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Summary. In the paper, we develop the notation of duality and equivalence of cate-
gories and concrete categories based oh [22]. The development was motivated by the duality
theory for continuous lattices (see [10, p. 189]), where we need to cope with concrete cat-
egories of lattices and maps preserving their properties. For example, the cdidf®of
complete lattices and directed suprema preserving maps; or the catbfonf complete
lattices and infima preserving maps. As the main result of this paper it is shown that every cat-
egory is isomorphic to its concretization (the concrete category with the same objects). Some
useful schemes to construct categories and functors are also presented.
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The articles|[18],([9],126],[125],127],[128],.16],.18],[17],[[16],[[19],L[5],[[15],12],[11],[1200],[113],
[21], 1221, 141, [30, [22], 23], [24], [14], [17], and[[11] provide the notation and terminology for
this paper.

1. DEFINABILITY OF CATEGORIES ANDFUNCTORS

In this article we present several logical schemes. The schdt@atStrLambdaleals with a non
empty setq, a binary functorf yielding a set, and a 5-ary functat yielding a set, and states that:
There exists a strict non empty transitive category struc@sach that
(i) the carrier ofC = 4,
(i) for all objectsa, b of C holds(a,b) = ¥ (a,b), and
(iii)  for all objectsa, b, c of C such thata, b) # 0 and({b, c) # 0 and for every mor-
phismf from atoband for every morphisrgfrombto choldsg- f = G(a,b,c, f,g)
provided the following requirement is met:
e Forall elements, b, cof 4 and for all setd, g such thatf € 7 (a,b) andge ¥ (b, c)
holdsG(a,b,c, f,0) € F(a,c).
The scheméCatAssocScldeals with a non empty transitive category structdrand a 5-ary
functor ¥ yielding a set, and states that:
A4 is associative
provided the parameters satisfy the following conditions:
e Leta, b, c be objects of4. Supposda,b) # 0 and(b,c) # 0. Let f be a morphism
from ato b andg be a morphism fronb to c. Theng- f = #(a,b,c, f,g), and
e Leta, b, ¢, d be objects of7 and f, g, h be sets. Iff € (a,b) andg € (b,c) and
h e (c,d), then¥ (a,c,d, ¥ (a,b,c, f,g),h) = F(a,b,d, f, F (b,c,d,g,h)).
The schemeCatUnitsSchdeals with a non empty transitive category structdrand a 5-ary
functor ¥ yielding a set, and states that:
A4 has units
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provided the parameters satisfy the following conditions:
e Leta, b, c be objects of2. Supposda,b) # 0 and(b,c) # 0. Let f be a morphism
from ato b andg be a morphism fronb to c. Theng- f = #(a,b,c, f,g),
e Letabe an object of. Then there exists a sétsuch thatf € (a,a) and for every
objectb of 4 and for every seg such thag € (a,b) holds ¥ (a,a,b, f,g) = g, and
e Letabe an object of. Then there exists a sétsuch thatf € (a,a) and for every
objectb of 4 and for every seg such thag € (b,a) holds ¥ (b,a,a,9, f) = g.
The schem&ategoryLambdaeals with a non empty seg, a binary functorf yielding a set,
and a 5-ary functog yielding a set, and states that:
There exists a strict catego8ysuch that
(i) the carrier ofC = 4,
(i) for all objectsa, b of C holds(a,b) = ¥ (a,b), and
(iiiy  for all objectsa, b, c of C such thata, b) # 0 and(b, c) # 0 and for every mor-
phismf fromato b and for every morphisrgfrombto choldsg- f = G(a,b,c, f,0)
provided the following conditions are met:
e Forall elements, b, cof 2 and for all setd, g such thatf € 7 (a,b) andge ¥ (b, c)
holdsG(a,b,c, f,g) € F(a,c),
e Leta, b, c, dbe elements off and f, g, h be sets. Iff € #(a,b) andg € ¥ (b,c)
andh e —‘}—(Cvd)v theng(av Cvdv g(av bv c, fvg)v h) = G(av bvd» fv g(bv Cvdvgv h))v
e Letabe anelement ofl. Then there exists a sésuch thatf € 7 (a,a) and for every
elementb of 4 and for every seg such thaig € ¥ (a,b) holds G(a,a,b, f,g) = g,
and
e Letabe anelement ofl. Then there exists a sétsuch thatf € 7 (a,a) and for every
elementb of 4 and for every seg such thag € ¥ (b,a) holdsG(b,a,a,9,f) =g.
The schem€&ategoryLambdaUnigeals with a non empty seét, a binary functorf yielding a
set, and a 5-ary functaf yielding a set, and states that:
LetCy, C; be non empty transitive category structures. Suppose that
(i) the carrier ofCy = 4,
(i) for all objectsa, b of C; holds(a,b) = F(a,b),
(iiiy  for all objectsa, b, cof C; such thata, b) # 0 and(b, c) # 0 and for every mor-
phismf fromato b and for every morphismgfrombtocholdsg- f = G(a,b,c, f,g),
(iv)  the carrier ofC, = 4,
(v) for all objectsa, b of C, holds{a,b) = ¥ (a,b), and
(vi) forall objectsa, b, c of C; such thata, b) £ 0 and(b, c) # 0 and for every mor-
phismf fromato b and for every morphismfrombtocholdsg- f = G(a,b,c, f,9).
Then the category structure ©f = the category structure @b
for all values of the parameters.
The schem&ategoryQuasiLambddeals with a non empty set, a binary functor¥ yielding
a set, a 5-ary functof yielding a set, and a ternary predicateand states that:
There exists a strict categoB/such that
(i) the carrier ofC = 4,
(i) for all objectsa, b of C and for every sef holdsf € (a,b) iff f € 7(a,b) and
P[a,b, f], and
(iii)  for all objectsa, b, c of C such thata, b) £ 0 and(b, c) # 0 and for every mor-
phismf from ato b and for every morphisrg frombto choldsg- f = G(a,b,c, f,0)
provided the parameters meet the following requirements:
e Leta, b, cbe elements off andf, g be sets. Supposec ¥ (a,b) andP[a,b, f] and
g€ ¥(b,c) and?[b,c,g]. ThenG(a,b,c, f,g) € F(a,c) and?P[a,c, G(a,b,c, f,g)],
e Leta, b, c,dbeelements aff andf, g, hbe sets. Supposec ¥ (a,b) and?[a,b, f]
andg € ¥ (b,c) and?b,c,g] andh € ¥ (c,d) and®|c,d,h]. ThenG(a,c,d, G(a,b,c, f,g),h) =
G(a,b,d, f,G(b,c,d,g,h)),
e Letabe anelement ofl. Then there exists a sésuch thaff € 7 (a,a) and?[a, a, f]
and for every elemerit of 2 and for every seg such thag € ¥ (a,b) and?[a,b, g
holdsG(a,a,b, f,g) =g, and
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e Letabe anelement ofl. Then there exists a sésuch thatf € ¥ (a,a) and?[a, a, f]
and for every elemerit of 4 and for every seg such thag € 7 (b,a) and?[b,a,q]
holdsG(b,a,a,9,f) =g.

