0 and〈b,c〉 6= /0. Let f be a morphism

from a to b, g be a morphism fromb to c, anda′, b′, c′ be objects ofB. Suppose
a′ = F (a) andb′ = F (b) andc′ = F (c). Let f ′ be a morphism froma′ to b′ andg′ be
a morphism fromb′ to c′. If f ′ = G(a,b, f ) andg′ = G(b,c,g), thenG(a,c,g · f ) =
g′ · f ′, and

• For every objecta of A and for every objecta′ of B such thata′ = F (a) holds
G(a,a, ida) = ida′ .

One can prove the following proposition

(1) LetA, B be categories andF , G be covariant functors fromA to B. Suppose that

(i) for every objecta of A holdsF(a) = G(a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b holds
F( f ) = G( f ).

Then the functor structure ofF = the functor structure ofG.

The schemeContravariantFunctorLambdadeals with categoriesA , B, a unary functorF yield-
ing a set, and a ternary functorG yielding a set, and states that:

There exists a contravariant strict functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(a,b, f )

provided the parameters meet the following conditions:
• For every objecta of A holdsF (a) is an object ofB,
• Let a, b be objects ofA . Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

G(a,b, f ) ∈ (the arrows ofB)(F (b), F (a)),
• Let a, b, c be objects ofA . Suppose〈a,b〉 6= /0 and〈b,c〉 6= /0. Let f be a morphism

from a to b, g be a morphism fromb to c, anda′, b′, c′ be objects ofB. Suppose
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a′ = F (a) andb′ = F (b) andc′ = F (c). Let f ′ be a morphism fromb′ to a′ andg′ be
a morphism fromc′ to b′. If f ′ = G(a,b, f ) andg′ = G(b,c,g), thenG(a,c,g · f ) =
f ′ ·g′, and

• For every objecta of A and for every objecta′ of B such thata′ = F (a) holds
G(a,a, ida) = ida′ .

Next we state the proposition

(2) LetA, B be categories andF , G be contravariant functors fromA to B. Suppose that

(i) for every objecta of A holdsF(a) = G(a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b holds
F( f ) = G( f ).

Then the functor structure ofF = the functor structure ofG.

2. ISOMORPHISM ANDEQUIVALENCE OF CATEGORIES

Let A, B, C be non empty sets and letf be a function from[:A, B:] into C. Let us observe thatf is
one-to-one if and only if:

(Def. 1) For all elementsa1, a2 of A and for all elementsb1, b2 of B such thatf (a1, b1) = f (a2, b2)
holdsa1 = a2 andb1 = b2.

Now we present four schemes. The schemeCoBijectiveSchdeals with categoriesA , B, a co-
variant functorC from A to B, a unary functorF yielding a set, and a ternary functorC yielding a
set, and states that:

C is bijective
provided the following conditions are satisfied:

• For every objecta of A holdsC (a) = F (a),
• For all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b

holdsC ( f ) = C (a,b, f ),
• For all objectsa, b of A such thatF (a) = F (b) holdsa = b,
• For all objectsa, b of A such that〈a,b〉 6= /0 and for all morphismsf , g from a to b

such thatC (a,b, f ) = C (a,b,g) holds f = g, and
• Let a, b be objects ofB. Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

there exist objectsc, d of A and there exists a morphismg from c to d such that
a = F (c) andb = F (d) and〈c,d〉 6= /0 and f = C (c,d,g).

The schemeCatIsomorphismdeals with categoriesA , B, a unary functorF yielding a set, and
a ternary functorG yielding a set, and states that:

A andB are isomorphic
provided the parameters satisfy the following conditions:

• There exists a covariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(a,b, f ),

• For all objectsa, b of A such thatF (a) = F (b) holdsa = b,
• For all objectsa, b of A such that〈a,b〉 6= /0 and for all morphismsf , g from a to b

such thatG(a,b, f ) = G(a,b,g) holds f = g, and
• Let a, b be objects ofB. Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

there exist objectsc, d of A and there exists a morphismg from c to d such that
a = F (c) andb = F (d) and〈c,d〉 6= /0 and f = G(c,d,g).

