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The articles [20], [10], [24], [16], [13], [26], [22], [25], [8], [9], [7], [6], [12], [23], [18], [11], [1],
[2], [17], [19], [21], [3], [4], [5], [14], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

The schemeSeqLambda1Cdeals with a natural numberA , a non empty setB, a unary functorF
yielding a set, a unary functorG yielding a set, and a unary predicateP , and states that:

There exists a finite sequencep of elements ofB such that lenp = A and for every
natural numberi such thati ∈ SegA holds if P [i], thenp(i) = F (i) and if notP [i],
thenp(i) = G(i)

provided the following condition is satisfied:
• For every natural numberi such thati ∈ SegA holds ifP [i], thenF (i) ∈B and if not

P [i], thenG(i) ∈ B.
Let X be a set and letp be a finite sequence of elements of 2X. Then rngp is a family of subsets

of X.
Let us observe thatBooleanis finite.
The following two propositions are true:

(2)1 For every natural numberi and for every finite setD holdsDi is finite.

(3) For every finite setT holds every family of subsets ofT is finite.

Let T be a finite set. One can check that every family of subsets ofT is finite.
Let T be a finite 1-sorted structure. One can verify that every family of subsets ofT is finite.
We now state the proposition

(4) For every non trivial setX and for every elementx of X there exists a sety such thaty∈ X
andx 6= y.

1This work has been supported by KBN Grant 8 T11C 018 12.
1 The proposition (1) has been removed.
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2. COMPONENTS

Let X be a set, letp be a finite sequence of elements of 2X, and letq be a finite sequence of elements
of Boolean. The functor MergeSequence(p,q) yields a finite sequence of elements of 2X and is
defined by:

(Def. 1) lenMergeSequence(p,q) = lenp and for every natural numberi such thati ∈ domp holds
(MergeSequence(p,q))(i) = (q(i) = true→ p(i),X \ p(i)).

Next we state a number of propositions:

(5) Let X be a set,p be a finite sequence of elements of 2X, andq be a finite sequence of
elements ofBoolean. Then domMergeSequence(p,q) = domp.

(6) Let X be a set,p be a finite sequence of elements of 2X, q be a finite sequence of elements
of Boolean, andi be a natural number. Ifq(i) = true, then(MergeSequence(p,q))(i) = p(i).

(7) Let X be a set,p be a finite sequence of elements of 2X, q be a finite sequence of
elements ofBoolean, and i be a natural number. Ifi ∈ domp and q(i) = false, then
(MergeSequence(p,q))(i) = X \ p(i).

(8) For every setX and for every finite sequenceq of elements ofBoolean holds
lenMergeSequence(ε2X ,q) = 0.

(9) For every setX and for every finite sequenceq of elements ofBoolean holds
MergeSequence(ε2X ,q) = ε2X .

(10) For every setX and for every elementx of 2X and for every finite sequenceq of elements
of Booleanholds lenMergeSequence(〈x〉,q) = 1.

(11) LetX be a set,x be an element of 2X, andq be a finite sequence of elements ofBoolean.
Then

(i) if q(1) = true, then(MergeSequence(〈x〉,q))(1) = x, and

(ii) if q(1) = false, then(MergeSequence(〈x〉,q))(1) = X \x.

(12) For every setX and for all elementsx, y of 2X and for every finite sequenceq of elements
of Booleanholds lenMergeSequence(〈x,y〉,q) = 2.

(13) LetX be a set,x, y be elements of 2X, andq be a finite sequence of elements ofBoolean.
Then

(i) if q(1) = true, then(MergeSequence(〈x,y〉,q))(1) = x,

(ii) if q(1) = false, then(MergeSequence(〈x,y〉,q))(1) = X \x,

(iii) if q(2) = true, then(MergeSequence(〈x,y〉,q))(2) = y, and

(iv) if q(2) = false, then(MergeSequence(〈x,y〉,q))(2) = X \y.

(14) LetX be a set,x, y, zbe elements of 2X, andq be a finite sequence of elements ofBoolean.
Then lenMergeSequence(〈x,y,z〉,q) = 3.