Let f be a function yielding function and let b, c be sets. Note thaft(a, b, c) is relation-like
and function-like.

Now we present two schemes. The schebubcategoryExieals with a categoryl, a unary

predicateP, and a ternary predicai@, and states that:
There exists a strict non empty subcateg8myf 4 such that
(i) for every object of 4 holdsais an object oB iff P[a], and
(i) for all objectsa, b of 4 and for all objects, b’ of B such thata’ = a and
b’ = b and(a,b) # 0 and for every morphisnf from a to b holds f € (&, b/} iff
Qla,b, f]
provided the following conditions are met:

e There exists an objeetof 4 such thatP|[a],

e Leta, b, c be objects of4. SupposeP[a] and P[b] and P[c] and (a,b) # 0 and
(b,c) # 0. Let f be a morphism froma to b andg be a morphism fronb to c. If
QJa,b, flandQ|b,c,qd], thenQJa,c,g- f], and

e For every object of 4 such thatP[a] holdsQJa, a,idy].

The schem&ovariantFunctorLambdaeals with categoried, B, a unary functorf yielding
a set, and a ternary functdr yielding a set, and states that:
There exists a covariant strict functerfrom 4 to B such that
(i) for every objecta of 4 holdsF(a) = ¥ (a), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsk(f) = G(a,b, f)
provided the parameters meet the following conditions:

e For every object of 4 holds ¥ (a) is an object ofB,

e Leta, bbe objects of2. Supposea,b) # 0. Let f be a morphism fronato b. Then
G(a,b, f) € (the arrows ofB)(F (a), ¥ (b)),

e Leta, b, c be objects of2. Supposda,b) # 0 and(b,c) # 0. Let f be a morphism
from ato b, g be a morphism fronb to ¢, andd’, b/, ¢’ be objects ofB. Suppose
a = F(a)andb/ = ¥ (b) andc’ = ¥ (c). Let f' be a morphism froma’ to b’ andg’ be
a morphism fromb’ toc’. If f' = G(a,b, f) andg’ = G(b,c,g), thenG(a,c,g- f) =

g-f’,and
e For every objecia of 4 and for every object’ of B such thata’ = ¥ (a) holds
G(a,a,idy) =idy .