The schemeContraBijectiveSchdeals with categoriesA , B, a contravariant functorC from A
to B, a unary functorF yielding a set, and a ternary functorC yielding a set, and states that:

C is bijective
provided the parameters meet the following requirements:

• For every objecta of A holdsC (a) = F (a),
• For all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b

holdsC ( f ) = C (a,b, f ),
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• For all objectsa, b of A such thatF (a) = F (b) holdsa = b,
• For all objectsa, b of A such that〈a,b〉 6= /0 and for all morphismsf , g from a to b

such thatC (a,b, f ) = C (a,b,g) holds f = g, and
• Let a, b be objects ofB. Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

there exist objectsc, d of A and there exists a morphismg from c to d such that
b = F (c) anda = F (d) and〈c,d〉 6= /0 and f = C (c,d,g).

The schemeCatAntiIsomorphismdeals with categoriesA , B, a unary functorF yielding a set,
and a ternary functorG yielding a set, and states that:

A , B are anti-isomorphic
provided the parameters meet the following conditions:

• There exists a contravariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = G(a,b, f ),

• For all objectsa, b of A such thatF (a) = F (b) holdsa = b,
• For all objectsa, b of A such that〈a,b〉 6= /0 and for all morphismsf , g from a to b

such thatG(a,b, f ) = G(a,b,g) holds f = g, and
• Let a, b be objects ofB. Suppose〈a,b〉 6= /0. Let f be a morphism froma to b. Then

there exist objectsc, d of A and there exists a morphismg from c to d such that
b = F (c) anda = F (d) and〈c,d〉 6= /0 and f = G(c,d,g).

Let A, B be categories. We say thatA andB are equivalent if and only if the condition (Def. 2)
is satisfied.

(Def. 2) There exists a covariant functorF from A to B and there exists a covariant functorG from B
to A such thatG·F and idA are naturally equivalent andF ·G and idB are naturally equivalent.

Let us notice that the predicateA andB are equivalent is reflexive and symmetric.
Next we state three propositions:

(3) Let A, B, C be non empty reflexive graphs,F1, F2 be feasible functor structures fromA to
B, andG1, G2 be functor structures fromB to C. Suppose that

(i) the functor structure ofF1 = the functor structure ofF2, and

(ii) the functor structure ofG1 = the functor structure ofG2.

ThenG1 ·F1 = G2 ·F2.

(4) Let A, B, C be categories. SupposeA andB are equivalent andB andC are equivalent.
ThenA andC are equivalent.

(5) For all categoriesA, B such thatA andB are isomorphic holdsA andB are equivalent.

Now we present two schemes. The schemeNatTransLambdadeals with categoriesA , B, co-
variant functorsC , D from A to B, and a unary functorF yielding a set, and states that:

There exists a natural transformationt from C to D such thatC is naturally trans-
formable toD and for every objecta of A holdst[a] = F (a)

provided the parameters meet the following requirements:
• For every objecta of A holdsF (a) ∈ 〈C (a),D(a)〉, and
• Let a, b be objects ofA . Suppose〈a,b〉 6= /0. Let f be a morphism froma to b andg1

be a morphism fromC (a) to D(a). Supposeg1 = F (a). Let g2 be a morphism from
C (b) to D(b). If g2 = F (b), theng2 ·C ( f ) = D( f ) ·g1.

The schemeNatEquivalenceLambdadeals with categoriesA , B, covariant functorsC , D from
A to B, and a unary functorF yielding a set, and states that:

There exists a natural equivalencet of C and D such thatC and D are naturally
equivalent and for every objecta of A holdst[a] = F (a)

provided the parameters meet the following requirements:
• Let a be an object ofA . ThenF (a) ∈ 〈C (a),D(a)〉 and〈D(a),C (a)〉 6= /0 and for

every morphismf from C (a) to D(a) such thatf = F (a) holds f is iso, and
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• Let a, b be objects ofA . Suppose〈a,b〉 6= /0. Let f be a morphism froma to b andg1

be a morphism fromC (a) to D(a). Supposeg1 = F (a). Let g2 be a morphism from
C (b) to D(b). If g2 = F (b), theng2 ·C ( f ) = D( f ) ·g1.

