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for this paper.
1. PRELIMINARIES

Let Sbe a finite 1-sorted structure. Note that the carrieB wffinite.
Let Sbe a trivial 1-sorted structure. Note that the carrieBf trivial.
Let us mention that every set which is trivial is also finite.
Let us mention that every 1-sorted structure which is trivial is also finite.
Let us note that every 1-sorted structure which is non trivial is also non empty.

One can verify the following observations:
x there exists a 1-sorted structure which is strict, non empty, and trivial,
x there exists a relational structure which is strict, non empty, and trivial, and
x there exists a FR-structure which is strict, non empty, and trivial.
We now state the proposition
(1) For everyT; non empty topological spadeholds every finite subset df is closed.

Let T be aT; non empty topological space. One can check that every sub$ewbfch is finite

is also closed.
Let T be a compact topological structure. Note tatis compact.
Let us note that there exists a topological space which is strict, non empty, and trivial.
Let us observe that every non empty topological space which is finitdsaisdalso discrete.
Let us mention that every topological space which is finite is also compact.

One can prove the following propositions:
(2) Every discrete non empty topological space Tg apace.
(3) Every discrete non empty topological space s apace.

(4) Every discrete non empty topological space 15 apace.

1This work has been supported by KBN Grant 8 T11C 018 12.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol10/yellow13.html

INTRODUCTION TO MEETFCONTINUOUS TOPOLOGICAL. .. 2

(5) Every discrete non empty topological space 1§ apace.

One can verify that every topological space which is discrete and non empty i&alkg To,
andT;.

One can check that every non empty topological space whithasdT; is alsoTs.

Let us note that every non empty topological space whidh endT; is alsoTs.

Let us note that every topological space whicfizss alsoT;.

Let us observe that every topological space which is alsoTp.

We now state three propositions:

(6) LetSbe a reflexive relational structur€,be a reflexive transitive relational structufehe
amap fromSinto T, andX be a subset d&. Then|(f°X) C [(f°|X).

(7) LetSbe areflexive relational structurg,be a reflexive transitive relational structufehe
amap fromSinto T, andX be a subset d&. If f is monotone, theg(f°X) = [(f°|X).

(8) For every non empty posktholds IdsMagN) is one-to-one.

Let N be a non empty poset. Note that IdsMp is one-to-one.
The following proposition is true

(9) For every finite latticéN holds SupMafN) is one-to-one.

Let N be a finite lattice. Observe that SupMAa} is one-to-one.
One can prove the following three propositions:

(10) For every finite latticé&l holdsN and(Ids(N), C) are isomorphic.

(11) LetN be a complete non empty posetye an element dfl, andX be a non empty subset
of N. Thenx1 preserves inf oK.

(12) For every complete non empty posetind for every element of N holdsxM 0 is meet-
preserving.

Let N be a complete non empty poset andxdie an element oN. Observe thakm [ is
meet-preserving.

2. ON THE BASIS OFTOPOLOGICAL SPACES

We now state several propositions:

(13) LetT be an anti-discrete non empty topological structure abé a point ofT. Then{the
carrier of T} is a basis op.

(14) LetT be an anti-discrete non empty topological structyrée a point ofT, andD be a
basis ofp. ThenD = {the carrier ofT }.

(15) LetT be a non empty topological spad@pe a basis off, andp be a point ofT. Then
{A;Aranges over subsets ®f Ac P A p € A} is a basis op.

(16) LetT be a non empty topological structufebe a subset of, andp be a point ofT. Then
p € Aif and only if for every basi¥ of p and for every subsé of T such thaQQ € K holds
A meetQ.

(17) LetT be a non empty topological structufebe a subset of, andp be a point ofT. Then
p € Aif and only if there exists a bask of p such that for every subs€ of T such that
Q € K holdsA meetQ.

Let T be a topological structure and lpte a point ofT. A family of subsets of is said to be
a generalized basis qfif:
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(Def. 1) For every subsét of T such thatp € IntA there exists a subsBtof T such thaP € it and
p € IntPandP C A
LetT be a non empty topological space andddte a point ofT. Let us note that the generalized
basis ofp can be characterized by the following (equivalent) condition:
(Def. 2) For every neighbourhoofl of p there exists a neighbourho®dof p such thatP € it and
PCA
Next we state two propositions:
(18) LetT be a topological structure anmlbe a point ofT. Then "€ carier ofT g 3 generalized
basis ofp.
(19) For every non empty topological spaceand for every poinp of T holds every generalized
basis ofp is non empty.
Let T be a non empty topological space andpdbe a point ofT. One can verify that every

generalized basis gf is non empty.
Let T be a topological structure and Iptbe a point ofT. Note that there exists a generalized

basis ofp which is non empty.
Let T be atopological structure, Igtbe a point ofT, and letP be a generalized basis pf We

say thatP is correct if and only if:
(Def. 3) For every subsét of T holdsA € Piff p € IntA.

Let T be a topological structure and Iptbe a point ofT. One can verify that there exists a

generalized basis gf which is correct.
Next we state the proposition

(20) LetT be a topological structure ammlbe a point ofT. Then{A; A ranges over subsets of
T: p€IntA} is a correct generalized basisof

Let T be a non empty topological space andpdie a point ofT. Observe that there exists a

generalized basis gf which is non empty and correct.
The following propositions are true:

(21) LetT be an anti-discrete non empty topological structure pbe a point ofT. Then{the
carrier of T} is a correct generalized basis of

(22) LetT be an anti-discrete non empty topological structyrée a point ofT, andD be a
correct generalized basis pf ThenD = {the carrier ofT }.

(23) For every non empty topological spacend for every poinp of T holds every basis gb
is a generalized basis pf

Let T be atopological structure. A family of subsetsTofs said to be a generalized basisTof
if:
(Def. 4) For every poinp of T holds it is a generalized basis pf
One can prove the following two propositions:
(24) For every topological structufieholds 2" camer ofT s g generalized basis ®f.

(25) For every non empty topological spacénolds every generalized basisofs non empty.

LetT be a non empty topological space. Observe that every generalized basssrain empty.
Let T be atopological structure. Observe that there exists a generalized b&sighodh is non

empty.
Next we state two propositions:
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(26) For every non empty topological spatend for every generalized ba$tof T holds the

topology of T C UniCI(IntP).

(27) For every topological spadeholds every basis of is a generalized basis of.

Let T be a non empty topological space-like FR-structure. We sayftisatisfies conditions of

topological semilattice if and only if:

(Def.5) For every mag from [ T, (T quatopological space)into T such thatf =My holdsf is

continuous.

One can verify that every non empty topological space-like FR-structure which is reflexive and

trivial satisfies also conditions of topological semilattice.

Let us mention that there exists a FR-structure which is reflexive, trivial, non empty, and topo-

logical space-like.

The following proposition is true

(28) LetT be a non empty topological space-like FR-structure satisfying conditions of topolog-

ical semilattice anat be an element of . Thenx O is continuous.

Let T be a non empty topological space-like FR-structure satisfying conditions of topological

semilattice and let be an element of . Observe thakM [ is continuous.
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