On the Characterization of Hausdorff Spaces¹

Artur Korniłowicz University of Białystok

MML Identifier: YELLOW12.

WWW: http://mizar.org/JFM/Vol10/yellow12.html

The articles [18], [9], [25], [14], [26], [7], [27], [8], [19], [6], [16], [10], [17], [15], [20], [28], [24], [1], [2], [3], [11], [12], [13], [4], [21], [22], [23], and [5] provide the notation and terminology for this paper.

1. The Properties of Some Functions

In this paper A, B, X, Y are sets.

Let X be an empty set. Observe that $\bigcup X$ is empty.

One can prove the following propositions:

- (1) $(\delta_X)^{\circ}A \subseteq [:A,A:].$
- (2) $(\delta_X)^{-1}([:A,A:]) \subseteq A$.
- (3) For every subset A of X holds $(\delta_X)^{-1}([:A,A:]) = A$.
- (4) $\operatorname{dom}\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle = [:X, Y:] \text{ and } \operatorname{rng}\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle = [:Y, X:].$
- (5) $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{\circ} [:A, B:] \subseteq [:B, A:].$
- (6) For every subset *A* of *X* and for every subset *B* of *Y* holds $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{\circ}[A, B] = [B, A].$
- (7) $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle$ is one-to-one.

Let X, Y be sets. Observe that $\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle$ is one-to-one. Next we state the proposition

(8)
$$\langle \pi_2(X \times Y), \pi_1(X \times Y) \rangle^{-1} = \langle \pi_2(Y \times X), \pi_1(Y \times X) \rangle$$
.

2. The Properties of the Relational Structures

One can prove the following propositions:

(9) Let L_1 be a semilattice, L_2 be a non empty relational structure, x, y be elements of L_1 , and x_1 , y_1 be elements of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $x = x_1$ and $y = y_1$. Then $x \sqcap y = x_1 \sqcap y_1$.

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (10) Let L_1 be a sup-semilattice, L_2 be a non empty relational structure, x, y be elements of L_1 , and x_1 , y_1 be elements of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $x = x_1$ and $y = y_1$. Then $x \sqcup y = x_1 \sqcup y_1$.
- (11) Let L_1 be a semilattice, L_2 be a non empty relational structure, X, Y be subsets of L_1 , and X_1 , Y_1 be subsets of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $X = X_1$ and $Y = Y_1$. Then $X \sqcap Y = X_1 \sqcap Y_1$.
- (12) Let L_1 be a sup-semilattice, L_2 be a non empty relational structure, X, Y be subsets of L_1 , and X_1 , Y_1 be subsets of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and $X = X_1$ and $Y = Y_1$. Then $X \sqcup Y = X_1 \sqcup Y_1$.
- (13) Let L_1 be an antisymmetric up-complete non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, x be an element of L_1 , and y be an element of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and x = y. Then $\downarrow x = \downarrow y$ and $\uparrow x = \uparrow y$.
- (14) Let L_1 be a meet-continuous semilattice and L_2 be a non empty reflexive relational structure. Suppose the relational structure of L_1 = the relational structure of L_2 . Then L_2 is meet-continuous.
- (15) Let L_1 be a continuous antisymmetric non empty reflexive relational structure and L_2 be a non empty reflexive relational structure. Suppose the relational structure of L_1 = the relational structure of L_2 . Then L_2 is continuous.
- (16) Let L_1 , L_2 be relational structures, A be a subset of L_1 , and J be a subset of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and A = J. Then sub(A) = sub(J).
- (17) Let L_1 , L_2 be non empty relational structures, A be a relational substructure of L_1 , and J be a relational substructure of L_2 . Suppose that
 - (i) the relational structure of L_1 = the relational structure of L_2 ,
- (ii) the relational structure of A = the relational structure of J, and
- (iii) A is meet-inheriting.

Then J is meet-inheriting.

- (18) Let L_1 , L_2 be non empty relational structures, A be a relational substructure of L_1 , and J be a relational substructure of L_2 . Suppose that
 - (i) the relational structure of L_1 = the relational structure of L_2 ,
- (ii) the relational structure of A = the relational structure of J, and
- (iii) A is join-inheriting.