3. DUAL CATEGORIES

Let C1, C2 be non empty category structures. We say thatC1 andC2 are opposite if and only if the
conditions (Def. 3) are satisfied.

(Def. 3)(i) The carrier ofC2 = the carrier ofC1,

(ii) the arrows ofC2 = x(the arrows ofC1), and

(iii) for all objectsa, b, c of C1 and for all objectsa′, b′, c′ of C2 such thata′ = a andb′ = b
andc′ = c holds (the composition ofC2)(a′, b′, c′) = x(the composition ofC1)(c, b, a).

Let us note that the predicateC1 andC2 are opposite is symmetric.
Next we state several propositions:

(6) For all non empty category structuresA, B such thatA andB are opposite holds every object
of A is an object ofB.

(7) Let A, B be non empty category structures. SupposeA andB are opposite. Leta, b be
objects ofA anda′, b′ be objects ofB. If a′ = a andb′ = b, then〈a,b〉= 〈b′,a′〉.

(8) Let A, B be non empty category structures. SupposeA andB are opposite. Leta, b be
objects ofA anda′, b′ be objects ofB. If a′ = a andb′ = b, then every morphism froma to b
is a morphism fromb′ to a′.

(9) LetC1, C2 be non empty transitive category structures. ThenC1 andC2 are opposite if and
only if the following conditions are satisfied:

(i) the carrier ofC2 = the carrier ofC1, and

(ii) for all objectsa, b, c of C1 and for all objectsa′, b′, c′ of C2 such thata′ = a andb′ = b and
c′ = c holds〈a,b〉 = 〈b′,a′〉 and if 〈a,b〉 6= /0 and〈b,c〉 6= /0, then for every morphismf from
a to b and for every morphismg from b to c and for every morphismf ′ from b′ to a′ and for
every morphismg′ from c′ to b′ such thatf ′ = f andg′ = g holds f ′ ·g′ = g· f .

(10) LetA, B be categories. SupposeA andB are opposite. Leta be an object ofA andb be an
object ofB. If a = b, then ida = idb .

(11) LetC be a transitive non empty category structure. Then there exists a strict transitive non
empty category structureC′ such thatC andC′ are opposite.

(12) LetA, B be transitive non empty category structures. SupposeA andB are opposite. IfA is
associative, thenB is associative.

(13) For all transitive non empty category structuresA, B such thatA andB are opposite holds
if A has units, thenB has units.

(14) LetC, C1, C2 be non empty category structures. SupposeC andC1 are opposite. ThenC
andC2 are opposite if and only if the category structure ofC1 = the category structure ofC2.

Let C be a transitive non empty category structure. The functorCop yielding a strict transitive
non empty category structure is defined as follows:

(Def. 4) C andCop are opposite.

Let C be an associative transitive non empty category structure. One can verify thatCop is
associative.

Let C be a transitive non empty category structure with units. Note thatCop has units.
Let A, B be categories. Let us assume thatA andB are opposite. The dualizing functor fromA

into B is a contravariant strict functor fromA to B and is defined by the conditions (Def. 5).
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(Def. 5)(i) For every objecta of A holds (the dualizing functor fromA into B)(a) = a, and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b holds
(the dualizing functor fromA into B)( f ) = f .

Next we state two propositions:

(15) LetA, B be categories. SupposeA andB are opposite. Then (the dualizing functor fromA
into B) · (the dualizing functor fromB into A) = idB.

(16) LetA, B be categories. SupposeA andB are opposite. Then the dualizing functor fromA
into B is bijective.

Let A be a category. Observe that the dualizing functor fromA into Aop is bijective and the
dualizing functor fromAop into A is bijective.

Next we state a number of propositions:

(17) For all categoriesA, B such thatA andB are opposite holdsA, B are anti-isomorphic.

(18) LetA, B, C be categories. SupposeA andB are opposite. ThenA andC are isomorphic if
and only ifB, C are anti-isomorphic.

(19) LetA, B, C, D be categories. SupposeA andB are opposite andC andD are opposite. IfA
andC are isomorphic, thenB andD are isomorphic.