One can prove the following proposition

(1) LetA, Bbe categories and, G be covariant functors frorA to B. Suppose that
(i) for every objecta of A holdsF (a) = G(a), and

(i) for all objectsa, b of A such that(a,b) # 0 and for every morphisnf from a to b holds
F(f)=G(f).
Then the functor structure & = the functor structure db.

The schem€ontravariantFunctorLambddeals with categoried, B, a unary functorf yield-
ing a set, and a ternary functgryielding a set, and states that:
There exists a contravariant strict funckofrom 4 to B such that
(i) forevery objecta of 4 holdsF(a) = ¥ (a), and
(i) for all objectsa, b of 4 such that’a, b) # 0 and for every morphisnfi from a
tobholdsF(f) = G(a,b, f)
provided the parameters meet the following conditions:
e For every objech of 4 holds ¥ (a) is an object ofB,
e Leta, b be objects of2. Suppose€a,b) # 0. Let f be a morphism fromato b. Then
G(a,b, f) € (the arrows ofB)(F (b), ¥ (a)),
e Leta, b, c be objects of4. Supposga,b) # 0 and(b,c) # 0. Let f be a morphism
from ato b, g be a morphism fronb to ¢, anda’, b/, ¢’ be objects ofB. Suppose
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a = ¥F(a)andb’ = ¥ (b) andc = ¥ (c). Let f’ be a morphism frond’ to & andg’ be
a morphism front tob'. If f' = G(a,b, f) andg' = G(b,c,g), thenG(a,c,g- f) =

f'.d,and
e For every object of 2 and for every object’ of B such thata’ = ¥ (a) holds
G(a,a,ida) =idy .

Next we state the proposition

(2) LetA, Bbe categories anid, G be contravariant functors frodto B. Suppose that
(i) for every objecta of A holdsF (a) = G(a), and

(i) for all objectsa, b of A such that{a,b) # 0 and for every morphisni from a to b holds
F(f)=G(f).

Then the functor structure & = the functor structure db.

2. ISOMORPHISM ANDEQUIVALENCE OF CATEGORIES

Let A, B, C be non empty sets and Iétbe a function fronT: A, B into C. Let us observe that is
one-to-one if and only if:

(Def. 1) For all elements;, ap of Aand for all elementb;, by of B such thatf (a;, by) = f(az, b2)
holdsa; = ap andb; = by.

Now we present four schemes. The schebaBijectiveSchdeals with categoried, B, a co-
variant functorC from 4 to B, a unary functor# yielding a set, and a ternary functgryielding a
set, and states that:

C is bijective
provided the following conditions are satisfied:
e For every objecta of 4 holdsC(a) = ¥ (a),
e For all objectsa, b of 4 such that(a,b) # 0 and for every morphisni fromatob
holdsC(f) = C(a,b, f),

e For all objectsa, b of 4 such thatf (a) = # (b) holdsa = b,

e For all objectsa, b of 4 such thata, b) # 0 and for all morphismg, g fromato b

such thatC(a,b, f) = C(a,b,g) holdsf =g, and

e Leta, bbe objects ofB. Suppose€a,b) #£ 0. Let f be a morphism fromato b. Then

there exist objects, d of A4 and there exists a morphisgifrom c to d such that
a= F(c)andb= 7 (d) and{(c,d) #0andf = C(c,d, Q).
The schemé&atisomorphisnteals with categoried, B, a unary functorf yielding a set, and
a ternary functoig yielding a set, and states that:
A4 andB are isomorphic
provided the parameters satisfy the following conditions:
e There exists a covariant functBrfrom A4 to B such that
(i) forevery objecta of 4 holdsF(a) = ¥ (a), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = G(a,b, f),

e For all objectsa, b of 4 such thatf (a) = ¥ (b) holdsa = b,

e For all objectsa, b of 4 such thata, b) # 0 and for all morphismg, g fromatob

such thatg(a,b, f) = G(a,b,g) holdsf =g, and

e Leta, b be objects ofB. Suppose€a, b) # 0. Let f be a morphism fromato b. Then

there exist objects, d of 4 and there exists a morphisgifrom c to d such that
a= ¥(c)andb= ¥ (d) and(c,d) #0andf = G(c,d,q).

