Retracts and Inheritance¹

Grzegorz Bancerek University of Białystok

MML Identifier: YELLOW16.

WWW: http://mizar.org/JFM/Vol11/yellow16.html

The articles [22], [12], [26], [27], [9], [11], [10], [8], [1], [18], [24], [19], [13], [25], [2], [20], [21], [15], [29], [23], [3], [4], [5], [16], [28], [14], [7], [6], and [17] provide the notation and terminology for this paper.

1. Poset Retracts

One can prove the following propositions:

- (1) For all binary relations a, b holds $a \cdot b = ab$.
- (2) Let X be a set, L be a non empty relational structure, S be a non empty relational substructure of L, f, g be functions from X into the carrier of S, and f', g' be functions from X into the carrier of L. If f' = f and g' = g and $f \le g$, then $f' \le g'$.
- (3) Let X be a set, L be a non empty relational structure, S be a full non empty relational substructure of L, f, g be functions from X into the carrier of S, and f', g' be functions from X into the carrier of L. If f' = f and g' = g and $f' \le g'$, then $f \le g$.

Let S be a non empty relational structure and let T be a non empty reflexive antisymmetric relational structure. One can verify that there exists a map from S into T which is directed-supspreserving and monotone.

Next we state the proposition

(4) For all functions f, g such that f is idempotent and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and $\operatorname{rng} g \subseteq \operatorname{dom} f$ holds $f \cdot g = g$.

Let S be a 1-sorted structure. One can check that there exists a map from S into S which is idempotent.

The following four propositions are true:

- (5) For every up-complete non empty poset L holds every directed-sups-inheriting full non empty relational substructure of L is up-complete.
- (6) Let L be an up-complete non empty poset and f be a map from L into L. Suppose f is idempotent and directed-sups-preserving. Then $\operatorname{Im} f$ is directed-sups-inheriting.
- (8)¹ Let S, T be non empty relational structures, f be a map from T into S, and g be a map from S into T. If $f \cdot g = \mathrm{id}_S$, then rng $f = \mathrm{the}$ carrier of S.

1

¹This work has been supported by KBN Grant 8 T11C 018 12.

¹ The proposition (7) has been removed.

- (9) Let T be a non empty relational structure, S be a non empty relational substructure of T, and f be a map from T into S. If $f \cdot \operatorname{incl}(S, T) = \operatorname{id}_S$, then f is an idempotent map from T into T.
- Let S, T be non empty posets and let f be a function. We say that f is a retraction of T into S if and only if the conditions (Def. 1) are satisfied.
- (Def. 1)(i) f is a directed-sups-preserving map from T into S,
 - (ii) $f \mid \text{the carrier of } S = \text{id}_S, \text{ and }$
 - (iii) S is a directed-sups-inheriting full relational substructure of T.

We say that f is a UPS retraction of T into S if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) f is a directed-sups-preserving map from T into S, and
 - (ii) there exists a directed-sups-preserving map g from S into T such that $f \cdot g = \mathrm{id}_S$.

Let S, T be non empty posets. We say that S is a retract of T if and only if:

(Def. 3) There exists a map f from T into S such that f is a retraction of T into S.

We say that *S* is a UPS retract of *T* if and only if:

(Def. 4) There exists a map f from T into S such that f is a UPS retraction of T into S.

The following propositions are true:

- (10) For all non empty posets S, T and for every function f such that f is a retraction of T into S holds $f \cdot \text{incl}(S, T) = \text{id}_S$.
- (11) Let S be a non empty poset, T be an up-complete non empty poset, and f be a function. Suppose f is a retraction of T into S. Then f is a UPS retraction of T into S.
- (12) Let S, T be non empty posets and f be a function. If f is a retraction of T into S, then rng f = the carrier of S.
- (13) Let S, T be non empty posets and f be a function. If f is a UPS retraction of T into S, then rng f = the carrier of S.
- (14) Let S, T be non empty posets and f be a function. Suppose f is a retraction of T into S. Then f is an idempotent map from T into T.
- (15) Let T, S be non empty posets and f be a map from T into T. Suppose f is a retraction of T into S. Then Im f = the relational structure of S.
- (16) Let T be an up-complete non empty poset, S be a non empty poset, and f be a map from T into T. Suppose f is a retraction of T into S. Then f is directed-sups-preserving and projection.
- (17) Let S, T be non empty reflexive transitive relational structures and f be a map from S into T. Then f is isomorphic if and only if the following conditions are satisfied:
 - (i) f is monotone, and
- (ii) there exists a monotone map g from T into S such that $f \cdot g = \mathrm{id}_T$ and $g \cdot f = \mathrm{id}_S$.
- (18) Let S, T be non empty posets. Then S and T are isomorphic if and only if there exists a monotone map f from S into T and there exists a monotone map g from T into S such that $f \cdot g = \operatorname{id}_T$ and $g \cdot f = \operatorname{id}_S$.
- (19) Let *S*, *T* be up-complete non empty posets. Suppose *S* and *T* are isomorphic. Then *S* is a UPS retract of *T* and *T* is a UPS retract of *S*.

- (20) Let T, S be non empty posets, f be a monotone map from T into S, and g be a monotone map from S into T. Suppose $f \cdot g = \mathrm{id}_S$. Then there exists a projection map h from T into T such that $h = g \cdot f$ and $h \mid$ the carrier of $\mathrm{Im} h = \mathrm{id}_{\mathrm{Im} h}$ and S and $\mathrm{Im} h$ are isomorphic.
- (21) Let T be an up-complete non empty poset, S be a non empty poset, and f be a function. Suppose f is a UPS retraction of T into S. Then there exists a directed-sups-preserving projection map h from T into T such that h is a retraction of T into T and T and T are isomorphic.
- (22) For every up-complete non empty poset *L* and for every non empty poset *S* such that *S* is a retract of *L* holds *S* is up-complete.
- (23) For every complete non empty poset L and for every non empty poset S such that S is a retract of L holds S is complete.
- (24) Let L be a continuous complete lattice and S be a non empty poset. If S is a retract of L, then S is continuous.
- (25) Let *L* be an up-complete non empty poset and *S* be a non empty poset. If *S* is a UPS retract of *L*, then *S* is up-complete.
- (26) Let *L* be a complete non empty poset and *S* be a non empty poset. If *S* is a UPS retract of *L*, then *S* is complete.
- (27) Let *L* be a continuous complete lattice and *S* be a non empty poset. If *S* is a UPS retract of *L*, then *S* is continuous.
- (28) Let L be a relational structure, S be a full relational substructure of L, and R be a relational substructure of S. Then R is full if and only if R is a full relational substructure of L.
- (29) Let L be a non empty transitive relational structure and S be a directed-sups-inheriting non empty full relational substructure of L. Then every directed-sups-inheriting non empty relational substructure of S is a directed-sups-inheriting relational substructure of L.
- (30) Let L be an up-complete non empty poset and S_1 , S_2 be directed-sups-inheriting full non empty relational substructures of L. Suppose S_1 is a relational substructure of S_2 . Then S_1 is a directed-sups-inheriting full relational substructure of S_2 .

2. PRODUCTS

Let R be a binary relation. We say that R is poset-yielding if and only if:

(Def. 5) For every set x such that $x \in \operatorname{rng} R$ holds x is a poset.

Let us mention that every binary relation which is poset-yielding is also relational structure yielding and reflexive-yielding.

Let X be a non empty set, let L be a non empty relational structure, let i be an element of X, and let Y be a subset of L^X . Then $\pi_i Y$ is a subset of L.

Let *X* be a set and let *S* be a poset. One can check that $X \longmapsto S$ is poset-yielding.

Let *I* be a set. Observe that there exists a many sorted set indexed by *I* which is poset-yielding and nonempty.

Let I be a non empty set and let J be a poset-yielding nonempty many sorted set indexed by I. Note that $\prod J$ is transitive and antisymmetric.

Let I be a non empty set, let J be a poset-yielding nonempty many sorted set indexed by I, and let i be an element of I. Then J(i) is a non empty poset.