(20) LetA, B, C, D be categories. SupposeA andB are opposite andC andD are opposite. IfA,
C are anti-isomorphic, thenB, D are anti-isomorphic.

(21) LetA, B be categories. SupposeA andB are opposite. Leta, b be objects ofA. Suppose
〈a,b〉 6= /0 and〈b,a〉 6= /0. Let a′, b′ be objects ofB. Supposea′ = a andb′ = b. Let f be a
morphism froma to b and f ′ be a morphism fromb′ to a′. If f ′ = f , then f is retraction iff f ′

is coretraction.

(22) LetA, B be categories. SupposeA andB are opposite. Leta, b be objects ofA. Suppose
〈a,b〉 6= /0 and〈b,a〉 6= /0. Let a′, b′ be objects ofB. Supposea′ = a andb′ = b. Let f be a
morphism froma to b and f ′ be a morphism fromb′ to a′. If f ′ = f , then f is coretraction iff
f ′ is retraction.

(23) LetA, B be categories. SupposeA andB are opposite. Leta, b be objects ofA. Suppose
〈a,b〉 6= /0 and〈b,a〉 6= /0. Let a′, b′ be objects ofB. Supposea′ = a andb′ = b. Let f be a
morphism froma to b and f ′ be a morphism fromb′ to a′. If f ′ = f and f is retraction and
coretraction, thenf ′−1 = f−1.

(24) LetA, B be categories. SupposeA andB are opposite. Leta, b be objects ofA. Suppose
〈a,b〉 6= /0 and〈b,a〉 6= /0. Let a′, b′ be objects ofB. Supposea′ = a andb′ = b. Let f be a
morphism froma to b and f ′ be a morphism fromb′ to a′. If f ′ = f , then f is iso iff f ′ is iso.

(25) LetA, B, C, D be categories. SupposeA andB are opposite andC andD are opposite. Let
F , G be covariant functors fromB to C. SupposeF andG are naturally equivalent. Then (the
dualizing functor fromC into D) ·G · the dualizing functor fromA into B and (the dualizing
functor fromC into D) ·F · the dualizing functor fromA into B are naturally equivalent.

(26) LetA, B, C, D be categories. SupposeA andB are opposite andC andD are opposite. IfA
andC are equivalent, thenB andD are equivalent.

Let A, B be categories. We say thatA andB are dual if and only if:

(Def. 6) A andBop are equivalent.

Let us note that the predicateA andB are dual is symmetric.
The following four propositions are true:
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(27) For all categoriesA, B such thatA, B are anti-isomorphic holdsA andB are dual.

(28) LetA, B, C be categories. SupposeA andB are opposite. ThenA andC are equivalent if
and only ifB andC are dual.

(29) For all categoriesA, B, C such thatA andB are dual andB andC are equivalent holdsA
andC are dual.

(30) For all categoriesA, B, C such thatA andB are dual andB andC are dual holdsA andC
are equivalent.

4. CONCRETECATEGORIES

The following proposition is true

(31) For all setsX, Y, x holdsx∈YX iff x is a function andπ1(x) = X andπ2(x)⊆Y.

Let C be a 1-sorted structure. A many sorted set indexed byC is a many sorted set indexed by
the carrier ofC.

Let C be a category. We say thatC is para-functional if and only if:

(Def. 7) There exists a many sorted setF indexed byC such that for all objectsa1, a2 of C holds
〈a1,a2〉 ⊆ F(a2)F(a1).

Let us note that every category which is quasi-functional is also para-functional.
Let C be a category and leta be a set.C-carrier ofa is defined by:

(Def. 8)(i) There exists an objectb of C such thatb = a andC-carrier ofa = π1(idb) if a is an
object ofC,

(ii) C-carrier ofa = /0, otherwise.

Let C be a category and leta be an object ofC. ThenC-carrier ofa can be characterized by the
condition:

(Def. 9) C-carrier ofa = π1(ida).

We introduce the carrier ofa as a synonym ofC-carrier ofa.
We now state two propositions:

(32) For every non empty setA and for every objecta of EnsA holds ida = ida.

(33) For every non empty setA and for every objecta of EnsA holds the carrier ofa = a.