The scheme&ontraBijectiveSclileals with categoried, B, a contravariant functof from 4
to B, a unary functorf yielding a set, and a ternary functdryielding a set, and states that:

C is bijective
provided the parameters meet the following requirements:
e For every objeca of 4 holdsC(a) = ¥ (a),
e For all objectsa, b of 4 such that(a,b) # 0 and for every morphisni fromato b
holdsC(f) = C(a,b, f),
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e For all objectsa, b of 4 such thatf (a) = ¥ (b) holdsa = b,
e For all objectsa, b of 4 such thata, b) # 0 and for all morphismg, g fromatob
such thatC(a,b, f) = C(a,b,g) holdsf = g, and
e Leta, b be objects ofB. Suppose€a, b) # 0. Let f be a morphism fromato b. Then
there exist objects, d of 4 and there exists a morphisgifrom c to d such that
b= #(c)anda= #(d) and{(c,d) #0andf = C(c,d, Q).
The schem&€atAntilsomorphisndeals with categoried, B, a unary functorf yielding a set,
and a ternary functog yielding a set, and states that:
A, B are anti-isomorphic
provided the parameters meet the following conditions:
e There exists a contravariant functerfrom A4 to B such that
(i) for every objecta of 4 holdsF(a) = #(a), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = G(a,b, f),
e For all objectsa, b of 4 such thatf (a) = ¥ (b) holdsa = b,
e For all objectsa, b of 4 such thata, b) # 0 and for all morphisms, gfromatob
such thatg(a,b, f) = G(a,b,g) holdsf = g, and
e Leta, bbe objects ofB. Suppose€a, b) # 0. Let f be a morphism fromato b. Then
there exist objects, d of 2 and there exists a morphisgifrom c to d such that
b= #(c)anda= ¥ (d) and(c,d) # 0andf = G(c,d,g).
Let A, B be categories. We say thatandB are equivalent if and only if the condition (Def. 2)
is satisfied.

(Def. 2) There exists a covariant functeffrom Ato B and there exists a covariant func@®from B
to Asuch thatG- F and idy are naturally equivalent arfdl- G and ids are naturally equivalent.

Let us notice that the predicafeandB are equivalent is reflexive and symmetric.
Next we state three propositions:

(3) LetA, B, C be non empty reflexive graphi,, F, be feasible functor structures frofto
B, andG;, G, be functor structures froma to C. Suppose that

(i) the functor structure of; = the functor structure df,, and
(i)  the functor structure ofs; = the functor structure db,.
ThenGl FL=Gy-F.

(4) LetA, B, C be categories. SuppogeandB are equivalent an& andC are equivalent.
ThenA andC are equivalent.

(5) For all categorie#, B such thatA andB are isomorphic holdé andB are equivalent.

Now we present two schemes. The scheMa¢TransLambdaleals with categoried, B, co-
variant functorsC, D from 4 to B, and a unary functof yielding a set, and states that:
There exists a natural transformatibfrom C to 9 such thatC is naturally trans-
formable toD and for every objeca of 4 holdst[a) = ¥ (a)
provided the parameters meet the following requirements:
e For every objech of 4 holds ¥ (a) € (C(a), D(a)), and
e Leta, bbe objects ofd. Supposda,b) # 0. Let f be a morphism fronato b andg
be a morphism front'(a) to D(a). Suppos@; = ¥ (a). Let g» be a morphism from
C(b) to D(b). If g2 = F(b), thengy- C(f) = D(f) - q1.
The schem&atEquivalenceLambddeals with categoried, B, covariant functorg”, D from
4 to B, and a unary functoff yielding a set, and states that:
There exists a natural equivalencef ¢ and D such thatC and 9 are naturally
equivalent and for every objeatof 4 holdst[a] = ¥ (a)
provided the parameters meet the following requirements:
e Letabe an object of1. Then ¥ (a) € (C(a), D(a)) and(D(a),C(a)) # 0 and for
every morphisnt from C(a) to D(a) such thatf = ¥ (a) holdsf is iso, and
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e Leta, bbe objects ofd. Supposda,b) # 0. Let f be a morphism fronato b andg;
be a morphism front"(a) to D(a). Supposey; = ¥ (a). Let g2 be a morphism from
C(b) to D(b). If g2 = # (b), thengy - C(f) = D(f) - 9.

3. DuaL CATEGORIES

Let C1, C; be non empty category structures. We say @aandC, are opposite if and only if the
conditions (Def. 3) are satisfied.

(Def. 3)(1) The carrier o2, = the carrier ofCy,
(i) the arrows ofC, = ~\(the arrows of;), and

(i)  for all objectsa, b, c of C; and for all objectst, b, ¢’ of C, such thate’ =aandb/ =b
andc’ = c holds (the composition dE;)(a’, b', ¢') = ~(the composition o€;)(c, b, a).

Let us note that the predicafz andC; are opposite is symmetric.
Next we state several propositions:

(6) Forall non empty category structuresB such thatA andB are opposite holds every object
of Alis an object oB.