(15) LetX be a set,x, y, zbe elements of 2X, andq be a finite sequence of elements ofBoolean.
Then

(i) if q(1) = true, then(MergeSequence(〈x,y,z〉,q))(1) = x,

(ii) if q(1) = false, then(MergeSequence(〈x,y,z〉,q))(1) = X \x,

(iii) if q(2) = true, then(MergeSequence(〈x,y,z〉,q))(2) = y,

(iv) if q(2) = false, then(MergeSequence(〈x,y,z〉,q))(2) = X \y,

(v) if q(3) = true, then(MergeSequence(〈x,y,z〉,q))(3) = z, and

(vi) if q(3) = false, then(MergeSequence(〈x,y,z〉,q))(3) = X \z.
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(16) Let X be a set and p be a finite sequence of elements of 2X. Then
{Intersect(rngMergeSequence(p,q));q ranges over finite sequences of elements ofBoolean:
lenq = lenp} is a family of subsets ofX.

One can check that every finite sequence of elements ofBooleanis boolean-valued.
Let X be a set and letY be a finite family of subsets ofX. The functor ComponentsY yielding a

family of subsets ofX is defined by the condition (Def. 2).

(Def. 2) There exists a finite sequencep of elements of 2X such that lenp = cardY and rngp = Y
and ComponentsY = {Intersect(rngMergeSequence(p,q));q ranges over finite sequences of
elements ofBoolean: lenq = lenp}.

Let X be a set and letY be a finite family of subsets ofX. Observe that ComponentsY is finite.
Next we state four propositions:

(17) For every setX and for every empty familyY of subsets ofX holds ComponentsY = {X}.

(18) For every setX and for all finite familiesY, Z of subsets ofX such thatZ ⊆ Y holds
ComponentsY is finer than ComponentsZ.

(19) For every setX and for every finite familyY of subsets ofX holds
⋃

ComponentsY = X.

(20) LetX be a set,Y be a finite family of subsets ofX, andA, B be sets. IfA∈ ComponentsY
andB∈ ComponentsY andA 6= B, thenA missesB.

Let X be a set and letY be a finite family of subsets ofX. We say thatY is in general position if
and only if:

(Def. 3) /0 /∈ ComponentsY.

We now state three propositions:

(21) LetX be a set andY, Z be finite families of subsets ofX. If Z is in general position and
Y ⊆ Z, thenY is in general position.

(22) For every non empty setX holds every empty family of subsets ofX is in general position.

(23) LetX be a non empty set andY be a finite family of subsets ofX. If Y is in general position,
then ComponentsY is a partition ofX.

3. ABOUT BASIS OFTOPOLOGICAL SPACES

The following propositions are true:

(24) For every non empty relational structureL holdsΩL is infs-closed and sups-closed.

(25) For every non empty relational structureL holdsΩL has bottom and top.

Let L be a non empty relational structure. Observe thatΩL is infs-closed and sups-closed and
has bottom and top.

We now state several propositions:

(26) For every continuous sup-semilatticeL holdsΩL is a CLbasis ofL.

(27) For every up-complete non empty posetL such thatL is finite holds the carrier ofL = the
carrier of CompactSublatt(L).

(28) For every lower-bounded sup-semilatticeL and for every subsetB of L such thatB is infinite

holdsB = finsups(B) .

(29) For everyT0 non empty topological spaceT holds the carrier ofT ⊆ the topology ofT .
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(30) Let T be a topological structure andX be a subset ofT. SupposeX is open. LetB be a
finite family of subsets ofT. SupposeB is a basis ofT. LetY be a set. IfY ∈ ComponentsB,
thenX missesY or Y ⊆ X.

(31) For everyT0 topological spaceT such thatT is infinite holds every basis ofT is infinite.

(32) LetT be a non empty topological space. SupposeT is finite. LetB be a basis ofT andx
be an element ofT. Then

⋂
{A;A ranges over elements of the topology ofT: x∈ A} ∈ B.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. K̈onig’s theorem.Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/card_3.html.

[3] Grzegorz Bancerek. Bounds in posets and relational substructures.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.html.

[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/waybel_0.html.

[5] Grzegorz Bancerek. The “way-below” relation.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/waybel_
3.html.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.
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