Then J is join-inheriting.

- (19) Let L_1 be an up-complete antisymmetric non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, X be a subset of L_1 , and Y be a subset of L_2 such that the relational structure of L_1 = the relational structure of L_2 and X = Y and X has the property (S). Then Y has the property (S).
- (20) Let L_1 be an up-complete antisymmetric non empty reflexive relational structure, L_2 be a non empty reflexive relational structure, X be a subset of L_1 , and Y be a subset of L_2 . Suppose the relational structure of L_1 = the relational structure of L_2 and X = Y and X is directly closed. Then Y is directly closed.
- (21) Let N be an antisymmetric relational structure with g.l.b.'s, D, E be subsets of N, and X be an upper subset of N. If D misses X, then $D \sqcap E$ misses X.
- (22) Let R be a reflexive non empty relational structure. Then $id_{the \ carrier \ of \ R} \subseteq (the \ internal \ relation \ of \ R) \cap (the \ internal \ relation \ of \ R^{\sim})$.

- (23) Let R be an antisymmetric relational structure. Then (the internal relation of R) \cap (the internal relation of R^{\sim}) \subseteq id_{the carrier of R}.
- (24) Let R be an upper-bounded semilattice and X be a subset of [:R,R:]. If $\inf (\sqcap_R)^{\circ}X$ exists in R, then \sqcap_R preserves \inf of X.

Let *R* be a complete semilattice. Observe that \sqcap_R is infs-preserving. We now state the proposition

(25) Let R be a lower-bounded sup-semilattice and X be a subset of [:R,R:]. If sup $(\sqcup_R)^{\circ}X$ exists in R, then \sqcup_R preserves sup of X.

Let *R* be a complete sup-semilattice. Note that \sqcup_R is sups-preserving. We now state several propositions:

- (26) For every semilattice N and for every subset A of N such that sub(A) is meet-inheriting holds A is filtered.
- (27) For every sup-semilattice N and for every subset A of N such that sub(A) is join-inheriting holds A is directed.
- (28) Let *N* be a transitive relational structure and *A*, *J* be subsets of *N*. If *A* is coarser than $\uparrow J$, then $\uparrow A \subseteq \uparrow J$.
- (29) For every transitive relational structure N and for all subsets A, J of N such that A is finer than $\downarrow J$ holds $\downarrow A \subseteq \downarrow J$.
- (30) Let *N* be a non empty reflexive relational structure, *x* be an element of *N*, and *X* be a subset of *N*. If $x \in X$, then $\uparrow x \subseteq \uparrow X$.
- (31) Let *N* be a non empty reflexive relational structure, *x* be an element of *N*, and *X* be a subset of *N*. If $x \in X$, then $\exists x \subset \exists X$.

3. On the Hausdorff Spaces

In the sequel R, S, T are non empty topological spaces.

Let T be a non empty topological structure. One can check that the topological structure of T is non empty.

Let *T* be a topological space. Note that the topological structure of *T* is topological space-like. One can prove the following three propositions:

- (32) Let S, T be topological structures and B be a basis of S. Suppose the topological structure of S = the topological structure of T. Then B is a basis of T.
- (33) Let S, T be topological structures and B be a prebasis of S. Suppose the topological structure of S = the topological structure of T. Then B is a prebasis of T.
- (34) Every basis of T is non empty.

Let T be a non empty topological space. One can verify that every basis of T is non empty. We now state the proposition

(35) For every point x of T holds every basis of x is non empty.

Let T be a non empty topological space and let x be a point of T. One can verify that every basis of x is non empty.

Next we state a number of propositions:

- (36) Let S_1 , T_1 , S_2 , T_2 be non empty topological spaces, f be a map from S_1 into S_2 , and g be a map from T_1 into T_2 . Suppose that
 - (i) the topological structure of S_1 = the topological structure of T_1 ,
- (ii) the topological structure of S_2 = the topological structure of T_2 ,
- (iii) f = g, and
- (iv) f is continuous.

Then *g* is continuous.