(7) LetA, B be non empty category structures. SuppasendB are opposite. Leg, b be
objects ofA anda, b be objects oB. If @ =aandb’ = b, then(a,b) = (b',a').

(8) LetA, B be non empty category structures. SuppAsendB are opposite. Leg, b be
objects ofA andd, b’ be objects oB. If @ = aandb’ = b, then every morphism frorato b
is a morphism fronb’ to &'.

(9) LetCy, C, be non empty transitive category structures. T@eandC, are opposite if and
only if the following conditions are satisfied:

(i) the carrier ofC, = the carrier ofCy, and

(i) for all objectsa, b, ¢ of C; and for all objects(, b/, ¢’ of C, such thae! = aandb/ =b and
¢ =cholds{a,b) = (b',a) and if (a,b) # 0 and(b,c) + 0, then for every morphisnfi from
ato b and for every morphisrg from b to ¢ and for every morphisnfi’ from by to & and for
every morphisng’ from ¢’ to b’ such thatf’ = f andg’ = g holdsf’-¢g’ =g- f.

(10) LetA, B be categories. SupposeandB are opposite. Les be an object oA andb be an
object ofB. If a= b, thenid, = idy,.

(11) LetC be atransitive non empty category structure. Then there exists a strict transitive non
empty category structu® such thatC andC’ are opposite.

(12) LetA, B be transitive non empty category structures. SupposedB are opposite. 1A is
associative, theB is associative.

(13) For all transitive non empty category structute® such thatA andB are opposite holds
if A has units, theB has units.

(14) LetC, Cq, C, be non empty category structures. Supp8sndC; are opposite. The@
andC; are opposite if and only if the category structuréCpf= the category structure @b.

Let C be a transitive non empty category structure. The fun€Bryielding a strict transitive
non empty category structure is defined as follows:

(Def. 4) C andC°®P are opposite.

Let C be an associative transitive non empty category structure. One can verif@%hat
associative.

Let C be a transitive non empty category structure with units. NoteGPahas units.

Let A, B be categories. Let us assume tAandB are opposite. The dualizing functor frofn
into B is a contravariant strict functor fromto B and is defined by the conditions (Def. 5).
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(Def. 5)(i) For every objeca of A holds (the dualizing functor frorA into B)(a) = a, and

(i) for all objectsa, b of A such that{a,b) # 0 and for every morphisni from a to b holds
(the dualizing functor fronf into B)(f) = f.

Next we state two propositions:

(15) LetA, B be categories. SupposeandB are opposite. Then (the dualizing functor frém
into B) - (the dualizing functor fronB into A) = idg.

(16) LetA, B be categories. SuppogeandB are opposite. Then the dualizing functor frém
into B is bijective.

Let A be a category. Observe that the dualizing functor frarimto A is bijective and the
dualizing functor fromA°P into A is bijective.
Next we state a number of propositions:

(17) For all categories, B such thatA andB are opposite holda, B are anti-isomorphic.

(18) LetA, B, C be categories. SuppogeandB are opposite. TheA andC are isomorphic if
and only ifB, C are anti-isomorphic.

(19) LetA, B, C, D be categories. SuppogeandB are opposite an@ andD are opposite. IA
andC are isomorphic, theB andD are isomorphic.

(20) LetA, B, C, D be categories. SupposeandB are opposite an@ andD are opposite. IA,
C are anti-isomorphic, theB, D are anti-isomorphic.

(21) LetA, B be categories. SuppogeandB are opposite. Le#, b be objects ofA. Suppose
(a,b) # 0 and(b,a) # 0. Let &, b/ be objects oB. Supposed’ = aandb’ =b. Let f be a
morphism fromato b and f’ be a morphism fron/ to &'. If f' = f, thenf is retraction iff f’
is coretraction.

(22) LetA, B be categories. SuppogeandB are opposite. Led, b be objects ofA. Suppose
(a,b) # 0 and(b,a) # 0. Let &, b’ be objects oB. Supposed’ = aandb’ = b. Let f be a
morphism froma to b and f’ be a morphism fron’ to&. If f' = f, thenf is coretraction iff
f’ is retraction.

(23) LetA, B be categories. SuppogeandB are opposite. Le#, b be objects ofA. Suppose
(a,b) # 0 and(bh,a) # 0. Let &, b/ be objects oB. Supposed’ = a andb’ =h. Let f be a
morphism froma to b and f’ be a morphism front’ to &. If f' = f andf is retraction and
coretraction, theri’~t = 1.