Let C be a category. We say thatC is set-id-inheriting if and only if:

(Def. 10) For every objecta of C holds ida = idthe carrier ofa.

Let A be a non empty set. Note that EnsA is set-id-inheriting.
Let C be a category. We say thatC is concrete if and only if:

(Def. 11) C is para-functional, semi-functional, and set-id-inheriting.

Let us note that every category which is concrete is also para-functional, semi-functional, and
set-id-inheriting and every category which is para-functional, semi-functional, and set-id-inheriting
is also concrete.

Let us observe that there exists a category which is concrete, quasi-functional, and strict.
We now state two propositions:

(34) LetC be a category. ThenC is para-functional if and only if for all objectsa1, a2 of C holds
〈a1,a2〉 ⊆ (the carrier ofa2)the carrier ofa1.
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(35) LetC be a para-functional category anda, b be objects ofC. Suppose〈a,b〉 6= /0. Then
every morphism froma to b is a function from the carrier ofa into the carrier ofb.

Let A be a para-functional category and leta, b be objects ofA. Observe that every morphism
from a to b is function-like and relation-like.

We now state four propositions:

(36) LetC be a para-functional category anda, b be objects ofC. Suppose〈a,b〉 6= /0. Let f be
a morphism froma to b. Then domf = the carrier ofa and rngf ⊆ the carrier ofb.

(37) For every para-functional semi-functional categoryC and for every objecta of C holds the
carrier ofa = dom(ida).

(38) LetC be a para-functional semi-functional category anda, b, c be objects ofC. Suppose
〈a,b〉 6= /0 and〈b,c〉 6= /0. Let f be a morphism froma to b andg be a morphism fromb to c.
Theng· f = (g qua function)·( f qua function).

(39) Let C be a para-functional semi-functional category anda be an object ofC. If
idthe carrier ofa ∈ 〈a,a〉, then ida = idthe carrier ofa.

Now we present several schemes. The schemeConcreteCategoryLambdadeals with a non
empty setA , a binary functorF yielding a set, and a unary functorG yielding a set, and states
that:

There exists a concrete strict categoryC such that
(i) the carrier ofC = A ,

(ii) for every objecta of C holds the carrier ofa = G(a), and
(iii) for all objectsa, b of C holds〈a,b〉= F (a,b)

provided the parameters have the following properties:
• For all elementsa, b, c of A and for all functionsf , g such thatf ∈ F (a,b) and

g∈ F (b,c) holdsg· f ∈ F (a,c),
• For all elementsa, b of A holdsF (a,b)⊆ G(b)G(a), and
• For every elementa of A holds idG(a) ∈ F (a,a).

The schemeConcreteCategoryQuasiLambdadeals with a non empty setA , a unary functorF
yielding a set, and a ternary predicateP , and states that:

There exists a concrete strict categoryC such that
(i) the carrier ofC = A ,

(ii) for every objecta of C holds the carrier ofa = F (a), and
(iii) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of
C)(a, b) iff f ∈ F (b)F (a) andP [a,b, f ]

provided the parameters meet the following requirements:
• For all elementsa, b, cof A and for all functionsf , gsuch thatP [a,b, f ] andP [b,c,g]

holdsP [a,c,g· f ], and
• For every elementa of A holdsP [a,a, idF (a)].

The schemeConcreteCategoryExdeals with a non empty setA , a unary functorF yielding a
set, a binary predicateP , and a ternary predicateQ , and states that:

There exists a concrete strict categoryC such that
(i) the carrier ofC = A ,

(ii) for every objecta of C and for every setx holdsx∈ the carrier ofa iff x∈F (a)
andP [a,x], and
(iii) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of
C)(a, b) iff f ∈ ( C-carrier ofb)C-carrier ofa andQ [a,b, f ]

provided the parameters meet the following requirements:
• For all elementsa, b, c of A and for all functionsf , g such thatQ [a,b, f ] and

Q [b,c,g] holdsQ [a,c,g· f ], and
• Let a be an element ofA andX be a set. If for every setx holdsx∈ X iff x∈ F (a)

andP [a,x], thenQ [a,a, idX].
The schemeConcreteCategoryUniq1deals with a non empty setA and a binary functorF

yielding a set, and states that:
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Let C1, C2 be para-functional semi-functional categories. Suppose that
(i) the carrier ofC1 = A ,

(ii) for all objectsa, b of C1 holds〈a,b〉= F (a,b),
(iii) the carrier ofC2 = A , and
(iv) for all objectsa, b of C2 holds〈a,b〉= F (a,b).

