Components and Basis of Topological Spaces¹

Robert Milewski University in Białystok

Summary. This article contains many facts about components and basis of topological spaces.

MML Identifier: YELLOW15.

WWW: http://mizar.org/JFM/Vol11/yellow15.html

The articles [20], [10], [24], [16], [13], [26], [22], [25], [8], [9], [7], [6], [12], [23], [18], [11], [1], [2], [17], [19], [21], [3], [4], [5], [14], and [15] provide the notation and terminology for this paper.

1. Preliminaries

The scheme SeqLambda1C deals with a natural number \mathcal{A} , a non empty set \mathcal{B} , a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P} , and states that:

There exists a finite sequence p of elements of \mathcal{B} such that len $p = \mathcal{A}$ and for every natural number i such that $i \in \text{Seg } \mathcal{A}$ holds if $\mathcal{P}[i]$, then $p(i) = \mathcal{F}(i)$ and if not $\mathcal{P}[i]$, then $p(i) = \mathcal{G}(i)$

provided the following condition is satisfied:

• For every natural number i such that $i \in \operatorname{Seg} \mathcal{A}$ holds if $\mathcal{P}[i]$, then $\mathcal{F}(i) \in \mathcal{B}$ and if not $\mathcal{P}[i]$, then $\mathcal{G}(i) \in \mathcal{B}$.

Let X be a set and let p be a finite sequence of elements of 2^X . Then rng p is a family of subsets of X.

Let us observe that Boolean is finite.

The following two propositions are true:

- (2)¹ For every natural number i and for every finite set D holds D^i is finite.
- (3) For every finite set T holds every family of subsets of T is finite.

Let T be a finite set. One can check that every family of subsets of T is finite. Let T be a finite 1-sorted structure. One can verify that every family of subsets of T is finite. We now state the proposition

(4) For every non trivial set *X* and for every element *x* of *X* there exists a set *y* such that $y \in X$ and $x \neq y$.

¹This work has been supported by KBN Grant 8 T11C 018 12.

¹ The proposition (1) has been removed.

2. Components

Let X be a set, let p be a finite sequence of elements of 2^X , and let q be a finite sequence of elements of *Boolean*. The functor MergeSequence(p,q) yields a finite sequence of elements of 2^X and is defined by:

(Def. 1) len MergeSequence(p,q) = len p and for every natural number i such that $i \in \text{dom } p$ holds (MergeSequence(p,q)) $(i) = (q(i) = true \rightarrow p(i), X \setminus p(i))$.

Next we state a number of propositions:

- (5) Let X be a set, p be a finite sequence of elements of 2^X , and q be a finite sequence of elements of *Boolean*. Then dom MergeSequence(p,q) = dom p.
- (6) Let X be a set, p be a finite sequence of elements of 2^X , q be a finite sequence of elements of Boolean, and i be a natural number. If q(i) = true, then (MergeSequence(p,q))(i) = p(i).
- (7) Let X be a set, p be a finite sequence of elements of 2^X , q be a finite sequence of elements of *Boolean*, and i be a natural number. If $i \in \text{dom } p$ and q(i) = false, then $(\text{MergeSequence}(p,q))(i) = X \setminus p(i)$.
- (8) For every set X and for every finite sequence q of elements of *Boolean* holds len MergeSequence $(\varepsilon_{2X}, q) = 0$.
- (9) For every set X and for every finite sequence q of elements of *Boolean* holds $MergeSequence(\varepsilon_{2^X}, q) = \varepsilon_{2^X}$.
- (10) For every set X and for every element x of 2^X and for every finite sequence q of elements of *Boolean* holds len MergeSequence $(\langle x \rangle, q) = 1$.
- (11) Let X be a set, x be an element of 2^X , and q be a finite sequence of elements of *Boolean*. Then
 - (i) if q(1) = true, then (MergeSequence($\langle x \rangle, q$))(1) = x, and
- (ii) if q(1) = false, then (MergeSequence($\langle x \rangle, q$))(1) = $X \setminus x$.
- (12) For every set X and for all elements x, y of 2^X and for every finite sequence q of elements of *Boolean* holds len MergeSequence $(\langle x, y \rangle, q) = 2$.
- (13) Let X be a set, x, y be elements of 2^X , and q be a finite sequence of elements of *Boolean*. Then
 - (i) if q(1) = true, then (MergeSequence($\langle x, y \rangle, q$))(1) = x,
- (ii) if q(1) = false, then (MergeSequence($\langle x, y \rangle, q$))(1) = $X \setminus x$,
- (iii) if q(2) = true, then (MergeSequence($\langle x, y \rangle, q$))(2) = y, and
- (iv) if q(2) = false, then (MergeSequence($\langle x, y \rangle, q$))(2) = $X \setminus y$.
- (14) Let X be a set, x, y, z be elements of 2^X , and q be a finite sequence of elements of *Boolean*. Then len MergeSequence $(\langle x, y, z \rangle, q) = 3$.
- (15) Let X be a set, x, y, z be elements of 2^X , and q be a finite sequence of elements of *Boolean*. Then
 - (i) if q(1) = true, then (MergeSequence($\langle x, y, z \rangle, q$))(1) = x,
- (ii) if q(1) = false, then (MergeSequence($\langle x, y, z \rangle, q$))(1) = $X \setminus x$,
- (iii) if q(2) = true, then (MergeSequence($\langle x, y, z \rangle, q$))(2) = y,
- (iv) if q(2) = false, then (MergeSequence($\langle x, y, z \rangle, q$))(2) = $X \setminus y$,
- (v) if q(3) = true, then (MergeSequence($\langle x, y, z \rangle, q$))(3) = z, and
- (vi) if q(3) = false, then (MergeSequence($\langle x, y, z \rangle, q$))(3) = $X \setminus z$.