- (37) id_{the carrier of $T = \{p; p \text{ ranges over points of } [T, T] : \pi_1(\text{the carrier of } T) \times \text{the carrier of } T)(p) = \pi_2(\text{the carrier of } T) \times \text{the carrier of } T)(p)\}.$}
- (38) $\delta_{\text{the carrier of }T}$ is a continuous map from T into [:T,T:].
- (39) π_1 ((the carrier of S) × the carrier of T) is a continuous map from [:S,T:] into S.
- (40) π_2 ((the carrier of S) × the carrier of T) is a continuous map from [:S,T:] into T.
- (41) Let f be a continuous map from T into S and g be a continuous map from T into R. Then $\langle f,g \rangle$ is a continuous map from T into [:S,R:].
- (42) $\langle \pi_2(\text{the carrier of } S) \times \text{the carrier of } T), \pi_1(\text{the carrier of } S) \times \text{the carrier of } T) \rangle$ is a continuous map from [:S,T:] into [:T,S:].
- (43) Let f be a map from [:S, T:] into [:T, S:]. Suppose $f = \langle \pi_2((\text{the carrier of } S) \times \text{the carrier of } T), \pi_1((\text{the carrier of } S) \times \text{the carrier of } T) \rangle$. Then f is a homeomorphism.
- (44) [:S,T:] and [:T,S:] are homeomorphic.
- (45) Let T be a Hausdorff non empty topological space and f, g be continuous maps from S into T. Then
 - (i) for every subset X of S such that $X = \{p; p \text{ ranges over points of } S: f(p) \neq g(p)\}$ holds X is open, and
- (ii) for every subset X of S such that $X = \{p; p \text{ ranges over points of } S: f(p) = g(p)\}$ holds X is closed.
- (46) T is Hausdorff iff for every subset A of [T, T] such that $A = \mathrm{id}_{\mathsf{the\ carrier\ of\ }T}$ holds A is closed.
- Let S, T be topological structures. Observe that there exists a refinement of S and T which is strict.

Let S be a non empty topological structure and let T be a topological structure. One can verify that there exists a refinement of S and T which is strict and non empty and there exists a refinement of T and S which is strict and non empty.

Next we state the proposition

(47) Let *R*, *S*, *T* be topological structures. Then *R* is a refinement of *S* and *T* if and only if the topological structure of *R* is a refinement of *S* and *T*.

For simplicity, we adopt the following rules: S_1 , S_2 , T_1 , T_2 denote non empty topological spaces, R denotes a refinement of $[:S_1, T_1:]$ and $[:S_2, T_2:]$, R_1 denotes a refinement of S_1 and S_2 , and S_2 , and S_3 denotes a refinement of S_1 and S_2 .

The following three propositions are true:

(48) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then $\{[:U_1,V_1:]\cap [:U_2,V_2:];U_1 \text{ ranges over subsets of } S_1, U_2 \text{ ranges over subsets of } S_2, V_1 \text{ ranges over subsets of } T_1, V_2 \text{ ranges over subsets of } T_2: U_1 \text{ is open } \wedge U_2 \text{ is open } \wedge V_1 \text{ is open } \wedge V_2 \text{ is open } \}$ is a basis of T_2 .

- (49) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then the carrier of $[:R_1, R_2:]$ = the carrier of R and the topology of $[:R_1, R_2:]$ = the topology of R.
- (50) Suppose the carrier of S_1 = the carrier of S_2 and the carrier of T_1 = the carrier of T_2 . Then $[:R_1,R_2:]$ is a refinement of $[:S_1,T_1:]$ and $[:S_2,T_2:]$.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [4] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/yellow_9.html.
- [6] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct 3.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [11] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [12] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_4.html.
- [13] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.
- [14] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [15] Beata Padlewska. Locally connected spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/connsp_ 2.html.
- [16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [17] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [21] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [22] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/yellow_8.html.
- [23] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybelll.html.
- [24] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [25] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [26] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

- [27] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.
- [28] Mariusz Żynel and Adam Guzowski. T_0 topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received April 18, 1998

Published January 2, 2004