(24) LetA, B be categories. SuppogeandB are opposite. Le#, b be objects ofA. Suppose
(a,b) # 0 and(b,a) # 0. Let &, b’ be objects oB. Suppose’ = aandb’ =b. Let f be a
morphism froma to b and f’ be a morphism frob' to&'. If f' = f, thenf isisoiff f' is iso.

(25) LetA, B, C, D be categories. SupposeandB are opposite an@ andD are opposite. Let
F, G be covariant functors frorB to C. Supposé andG are naturally equivalent. Then (the
dualizing functor fronC into D) - G- the dualizing functor fronA into B and (the dualizing
functor fromC into D) - F - the dualizing functor fronA into B are naturally equivalent.

(26) LetA, B, C, D be categories. SupposeandB are opposite an@ andD are opposite. IA
andC are equivalent, theB andD are equivalent.

Let A, B be categories. We say thatandB are dual if and only if:
(Def. 6) AandB°P are equivalent.

Let us note that the predicafeandB are dual is symmetric.
The following four propositions are true:
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(27) For all categories, B such thatA, B are anti-isomorphic hold& andB are dual.

(28) LetA, B, C be categories. SuppogeandB are opposite. TheA andC are equivalent if
and only ifB andC are dual.

(29) For all categories, B, C such thatA andB are dual and andC are equivalent holda
andC are dual.

(80) For all categoried, B, C such thatA andB are dual and andC are dual hold#A andC
are equivalent.

4. CONCRETECATEGORIES
The following proposition is true
(31) Forall set, Y, x holdsx € YX iff xis a function andt (x) = X andru(x) C .

Let C be a 1-sorted structure. A many sorted set indexe@ ks/a many sorted set indexed by
the carrier ofC.
LetC be a category. We say th@tis para-functional if and only if:

(Def. 7) There exists a many sorted seindexed byC such that for all objects;, a, of C holds
(a1,a0) C F(ap)F@),

Let us note that every category which is quasi-functional is also para-functional.
LetC be a category and letbe a setC-carrier ofa is defined by:

(Def. 8)(i) There exists an objettof C such thatb = a andC-carrier ofa = m(idyp) if ais an
object ofC,

(i) C-carrier ofa= 0, otherwise.

Let C be a category and letbe an object o€. ThenC-carrier ofa can be characterized by the
condition:

(Def. 9) C-carrier ofa=m(id,).

We introduce the carrier @& as a synonym dE-carrier ofa.
We now state two propositions:

(832) For every non empty sétand for every objeca of Eng, holds id, = id,.

(83) For every non empty sétand for every objeca of Eng holds the carrier oh = a.

LetC be a category. We say th@tis set-id-inheriting if and only if:
(Def. 10) For every objed of C holds idy = idihe carrier ofa-

Let A be a non empty set. Note that Rris set-id-inheriting.
LetC be a category. We say th@tis concrete if and only if:

(Def. 11) Cis para-functional, semi-functional, and set-id-inheriting.

Let us note that every category which is concrete is also para-functional, semi-functional, and
set-id-inheriting and every category which is para-functional, semi-functional, and set-id-inheriting
is also concrete.

Let us observe that there exists a category which is concrete, quasi-functional, and strict.

We now state two propositions:

(34) LetC be a category. The@ s para-functional if and only if for all objects, a; of C holds
(ag,ap) C (the carrier ofay)the carier ofar



CONCRETE CATEGORIES 9

(35) LetC be a para-functional category aadb be objects ofC. Suppos€/a,b) # 0. Then
every morphism fronato b is a function from the carrier a into the carrier ob.

Let A be a para-functional category and &t be objects ofA. Observe that every morphism
from ato b is function-like and relation-like.
We now state four propositions:

(36) LetC be a para-functional category aagb be objects oC. Suppose€a,b) # 0. Let f be
a morphism fronato b. Then donf = the carrier ofa and rngf C the carrier ob.

(87) For every para-functional semi-functional categdmgnd for every objeca of C holds the
carrier ofa= dom(ida).

(38) LetC be a para-functional semi-functional category and, c be objects ofc. Suppose
(a,b) # 0 and(b,c) # 0. Let f be a morphism frona to b andg be a morphism fronb to c.
Theng- f = (g quafunction)-(f qua function).

(39) Let C be a para-functional semi-functional category amde an object ofC. If
idthe carrier ofa € <a7 a>7 then ida = idthe carrier ofa-

Now we present several schemes. The sch@uoecreteCategoryLambddeals with a non
empty set4, a binary functor? yielding a set, and a unary functdf yielding a set, and states
that:

There exists a concrete strict categ@rguch that
(i) the carrier ofC = 4,
(i) for every objecta of C holds the carrier oh = G(a), and
(iiiy  for all objectsa, b of C holds(a,b) = F(a,b)
provided the parameters have the following properties:
e For all elements, b, ¢ of 4 and for all functionsf, g such thatf € #(a,b) and
ge F(b,c) holdsg- f € F(a,c),

e For all elements, b of 4 holds # (a,b) € G(b)9®, and

e For every elemerd of 4 holds id; () € 7 (a,a).