Next we state a number of propositions:

(31) Let I be a non empty set, J be a poset-yielding nonempty many sorted set indexed by I, f be an element of $\prod J$, and X be a subset of $\prod J$. Then $f \geq X$ if and only if for every element i of I holds $f(i) \geq \pi_i X$.

- (32) Let I be a non empty set, J be a poset-yielding nonempty many sorted set indexed by I, f be an element of $\prod J$, and X be a subset of $\prod J$. Then $f \leq X$ if and only if for every element i of I holds $f(i) \leq \pi_i X$.
- (33) Let I be a non empty set, J be a poset-yielding nonempty many sorted set indexed by I, and X be a subset of $\prod J$. Then sup X exists in $\prod J$ if and only if for every element i of I holds sup $\pi_i X$ exists in J(i).
- (34) Let I be a non empty set, J be a poset-yielding nonempty many sorted set indexed by I, and X be a subset of $\prod J$. Then inf X exists in $\prod J$ if and only if for every element i of I holds inf $\pi_i X$ exists in J(i).
- (35) Let I be a non empty set, J be a poset-yielding nonempty many sorted set indexed by I, and X be a subset of $\prod J$. If sup X exists in $\prod J$, then for every element i of I holds $(\sup X)(i) = \sup \pi_i X$.
- (36) Let *I* be a non empty set, *J* be a poset-yielding nonempty many sorted set indexed by *I*, and *X* be a subset of $\prod J$. If inf *X* exists in $\prod J$, then for every element *i* of *I* holds $(\inf X)(i) = \inf \pi_i X$.
- (37) Let I be a non empty set, J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I, X be a directed subset of $\prod J$, and i be an element of I. Then $\pi_i X$ is directed.
- (38) Let I be a non empty set and J, K be relational structure yielding nonempty many sorted sets indexed by I. Suppose that for every element i of I holds K(i) is a relational substructure of J(i). Then $\prod K$ is a relational substructure of $\prod J$.
- (39) Let I be a non empty set and J, K be relational structure yielding nonempty many sorted sets indexed by I. Suppose that for every element i of I holds K(i) is a full relational substructure of J(i). Then $\prod K$ is a full relational substructure of $\prod J$.
- (40) Let L be a non empty relational structure, S be a non empty relational substructure of L, and X be a set. Then S^X is a relational substructure of L^X .
- (41) Let L be a non empty relational structure, S be a full non empty relational substructure of L, and X be a set. Then S^X is a full relational substructure of L^X .

3. Inheritance

Let S, T be non empty relational structures and let X be a set. We say that S inherits sup of X from T if and only if:

(Def. 6) If sup *X* exists in *T*, then $\bigsqcup_T X \in$ the carrier of *S*.

We say that *S* inherits inf of *X* from *T* if and only if:

(Def. 7) If inf *X* exists in *T*, then $\bigcap_T X \in$ the carrier of *S*.

The following propositions are true:

- (42) Let T be a non empty transitive relational structure, S be a full non empty relational substructure of T, and X be a subset of S. Then S inherits sup of X from T if and only if if sup X exists in T, then sup X exists in S and sup $X = \bigsqcup_T X$.
- (43) Let T be a non empty transitive relational structure, S be a full non empty relational substructure of T, and X be a subset of S. Then S inherits inf of X from T if and only if if inf X exists in T, then inf X exists in S and inf $X = \bigcap_T X$.

In this article we present several logical schemes. The scheme ProductSupsInheriting deals with a non empty set \mathcal{A} , poset-yielding nonempty many sorted sets \mathcal{B} , \mathcal{C} indexed by \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

For every subset X of $\prod C$ such that $\mathcal{P}[X, \prod C]$ holds $\prod C$ inherits sup of X from $\prod B$ provided the parameters satisfy the following conditions:

- For every subset X of $\prod C$ such that $\mathcal{P}[X, \prod C]$ and for every element i of \mathcal{A} holds $\mathcal{P}[\pi_i X, C(i)]$,
- For every element i of \mathcal{A} holds $\mathcal{C}(i)$ is a full relational substructure of $\mathcal{B}(i)$, and
- For every element i of \mathcal{A} and for every subset X of $\mathcal{C}(i)$ such that $\mathcal{P}[X, \mathcal{C}(i)]$ holds $\mathcal{C}(i)$ inherits sup of X from $\mathcal{B}(i)$.

