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Summary. This work contains useful facts about the product of relational structures.
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The articles [13], [5], [14], [16], [1], [2], [3], [6], [8], [9], [10], [4], [11], [12], and [15] provide the
notation and terminology for this paper.

1. ON THE ELEMENTS OFPRODUCT OFRELATIONAL STRUCTURES

Let S, T be non empty upper-bounded relational structures. Observe that[:S, T :] is upper-bounded.
Let S, T be non empty lower-bounded relational structures. Observe that[:S, T :] is lower-

bounded.
One can prove the following propositions:

(1) Let S, T be non empty relational structures. If[:S, T :] is upper-bounded, thenS is upper-
bounded andT is upper-bounded.

(2) Let S, T be non empty relational structures. If[:S, T :] is lower-bounded, thenS is lower-
bounded andT is lower-bounded.

(3) For all upper-bounded antisymmetric non empty relational structuresS, T holds>[:S,T :] =
〈〈>S,>T〉〉.

(4) For all lower-bounded antisymmetric non empty relational structuresS, T holds⊥[:S,T :] =
〈〈⊥S,⊥T〉〉.

(5) Let S, T be lower-bounded antisymmetric non empty relational structures andD be a sub-
set of [:S, T :]. If [:S, T :] is complete or supD exists in[:S, T :], then supD = 〈〈supπ1(D),
supπ2(D)〉〉.

(6) LetS, T be upper-bounded antisymmetric non empty relational structures andD be a subset
of [:S, T :]. If [:S, T :] is complete or infD exists in[:S, T :], then infD = 〈〈 inf π1(D), inf π2(D)〉〉.

(7) Let S, T be non empty relational structures andx, y be elements of[:S, T :]. Thenx≤ {y}
if and only if the following conditions are satisfied:

(i) x1 ≤ {y1}, and

(ii) x2 ≤ {y2}.
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(8) Let S, T be non empty relational structures andx, y, z be elements of[:S, T :]. Thenx≤
{y,z} if and only if the following conditions are satisfied:

(i) x1 ≤ {y1,z1}, and

(ii) x2 ≤ {y2,z2}.

(9) Let S, T be non empty relational structures andx, y be elements of[:S, T :]. Thenx≥ {y}
if and only if the following conditions are satisfied:

(i) x1 ≥ {y1}, and

(ii) x2 ≥ {y2}.

(10) Let S, T be non empty relational structures andx, y, z be elements of[:S, T :]. Thenx≥
{y,z} if and only if the following conditions are satisfied:

(i) x1 ≥ {y1,z1}, and

(ii) x2 ≥ {y2,z2}.

(11) LetS, T be non empty antisymmetric relational structures andx, y be elements of[:S, T :].
Then inf{x,y} exists in[:S, T :] if and only if inf {x1,y1} exists inSand inf{x2,y2} exists in
T.

(12) LetS, T be non empty antisymmetric relational structures andx, y be elements of[:S, T :].
Then sup{x,y} exists in[:S, T :] if and only if sup{x1,y1} exists inSand sup{x2,y2} exists
in T.

(13) LetS, T be antisymmetric relational structures with g.l.b.’s andx, y be elements of[:S, T :].
Then(xuy)1 = x1uy1 and(xuy)2 = x2uy2.

(14) LetS, T be antisymmetric relational structures with l.u.b.’s andx, y be elements of[:S, T :].
Then(xty)1 = x1ty1 and(xty)2 = x2ty2.

(15) LetS, T be antisymmetric relational structures with g.l.b.’s,x1, y1 be elements ofS, andx2,
y2 be elements ofT. Then〈〈x1uy1, x2uy2〉〉= 〈〈x1, x2〉〉u 〈〈y1, y2〉〉.

(16) LetS, T be antisymmetric relational structures with l.u.b.’s,x1, y1 be elements ofS, andx2,
y2 be elements ofT. Then〈〈x1ty1, x2ty2〉〉= 〈〈x1, x2〉〉t 〈〈y1, y2〉〉.

Let Sbe an antisymmetric relational structure with l.u.b.’s and g.l.b.’s and letx, y be elements of
S. Let us note that the predicatey is a complement ofx is symmetric.

Next we state several propositions:

(17) LetS, T be bounded antisymmetric relational structures with l.u.b.’s and g.l.b.’s andx, y be
elements of[:S, T :]. Thenx is a complement ofy if and only if x1 is a complement ofy1 and
x2 is a complement ofy2.

(18) Let S, T be antisymmetric up-complete non empty reflexive relational structures,a, c be
elements ofS, andb, d be elements ofT. If 〈〈a, b〉〉 � 〈〈c, d〉〉, thena� c andb� d.