(16) Let X be a set and p be a finite sequence of elements of 2^X . Then $\{\text{Intersect}(\text{rng MergeSequence}(p,q)); q \text{ ranges over finite sequences of elements of } Boolean: len <math>q = \text{len } p\}$ is a family of subsets of X.

One can check that every finite sequence of elements of *Boolean* is boolean-valued.

Let *X* be a set and let *Y* be a finite family of subsets of *X*. The functor Components *Y* yielding a family of subsets of *X* is defined by the condition (Def. 2).

(Def. 2) There exists a finite sequence p of elements of 2^X such that $\operatorname{len} p = \operatorname{card} Y$ and $\operatorname{rng} p = Y$ and Components $Y = \{\operatorname{Intersect}(\operatorname{rng} \operatorname{MergeSequence}(p,q)); q \operatorname{ranges} \operatorname{over} \operatorname{finite} \operatorname{sequences} \operatorname{of} \operatorname{elements} \operatorname{of} \operatorname{Boolean}: \operatorname{len} q = \operatorname{len} p\}.$

Let *X* be a set and let *Y* be a finite family of subsets of *X*. Observe that Components *Y* is finite. Next we state four propositions:

- (17) For every set *X* and for every empty family *Y* of subsets of *X* holds Components $Y = \{X\}$.
- (18) For every set X and for all finite families Y, Z of subsets of X such that $Z \subseteq Y$ holds Components Y is finer than Components Z.
- (19) For every set X and for every finite family Y of subsets of X holds \bigcup Components Y = X.
- (20) Let *X* be a set, *Y* be a finite family of subsets of *X*, and *A*, *B* be sets. If $A \in \text{Components } Y$ and $B \in \text{Components } Y$ and $A \neq B$, then *A* misses *B*.

Let *X* be a set and let *Y* be a finite family of subsets of *X*. We say that *Y* is in general position if and only if:

(Def. 3) $\emptyset \notin \text{Components } Y$.

We now state three propositions:

- (21) Let X be a set and Y, Z be finite families of subsets of X. If Z is in general position and $Y \subseteq Z$, then Y is in general position.
- (22) For every non empty set X holds every empty family of subsets of X is in general position.
- (23) Let *X* be a non empty set and *Y* be a finite family of subsets of *X*. If *Y* is in general position, then Components *Y* is a partition of *X*.

3. ABOUT BASIS OF TOPOLOGICAL SPACES

The following propositions are true:

- (24) For every non empty relational structure L holds Ω_L is infs-closed and sups-closed.
- (25) For every non empty relational structure L holds Ω_L has bottom and top.

Let L be a non empty relational structure. Observe that Ω_L is infs-closed and sups-closed and has bottom and top.

We now state several propositions:

- (26) For every continuous sup-semilattice L holds Ω_L is a CL basis of L.
- (27) For every up-complete non empty poset L such that L is finite holds the carrier of L = the carrier of CompactSublatt(L).
- (28) For every lower-bounded sup-semilattice L and for every subset B of L such that B is infinite holds $\overline{B} = \overline{\overline{\text{finsups}(B)}}$.
- (29) For every T_0 non empty topological space T holds the carrier of $T \subseteq \overline{\text{the topology of } T}$.

- (30) Let T be a topological structure and X be a subset of T. Suppose X is open. Let B be a finite family of subsets of T. Suppose B is a basis of T. Let Y be a set. If $Y \in \text{Components } B$, then X misses Y or $Y \subseteq X$.
- (31) For every T_0 topological space T such that T is infinite holds every basis of T is infinite.
- (32) Let T be a non empty topological space. Suppose T is finite. Let B be a basis of T and x be an element of T. Then $\bigcap \{A; A \text{ ranges over elements of the topology of } T : <math>x \in A\} \in B$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3 html
- [6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [7] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.
- [8] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [9] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2 html
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [11] Czesław Byliński. A classical first order language. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/cqc_lang.html.
- [12] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [14] Robert Milewski. Algebraic lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_8.html.
- [15] Robert Milewski. Bases of continuous lattices. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel23.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [18] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [19] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [20] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [21] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [22] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [23] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[26] Edmund Woronowicz. Many-argument relations. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/margrell.html.

Received June 22, 1999

Published January 2, 2004