The scheme *PowerSupsInheriting* deals with a non empty set \mathcal{A} , a non empty poset \mathcal{B} , a non empty full relational substructure \mathcal{C} of \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

For every subset X of $\mathcal{C}^{\mathcal{A}}$ such that $\mathcal{P}[X,\mathcal{C}^{\mathcal{A}}]$ holds $\mathcal{C}^{\mathcal{A}}$ inherits sup of X from $\mathcal{B}^{\mathcal{A}}$ provided the parameters meet the following conditions:

- For every subset X of $\mathcal{C}^{\mathcal{A}}$ such that $\mathcal{P}[X,\mathcal{C}^{\mathcal{A}}]$ and for every element i of \mathcal{A} holds $\mathcal{P}[\pi_i X,\mathcal{C}]$, and
- For every subset X of C such that $\mathcal{P}[X,C]$ holds C inherits sup of X from \mathcal{B} .

The scheme ProductInfsInheriting deals with a non empty set \mathcal{A} , poset-yielding nonempty many sorted sets \mathcal{B} , \mathcal{C} indexed by \mathcal{A} , and a binary predicate \mathcal{P} , and states that:

For every subset X of $\prod \mathcal{C}$ such that $\mathcal{P}[X, \prod \mathcal{C}]$ holds $\prod \mathcal{C}$ inherits inf of X from $\prod \mathcal{B}$ provided the following conditions are met:

- For every subset X of $\prod C$ such that $\mathcal{P}[X, \prod C]$ and for every element i of \mathcal{A} holds $\mathcal{P}[\pi_i X, C(i)]$,
- For every element i of \mathcal{A} holds $\mathcal{C}(i)$ is a full relational substructure of $\mathcal{B}(i)$, and
- For every element i of \mathcal{A} and for every subset X of $\mathcal{C}(i)$ such that $\mathcal{P}[X, \mathcal{C}(i)]$ holds $\mathcal{C}(i)$ inherits inf of X from $\mathcal{B}(i)$.

The scheme *PowerInfsInheriting* deals with a non empty set \mathcal{A} , a non empty poset \mathcal{B} , a non empty full relational substructure \mathcal{C} of \mathcal{B} , and a binary predicate \mathcal{P} , and states that:

For every subset X of $\mathcal{C}^{\mathcal{A}}$ such that $\mathcal{P}[X, \mathcal{C}^{\mathcal{A}}]$ holds $\mathcal{C}^{\mathcal{A}}$ inherits inf of X from $\mathcal{B}^{\mathcal{A}}$ provided the parameters have the following properties:

- For every subset X of $\mathcal{C}^{\mathcal{A}}$ such that $\mathcal{P}[X,\mathcal{C}^{\mathcal{A}}]$ and for every element i of \mathcal{A} holds $\mathcal{P}[\pi_i X,\mathcal{C}]$, and
- For every subset X of C such that $\mathcal{P}[X,C]$ holds C inherits inf of X from \mathcal{B} .

Let I be a set, let L be a non empty relational structure, let X be a non empty subset of L^I , and let i be a set. One can verify that $\pi_i X$ is non empty.

We now state the proposition

(44) Let L be a non empty poset, S be a directed-sups-inheriting non empty full relational substructure of L, and X be a non empty set. Then S^X is a directed-sups-inheriting relational substructure of L^X .

Let I be a non empty set, let J be a relational structure yielding nonempty many sorted set indexed by I, let X be a non empty subset of $\prod J$, and let i be a set. One can check that $\pi_i X$ is non empty.

Next we state the proposition

(45) For every non empty set X and for every up-complete non empty poset L holds L^X is up-complete.

Let L be an up-complete non empty poset and let X be a non empty set. Observe that L^X is up-complete.