(19) LetS, T be up-complete non empty posets,a, c be elements ofS, andb, d be elements of
T. Then〈〈a, b〉〉 � 〈〈c, d〉〉 if and only if a� c andb� d.

(20) LetS, T be antisymmetric up-complete non empty reflexive relational structures andx, y
be elements of[:S, T :]. If x� y, thenx1 � y1 andx2 � y2.

(21) LetS, T be up-complete non empty posets andx, y be elements of[:S, T :]. Thenx� y if
and only if the following conditions are satisfied:

(i) x1 � y1, and

(ii) x2 � y2.

(22) LetS, T be antisymmetric up-complete non empty reflexive relational structures andx be
an element of[:S, T :]. If x is compact, thenx1 is compact andx2 is compact.
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(23) LetS, T be up-complete non empty posets andx be an element of[:S, T :]. If x1 is compact
andx2 is compact, thenx is compact.

2. ON THE SUBSETS OFPRODUCT OFRELATIONAL STRUCTURES

Next we state a number of propositions:

(24) LetS, T be antisymmetric relational structures with g.l.b.’s andX, Y be subsets of[:S, T :].
Thenπ1(XuY) = π1(X)uπ1(Y) andπ2(XuY) = π2(X)uπ2(Y).

(25) LetS, T be antisymmetric relational structures with l.u.b.’s andX, Y be subsets of[:S, T :].
Thenπ1(XtY) = π1(X)tπ1(Y) andπ2(XtY) = π2(X)tπ2(Y).

(26) For all relational structuresS, T and for every subsetX of [:S, T :] holds↓X ⊆ [:↓π1(X),
↓π2(X) :].

(27) For all relational structuresS, T and for every subsetX of S and for every subsetY of T
holds[:↓X, ↓Y :] = ↓[:X, Y :].

(28) For all relational structuresS, T and for every subsetX of [:S, T :] holdsπ1(↓X)⊆ ↓π1(X)
andπ2(↓X)⊆ ↓π2(X).

(29) LetSbe a relational structure,T be a reflexive relational structure, andX be a subset of[:S,
T :]. Thenπ1(↓X) = ↓π1(X).

(30) LetSbe a reflexive relational structure,T be a relational structure, andX be a subset of[:S,
T :]. Thenπ2(↓X) = ↓π2(X).

(31) For all relational structuresS, T and for every subsetX of [:S, T :] holds↑X ⊆ [:↑π1(X),
↑π2(X) :].

(32) For all relational structuresS, T and for every subsetX of S and for every subsetY of T
holds[:↑X, ↑Y :] = ↑[:X, Y :].

(33) For all relational structuresS, T and for every subsetX of [:S, T :] holdsπ1(↑X)⊆ ↑π1(X)
andπ2(↑X)⊆ ↑π2(X).

(34) LetSbe a relational structure,T be a reflexive relational structure, andX be a subset of[:S,
T :]. Thenπ1(↑X) = ↑π1(X).

(35) LetSbe a reflexive relational structure,T be a relational structure, andX be a subset of[:S,
T :]. Thenπ2(↑X) = ↑π2(X).

(36) LetS, T be non empty relational structures,sbe an element ofS, andt be an element ofT.
Then[:↓s, ↓t :] = ↓〈〈s, t〉〉.

(37) For all non empty relational structuresS, T and for every elementx of [:S, T :] holds
π1(↓x)⊆ ↓(x1) andπ2(↓x)⊆ ↓(x2).

(38) LetSbe a non empty relational structure,T be a non empty reflexive relational structure,
andx be an element of[:S, T :]. Thenπ1(↓x) = ↓(x1).

(39) LetSbe a non empty reflexive relational structure,T be a non empty relational structure,
andx be an element of[:S, T :]. Thenπ2(↓x) = ↓(x2).

(40) LetS, T be non empty relational structures,sbe an element ofS, andt be an element ofT.
Then[:↑s, ↑t :] = ↑〈〈s, t〉〉.

(41) For all non empty relational structuresS, T and for every elementx of [:S, T :] holds
π1(↑x)⊆ ↑(x1) andπ2(↑x)⊆ ↑(x2).

(42) LetSbe a non empty relational structure,T be a non empty reflexive relational structure,
andx be an element of[:S, T :]. Thenπ1(↑x) = ↑(x1).
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(43) LetSbe a non empty reflexive relational structure,T be a non empty relational structure,
andx be an element of[:S, T :]. Thenπ2(↑x) = ↑(x2).

