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1. PRELIMINARIES

One can prove the following propositions:

(1) 21 = {0,1}.

(2) For every setX and for every subsetY of X holds rng(idX�Y) = Y.

(3) For every functionf and for all setsa, b holds( f+·(a7−→. b))(a) = b.

Let us note that there exists a relational structure which is strict and empty.
Next we state four propositions:

(4) LetSbe an empty 1-sorted structure,T be a 1-sorted structure, andf be a map fromS into
T. If rng f = ΩT , thenT is empty.

(5) LetSbe a 1-sorted structure,T be an empty 1-sorted structure, andf be a map fromS into
T. If dom f = ΩS, thenS is empty.

(6) Let Sbe a non empty 1-sorted structure,T be a 1-sorted structure, andf be a map fromS
into T. If dom f = ΩS, thenT is non empty.

(7) Let Sbe a 1-sorted structure,T be a non empty 1-sorted structure, andf be a map fromS
into T. If rng f = ΩT , thenS is non empty.

Let Sbe a non empty reflexive relational structure, letT be a non empty relational structure, and
let f be a map fromS into T. Let us observe thatf is directed-sups-preserving if and only if:

(Def. 1) For every non empty directed subsetX of Sholds f preserves sup ofX.
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Let R be a 1-sorted structure and letN be a net structure overR. We say thatN is function
yielding if and only if:

(Def. 2) The mapping ofN is function yielding.

Let us observe that there exists a 1-sorted structure which is strict, non empty, and constituted
functions.

Let us observe that there exists a relational structure which is strict, non empty, and constituted
functions.

Let R be a constituted functions 1-sorted structure. Observe that every net structure overR is
function yielding.

Let R be a constituted functions 1-sorted structure. Note that there exists a net structure overR
which is strict and function yielding.

Let R be a non empty constituted functions 1-sorted structure. Observe that there exists a net
structure overRwhich is strict, non empty, and function yielding.

Let Rbe a constituted functions 1-sorted structure and letN be a function yielding net structure
overR. One can check that the mapping ofN is function yielding.

Let R be a non empty constituted functions 1-sorted structure. Observe that there exists a net in
Rwhich is strict and function yielding.

Let Sbe a non empty 1-sorted structure and letN be a non empty net structure overS. Note that
rng(the mapping ofN) is non empty.

Let Sbe a non empty 1-sorted structure and letN be a non empty net structure overS. One can
check that rngnetmap(N,S) is non empty.

We now state two propositions:

(8) LetA, B, C be non empty relational structures,f be a map fromB intoC, andg, h be maps
from A into B. If g≤ h and f is monotone, thenf ·g≤ f ·h.

(9) Let S be a non empty topological space,T be a non empty topological space-like FR-
structure,f , g be maps fromS into T, andx, y be elements of[S→ T]. If x = f andy = g,
thenx≤ y iff f ≤ g.

Let I be a set and letR be a non empty relational structure. Observe that every element ofRI is
function-like and relation-like.

Let I be a non empty set, letR be a non empty relational structure, letf be an element ofRI ,
and leti be an element ofI . Then f (i) is an element ofR.

2. SOME PROPERTIES OFISOMORPHISM BETWEENRELATIONAL STRUCTURES

The following proposition is true

(10) For all relational structuresS, T and for every mapf from Sinto T such thatf is isomorphic
holds f is onto.

Let S, T be relational structures. One can check that every map fromS into T which is isomor-
phic is also onto.

One can prove the following four propositions:

(11) LetS, T be non empty relational structures andf be a map fromSintoT. If f is isomorphic,
then UNKNOWN( f ) is isomorphic.

(12) For all non empty relational structuresS, T such thatS andT are isomorphic andS has
g.l.b.’s holdsT has g.l.b.’s.

(13) For all non empty relational structuresS, T such thatS andT are isomorphic andS has
l.u.b.’s holdsT has l.u.b.’s.

(14) For every relational structureL such thatL is empty holdsL is bounded.
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Let us note that every relational structure which is empty is also bounded.
One can prove the following propositions:

(15) LetS, T be relational structures. SupposeSandT are isomorphic andS is lower-bounded.
ThenT is lower-bounded.

(16) LetS, T be relational structures. SupposeSandT are isomorphic andS is upper-bounded.
ThenT is upper-bounded.

(17) LetS, T be non empty relational structures,A be a subset ofS, and f be a map fromS into
T. Supposef is isomorphic and supA exists inS. Then supf ◦A exists inT.

(18) LetS, T be non empty relational structures,A be a subset ofS, and f be a map fromS into
T. Supposef is isomorphic and infA exists inS. Then inf f ◦A exists inT.