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.
The schemeConcreteCategoryUniq2deals with a non empty setA , a unary functorF yielding

a set, and a ternary predicateP , and states that:
Let C1, C2 be para-functional semi-functional categories. Suppose that

(i) the carrier ofC1 = A ,
(ii) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of

C1)(a, b) iff f ∈ F (b)F (a) andP [a,b, f ],
(iii) the carrier ofC2 = A , and
(iv) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of
C2)(a, b) iff f ∈ F (b)F (a) andP [a,b, f ].

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.
The schemeConcreteCategoryUniq3deals with a non empty setA , a unary functorF yielding

a set, a binary predicateP , and a ternary predicateQ , and states that:
Let C1, C2 be para-functional semi-functional categories. Suppose that

(i) the carrier ofC1 = A ,
(ii) for every objecta of C1 and for every setx holds x ∈ the carrier ofa iff

x∈ F (a) andP [a,x],
(iii) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of
C1)(a, b) iff f ∈ ( C1-carrier ofb)C1-carrier ofa andQ [a,b, f ],
(iv) the carrier ofC2 = A ,
(v) for every objecta of C2 and for every setx holds x ∈ the carrier ofa iff

x∈ F (a) andP [a,x], and
(vi) for all elementsa, b of A and for every functionf holds f ∈ (the arrows of
C2)(a, b) iff f ∈ ( C2-carrier ofb)C2-carrier ofa andQ [a,b, f ].

Then the category structure ofC1 = the category structure ofC2

for all values of the parameters.

5. EQUIVALENCE BETWEEN CONCRETECATEGORIES

We now state several propositions:

(40) LetC be a concrete category anda, b be objects ofC. Suppose〈a,b〉 6= /0 and〈b,a〉 6= /0.
Let f be a morphism froma to b. If f is retraction, then rngf = the carrier ofb.

(41) LetC be a concrete category anda, b be objects ofC. Suppose〈a,b〉 6= /0 and〈b,a〉 6= /0.
Let f be a morphism froma to b. If f is coretraction, thenf is one-to-one.

(42) LetC be a concrete category anda, b be objects ofC. Suppose〈a,b〉 6= /0 and〈b,a〉 6= /0.
Let f be a morphism froma to b. If f is iso, thenf is one-to-one and rngf = the carrier ofb.

(43) Let C be a para-functional semi-functional category anda, b be objects ofC. Suppose
〈a,b〉 6= /0. Let f be a morphism froma to b. If f is one-to-one and( f qua function)−1 ∈
〈b,a〉, then f is iso.

(44) LetC be a concrete category anda, b be objects ofC. Suppose〈a,b〉 6= /0 and〈b,a〉 6= /0.
Let f be a morphism froma to b. If f is iso, thenf−1 = ( f qua function)−1.

The schemeConcreteCatEquivalencedeals with para-functional semi-functional categoriesA ,
B, two unary functorsF andG yielding sets, two ternary functorsH andI yielding functions, and
two unary functorsA andB yielding functions, and states that:
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A andB are equivalent
provided the parameters meet the following requirements:

• There exists a covariant functorF from A to B such that
(i) for every objecta of A holdsF(a) = F (a), and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsF( f ) = H (a,b, f ),

• There exists a covariant functorG from B to A such that
(i) for every objecta of B holdsG(a) = G(a), and

(ii) for all objectsa, b of B such that〈a,b〉 6= /0 and for every morphismf from a
to b holdsG( f ) = I (a,b, f ),

• For all objectsa, b of A such thata = G(F (b)) holdsA(b) ∈ 〈a,b〉 andA(b)−1 ∈
〈b,a〉 andA(b) is one-to-one,

• For all objectsa, b of B such thatb = F (G(a)) holdsB(a) ∈ 〈a,b〉 andB(a)−1 ∈
〈b,a〉 andB(a) is one-to-one,

• For all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b
holdsA(b) · I (F (a),F (b),H (a,b, f )) = f ·A(a), and

• For all objectsa, b of B such that〈a,b〉 6= /0 and for every morphismf from a to b
holdsH (G(a),G(b),I (a,b, f )) ·B(a) = B(b) · f .