The schem&oncreteCategoryQuasiLambdeals with a non empty set, a unary functorf
yielding a set, and a ternary predic&teand states that:

There exists a concrete strict categ@rguch that
(i) the carrier ofC = 4,
(i) for every objecta of C holds the carrier oh = ¥ (a), and
(iii)  for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C)(a b) iff e F(b)7@ andP[a,b, f]
provided the parameters meet the following requirements:

e Forall elements, b, c of 4 and for all functiond, g such thatP[a, b, f] and®[b, c,g]

holds?[a,c,g- f], and

e For every elemerd of 4 holds®[a,a,id s (g)].

The scheme&oncreteCategoryEdeals with a non empty set, a unary functorf yielding a
set, a binary predicat®, and a ternary predicai@, and states that:

There exists a concrete strict categ@rguch that
(i) the carrier ofC = 4,
(i) for every objecta of C and for every setholdsx € the carrier ofaiff xe ¥ (a)
and?[a,x|, and
(iii)  for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C)(a, b) iff f € (C-carrier ofb)“camer o2 andQ|a, b, f]
provided the parameters meet the following requirements:

e For all elements, b, c of 4 and for all functionsf, g such thatQ|a,b, f] and
QJb,c,g] holdsQJa,c,g- f], and

e Letabe an element off andX be a set. If for every setholdsx € X iff x € ¥ (a)
and?[a,x], thenQJa, a,idx].

The schemeConcreteCategoryUniqtleals with a non empty sel and a binary functorf
yielding a set, and states that:
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LetCy, C, be para-functional semi-functional categories. Suppose that
(i) the carrier ofCy = 4,
(i) for all objectsa, b of C; holds(a,b) = F(a,b),
(i)  the carrier ofC, = 4, and
(iv) for all objectsa, b of C; holds(a,b) = ¥ (a,b).
Then the category structure ©f = the category structure @b
for all values of the parameters.
The schem&oncreteCategoryUnig8eals with a non empty sét, a unary functorf yielding
a set, and a ternary predicafe and states that:
LetCy, C;, be para-functional semi-functional categories. Suppose that
(i) the carrier ofC; = 4,
(i) for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C1)(a, b) iff f € F(b)¥ @ andP[a,b, f],
(iii)  the carrier ofC, = 4, and
(iv) for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C)(a, b) iff f € F(b)7@ andP[a,b, f].
Then the category structure 6f = the category structure 6h
for all values of the parameters.
The schem&oncreteCategoryUnig8eals with a non empty sét, a unary functorf yielding
a set, a binary predicat®, and a ternary predicai@, and states that:
LetCy, C;, be para-functional semi-functional categories. Suppose that
(i) the carrier ofC; = 4,
(i)  for every objecta of C; and for every sek holds x € the carrier ofa iff
x € F(a) and?P[a,x],
(iii)  for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C1)(a, b) iff f € (Cy-carrier ofb)Cr-camerofagndQJa,b, f],
(iv)  the carrier ofC, = 4,
(v) for every objecta of C, and for every sek holds x € the carrier ofa iff
x € ¥ (a) and?P[a,x], and
(vi) for all elementsa, b of 4 and for every functiorf holds f € (the arrows of
C2)(a, b) iff f € (Cp-carrier ofb)Czcamer ofa gndQ[a, b, f].
Then the category structure ©f = the category structure @b
for all values of the parameters.

5. EQUIVALENCE BETWEEN CONCRETECATEGORIES

We now state several propositions:

(40) LetC be a concrete category aadb be objects ofC. Suppos€a,b) # 0 and(b,a) # 0.
Let f be a morphism fronato b. If f is retraction, then rn§ = the carrier of.

(41) LetC be a concrete category aadb be objects ofC. Supposda,b) # 0 and(b,a) # 0.
Let f be a morphism fronato b. If f is coretraction, therf is one-to-one.

(42) LetC be a concrete category aadb be objects oC. Suppos€a,b) £ 0 and(b,a) = 0.
Let f be a morphism fronato b. If f is iso, thenf is one-to-one and rnfj= the carrier ob.

(43) LetC be a para-functional semi-functional category andb be objects ofC. Suppose

(a,b) # 0. Let f be a morphism froma to b. If f is one-to-one andf qua function) ~1 €
(b,a), thenf is iso.