3. ON THE PRODUCT OFTOPOLOGICAL SPACES

We now state two propositions:

(19) Let S, T be topological structures. SupposeS andT are homeomorphic or there exists a
map f from S into T such that domf = ΩS and rngf = ΩT . ThenS is empty if and only ifT
is empty.

(20) For every non empty topological spaceT holdsT and the topological structure ofT are
homeomorphic.

Let T be a Scott reflexive non empty FR-structure. Observe that every subset ofT which is open
is also inaccessible and upper and every subset ofT which is inaccessible and upper is also open.

We now state several propositions:

(21) LetT be a topological structure,x, y be points ofT, andX, Y be subsets ofT. If X = {x}
andX ⊆Y, thenx∈Y.

(22) LetT be a topological structure,x, y be points ofT, andY, V be subsets ofT. If Y = {y}
andx∈Y andV is open andx∈V, theny∈V.

(23) Let T be a topological structure,x, y be points ofT, andX, Y be subsets ofT. Suppose
X = {x} andY = {y}. Suppose that for every subsetV of T such thatV is open holds ifx∈V,
theny∈V. ThenX ⊆Y.

(24) LetS, T be non empty topological spaces,A be an irreducible subset ofS, andB be a subset
of T. SupposeA= B and the topological structure ofS= the topological structure ofT. Then
B is irreducible.

(25) LetS, T be non empty topological spaces,a be a point ofS, b be a point ofT, A be a subset
of S, andB be a subset ofT. Supposea= b andA= B and the topological structure ofS= the
topological structure ofT anda is dense point ofA. Thenb is dense point ofB.

(26) Let S, T be topological structures,A be a subset ofS, andB be a subset ofT. Suppose
A = B and the topological structure ofS= the topological structure ofT andA is compact.
ThenB is compact.

(27) Let S, T be non empty topological spaces. Suppose the topological structure ofS= the
topological structure ofT andS is sober. ThenT is sober.

(28) Let S, T be non empty topological spaces. Suppose the topological structure ofS= the
topological structure ofT andS is locally-compact. ThenT is locally-compact.

(29) LetS, T be topological structures. Suppose the topological structure ofS= the topological
structure ofT andS is compact. ThenT is compact.



SOME PROPERTIES OF ISOMORPHISM BETWEEN. . . 4

Let I be a non empty set, letT be a non empty topological space, letx be a point of∏(I 7−→ T),
and leti be an element ofI . Thenx(i) is an element ofT.

The following propositions are true:

(30) Let M be a non empty set,J be a topological space yielding nonempty many sorted set
indexed byM, andx, y be points of∏J. Thenx∈ {y} if and only if for every elementi of M
holdsx(i) ∈ {y(i)}.

(31) Let M be a non empty set,T be a non empty topological space, andx, y be points of
∏(M 7−→ T). Thenx∈ {y} if and only if for every elementi of M holdsx(i) ∈ {y(i)}.

(32) LetM be a non empty set,i be an element ofM, J be a topological space yielding nonempty
many sorted set indexed byM, andx be a point of∏J. Thenπi{x}= {x(i)}.

(33) LetM be a non empty set,i be an element ofM, T be a non empty topological space, and
x be a point of∏(M 7−→ T). Thenπi{x}= {x(i)}.

(34) LetX, Y be non empty topological structures,f be a map fromX into Y, andg be a map
from Y into X. Supposef = idX andg = idX and f is continuous andg is continuous. Then
the topological structure ofX = the topological structure ofY.

(35) LetX,Y be non empty topological spaces andf be a map fromX intoY. If f ◦ is continuous,
then f is continuous.

Let X be a non empty topological space and letY be a non empty subspace ofX. Observe that
Y
↪→ is continuous.

Next we state three propositions:

(36) For every non empty topological spaceT and for every mapf from T into T such that
f · f = f holds f ◦ · ( Im f

↪→ ) = idIm f .

(37) For every non empty topological spaceY and for every non empty subspaceW of Y holds
( W

↪→ )◦ is a homeomorphism.

(38) LetM be a non empty set andJ be a topological space yielding nonempty many sorted set
indexed byM. Suppose that for every elementi of M holdsJ(i) is a T0 topological space.
Then∏J is T0.

Let I be a non empty set and letT be a non emptyT0 topological space. Observe that∏(I 7−→ T)
is T0.

We now state the proposition

(39) Let M be a non empty set andJ be a topological space yielding nonempty many sorted
set indexed byM. Suppose that for every elementi of M holdsJ(i) is T1 and topological
space-like. Then∏J is aT1 space.

Let I be a non empty set and letT be a non emptyT1 topological space. Note that∏(I 7−→ T)
is T1.
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