6. CONCRETIZATION OFCATEGORIES

LetC be a category. The concretizedC is a concrete strict category and is defined by the conditions
(Def. 12).

(Def. 12)(i) The carrier of the concretizedC = the carrier ofC,

(ii) for every objecta of the concretizedC and for every setx holdsx ∈ the carrier ofa iff
x∈

⋃
disjoint (the arrows ofC) anda = x2,2, and

(iii) for all elementsa, b of C and for every functionf holds f ∈ (the arrows of the concretized
C)(a, b) iff f ∈ ( (the concretizedC)-carrier ofb)(the concretizedC)-carrier ofa and there exist ob-
jects f1, f2 of C and there exists a morphismg from f1 to f2 such thatf1 = a and f2 = b and
〈 f1, f2〉 6= /0 and for every objecto of C such that〈o, f1〉 6= /0 and for every morphismh from
o to f1 holds f (〈〈h, 〈〈o, f1〉〉〉〉) = 〈〈g·h, 〈〈o, f2〉〉〉〉.

Next we state the proposition

(45) LetA be a category,a be an object ofA, andx be a set. Thenx∈ (the concretizedA)-carrier
of a if and only if there exists an objectb of A and there exists a morphismf from b to a such
that〈b,a〉 6= /0 andx = 〈〈 f , 〈〈b, a〉〉〉〉.

Let A be a category and leta be an object ofA. Observe that (the concretizedA)-carrier ofa is
non empty.

Next we state two propositions:

(46) Let A be a category anda, b be objects ofA. Suppose〈a,b〉 6= /0. Let f be a morphism
from a to b. Then there exists a functionF from (the concretizedA)-carrier ofa into (the
concretizedA)-carrier ofb such that

(i) F ∈ (the arrows of the concretizedA)(a, b), and

(ii) for every objectc of A and for every morphismg from c to a such that〈c,a〉 6= /0 holds
F(〈〈g, 〈〈c, a〉〉〉〉) = 〈〈 f ·g, 〈〈c, b〉〉〉〉.

(47) LetA be a category anda, b be objects ofA. Suppose〈a,b〉 6= /0. Let F1, F2 be functions.
Suppose that

(i) F1 ∈ (the arrows of the concretizedA)(a, b),

(ii) F2 ∈ (the arrows of the concretizedA)(a, b), and

(iii) F1(〈〈 ida, 〈〈a, a〉〉〉〉) = F2(〈〈 ida, 〈〈a, a〉〉〉〉).
ThenF1 = F2.
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The schemeNonUniqMSFunctionExdeals with a setA , many sorted setsB, C indexed byA ,
and a ternary predicateP , and states that:

There exists a many sorted functionF from B into C such that for all setsi, x if i ∈A
andx∈ B(i), thenF(i)(x) ∈ C (i) andP [i,x,F(i)(x)]

provided the parameters meet the following condition:
• For all setsi, x such thati ∈ A andx∈ B(i) there exists a sety such thaty∈ C (i) and

P [i,x,y].
Let A be a category. The concretization ofA is a covariant strict functor fromA to the concretized

A and is defined by the conditions (Def. 13).

(Def. 13)(i) For every objecta of A holds (the concretization ofA)(a) = a, and

(ii) for all objectsa, b of A such that〈a,b〉 6= /0 and for every morphismf from a to b holds
(the concretization ofA)( f )(〈〈 ida, 〈〈a, a〉〉〉〉) = 〈〈 f , 〈〈a, b〉〉〉〉.

Let A be a category. One can verify that the concretization ofA is bijective.
The following proposition is true

(48) For every categoryA holdsA and the concretizedA are isomorphic.
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