(44) LetC be a concrete category aadb be objects of2. Suppos€a,b) # 0 and(b,a) # 0.
Let f be a morphism fronato b. If f is iso, thenf —! = (f qua function) .

The schem&oncreteCatEquivalenageals with para-functional semi-functional categories
B, two unary functorgF and g yielding sets, two ternary functord and ! yielding functions, and
two unary functors? and B yielding functions, and states that:
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A4 andB are equivalent
provided the parameters meet the following requirements:
e There exists a covariant functbrfrom 4 to B such that
(i) forevery objecta of 4 holdsF(a) = ¥ (a), and
(i) for all objectsa, b of 4 such thata, b) # 0 and for every morphisnfi from a
tobholdsF(f) = #(a,b, f),
e There exists a covariant funct@from B to 4 such that
(i) for every object of B holdsG(a) = G(a), and
(i) for all objectsa, b of B such thata,b) # 0 and for every morphisnfi from a
tobholdsG(f) = I(a,b, ),
e For all objectsa, b of 4 such thata = G(¥ (b)) holds 4(b) < (a,b) and4(b)~* ¢
(b,a) andA4(b) is one-to-one,
e For all objectsa, b of B such thath = #(G(a)) holdsB(a) € (a,b) andB(a) * €
(b,a) and‘B(a) is one-to-one,
e For all objectsa, b of 2 such that(a,b) 0 and for every morphisni fromato b
holdsA(b) - I(¥(a), F (b), H(a,b, f)) = f- 4(a), and
e For all objectsa, b of B such thata, b) # 0 and for every morphisni fromatob
holds#(G(a), G(b), I(a,b, f)) - B(a) = B(b) - f.

6. CONCRETIZATION OF CATEGORIES

LetC be a category. The concretiz€ds a concrete strict category and is defined by the conditions
(Def. 12).

(Def. 12)(i)) The carrier of the concretiz€i= the carrier ofC,
(i) for every objecta of the concretized and for every sex holdsx € the carrier ofa iff
x € Jdisjoint(the arrows o€) anda = x, 5, and

(i)  for all elementsa, b of C and for every functiorf holdsf & (the arrows of the concretized
C)(a, b) iff f € ((the concretize€)-carrier ofb)(he concretize@)-carier ofa anq there exist ob-
jects f1, f» of C and there exists a morphisgrfrom f; to f, such thatf; = aandf, =band
(f1, f2) # 0 and for every objeab of C such that(o, f1) # 0 and for every morphisrh from
oto f1 holdsf({h, {o, f1})) = (g-h, {o, f2)).

Next we state the proposition
(45) LetAbe a categorya be an object oA, andx be a set. Ther € (the concretized\)-carrier

of aif and only if there exists an objebtof A and there exists a morphisfrfrom b to a such
that(b,a) # 0 andx = (f, (b, a)).

Let A be a category and letbe an object oA. Observe that (the concretizéd-carrier ofa is
non empty.
Next we state two propositions:

(46) LetA be a category and, b be objects ofA. Supposea,b) # 0. Let f be a morphism
from ato b. Then there exists a functidh from (the concretized\)-carrier ofa into (the
concretized\)-carrier ofb such that

(i) F € (the arrows of the concretizel(a, b), and
(i) for every objectc of A and for every morphisng from c to a such that(c,a) # 0 holds
F({g,(c,a))) =(f-g,(c,b)).
(47) LetAbe a category and, b be objects ofA. Supposéda,b) # 0. Let F1, F, be functions.
Suppose that
(i) Fy € (the arrows of the concretizel)(a, b),
(i) R € (the arrows of the concretize)(a, b), and
(i) Fi((ida, (2 2))) = F((ida, (2. a))).
ThenF, = F.
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The schemé&lonUnigMSFunctionExleals with a sefd, many sorted set®, C indexed by4,
and a ternary predicat2, and states that:
There exists a many sorted functibrirom 3 into C such that for all sets xif i € 4
andx € B(i), thenF(i)(x) € C(i) andP[i,x, F (i) (x)]
provided the parameters meet the following condition:
e For all sets, x such that € 7 andx € B(i) there exists a sgtsuch thay € (i) and
Pli, %Y.
Let Abe a category. The concretizationfis a covariant strict functor frorA to the concretized
A and is defined by the conditions (Def. 13).

(Def. 13)(i)) For every object of A holds (the concretization &)(a) = a, and
(i) for all objectsa, b of A such that(a,b) ## 0 and for every morphisnf from a to b holds
(the concretization od)(f)((ida, (a, @))) = (f, (a, b)).

Let A be a category. One can verify that the concretizatioA efbijective.
The following proposition is true

(48) For every categori holdsA and the concretized are isomorphic.
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