4. TOPOLOGICAL RETRACTS

Let *T* be a topological space. One can check that the topology of *T* is non empty. One can prove the following propositions:

- (46) Let T be a non empty topological space, S be a non empty subspace of T, and f be a map from T into S. If f is a retraction, then rng f = the carrier of S.
- (47) Let T be a non empty topological space, S be a non empty subspace of T, and f be a continuous map from T into S. If f is a retraction, then f is idempotent.
- (48) Let T be a non empty topological space and V be an open subset of T. Then $\chi_{V,\text{the carrier of }T}$ is a continuous map from T into the Sierpiński space.
- (49) Let T be a non empty topological space and x, y be elements of T. Suppose that for every open subset W of T such that $y \in W$ holds $x \in W$. Then $[0 \longmapsto y, 1 \longmapsto x]$ is a continuous map from the Sierpiński space into T.
- (50) Let T be a non empty topological space, x, y be elements of T, and V be an open subset of T. Suppose $x \in V$ and $y \notin V$. Then $\chi_{V,\text{the carrier of } T} \cdot [0 \longmapsto y, 1 \longmapsto x] = \mathrm{id}_{\text{the Sierpiński space}}$.
- (51) Let T be a non empty 1-sorted structure, V, W be subsets of T, S be a topological augmentation of 2^1_{\subseteq} , and f, g be maps from T into S. Suppose $f = \chi_{V,\text{the carrier of }T}$ and $g = \chi_{W,\text{the carrier of }T}$. Then $V \subseteq W$ if and only if $f \leq g$.
- (52) Let L be a non empty relational structure, X be a non empty set, and R be a full non empty relational substructure of L^X . Suppose that for every set a holds a is an element of R iff there exists an element x of L such that $a = X \longmapsto x$. Then L and R are isomorphic.
- (53) Let S, T be non empty topological spaces. Then S and T are homeomorphic if and only if there exists a continuous map f from S into T and there exists a continuous map g from T into S such that $f \cdot g = \operatorname{id}_T$ and $g \cdot f = \operatorname{id}_S$.
- (54) Let T, S, R be non empty topological spaces, f be a map from T into S, g be a map from S into T, and h be a map from S into R. If $f \cdot g = \mathrm{id}_S$ and h is a homeomorphism, then $h \cdot f \cdot (g \cdot h^{-1}) = \mathrm{id}_R$.
- (55) Let *T*, *S*, *R* be non empty topological spaces. Suppose *S* is a topological retract of *T* and *S* and *R* are homeomorphic. Then *R* is a topological retract of *T*.
- (56) For every non empty topological space T and for every non empty subspace S of T holds incl(S,T) is continuous.
- (57) Let T be a non empty topological space, S be a non empty subspace of T, and f be a continuous map from T into S. If f is a retraction, then $f \cdot \operatorname{incl}(S,T) = \operatorname{id}_S$.
- (58) Let T be a non empty topological space and S be a non empty subspace of T. If S is a retract of T, then S is a topological retract of T.
- (59) Let R, T be non empty topological spaces. Then R is a topological retract of T if and only if there exists a non empty subspace S of T such that S is a retract of T and S and R are homeomorphic.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- $[2] \begin{tabular}{ll} Grzegorz Bancerek. Complete lattices. {\it Journal of Formalized Mathematics}, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html. \\ \end{tabular}$
- [3] Grzegorz Bancerek. Quantales. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/quantal1.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [6] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.

- [7] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.
- [8] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct 3.html.
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [10] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_
- [11] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [12] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [13] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [14] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [15] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops 2.html.
- [16] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [17] Jarosław Gryko. Injective spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel18.html.
- [18] Andrzej Kondracki. Mostowski's fundamental operations part I. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/ JFM/Vol2/zf_fundl.html.
- [19] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [20] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [23] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [24] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [25] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders_
- $[26] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1}, \textbf{1989}. \\ \texttt{http://mizar.org/JFM/Vol1/subset_l.html.}$
- [27] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [28] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.
- [29] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received September 7, 1999

Published January 2, 2004