(44) For all up-complete non empty posetsS, T and for every elements of S and for every
elementt of T holds[:↓↓s, ↓↓t :] = ↓↓〈〈s, t〉〉.

(45) LetS, T be antisymmetric up-complete non empty reflexive relational structures andx be
an element of[:S, T :]. Thenπ1(↓↓x)⊆ ↓↓(x1) andπ2(↓↓x)⊆ ↓↓(x2).

(46) LetSbe an up-complete non empty poset,T be an up-complete lower-bounded non empty
poset, andx be an element of[:S, T :]. Thenπ1(↓↓x) = ↓↓(x1).

(47) LetSbe an up-complete lower-bounded non empty poset,T be an up-complete non empty
poset, andx be an element of[:S, T :]. Thenπ2(↓↓x) = ↓↓(x2).

(48) For all up-complete non empty posetsS, T and for every elements of S and for every
elementt of T holds[:↑↑s, ↑↑t :] = ↑↑〈〈s, t〉〉.

(49) LetS, T be antisymmetric up-complete non empty reflexive relational structures andx be
an element of[:S, T :]. Thenπ1(↑↑x)⊆ ↑↑(x1) andπ2(↑↑x)⊆ ↑↑(x2).

(50) For all up-complete non empty posetsS, T and for every elements of S and for every
elementt of T holds[:compactbelow(s), compactbelow(t) :] = compactbelow(〈〈s, t〉〉).

(51) Let S, T be antisymmetric up-complete non empty reflexive relational structures
and x be an element of[:S, T :]. Then π1(compactbelow(x)) ⊆ compactbelow(x1) and
π2(compactbelow(x))⊆ compactbelow(x2).

(52) LetSbe an up-complete non empty poset,T be an up-complete lower-bounded non empty
poset, andx be an element of[:S, T :]. Thenπ1(compactbelow(x)) = compactbelow(x1).

(53) LetSbe an up-complete lower-bounded non empty poset,T be an up-complete non empty
poset, andx be an element of[:S, T :]. Thenπ2(compactbelow(x)) = compactbelow(x2).

Let Sbe a non empty reflexive relational structure. Note that every subset ofSwhich is empty
is also open.

One can prove the following propositions:

(54) LetS, T be antisymmetric up-complete non empty reflexive relational structures andX be
a subset of[:S, T :]. If X is open, thenπ1(X) is open andπ2(X) is open.

(55) LetS, T be up-complete non empty posets,X be a subset ofS, andY be a subset ofT. If X
is open andY is open, then[:X, Y :] is open.

(56) LetS, T be antisymmetric up-complete non empty reflexive relational structures andX be
a subset of[:S, T :]. If X is inaccessible, thenπ1(X) is inaccessible andπ2(X) is inaccessible.

(57) LetS, T be antisymmetric up-complete non empty reflexive relational structures,X be an
upper subset ofS, andY be an upper subset ofT. If X is inaccessible andY is inaccessible,
then[:X, Y :] is inaccessible.

(58) Let S, T be antisymmetric up-complete non empty reflexive relational structures,X be a
subset ofS, andY be a subset ofT such that[:X, Y :] is directly closed. Then

(i) if Y 6= /0, thenX is directly closed, and

(ii) if X 6= /0, thenY is directly closed.

(59) Let S, T be antisymmetric up-complete non empty reflexive relational structures,X be a
subset ofS, andY be a subset ofT. SupposeX is directly closed andY is directly closed.
Then[:X, Y :] is directly closed.
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(60) LetS, T be antisymmetric up-complete non empty reflexive relational structures andX be
a subset of[:S, T :]. If X has the property (S), thenπ1(X) has the property (S) andπ2(X) has
the property (S).

(61) LetS, T be up-complete non empty posets,X be a subset ofS, andY be a subset ofT. If X
has the property (S) andY has the property (S), then[:X, Y :] has the property (S).

3. ON THE PRODUCTS OFRELATIONAL STRUCTURES

We now state the proposition

(62) Let S, T be non empty reflexive relational structures. Suppose the relational structure of
S= the relational structure ofT andS is inf-complete. ThenT is inf-complete.

Let S be an inf-complete non empty reflexive relational structure. Observe that the relational
structure ofS is inf-complete.

Let S, T be inf-complete non empty reflexive relational structures. Observe that[:S, T :] is inf-
complete.

The following proposition is true

(63) LetS, T be non empty reflexive relational structures. If[:S, T :] is inf-complete, thenS is
inf-complete andT is inf-complete.

Let S, T be complemented bounded antisymmetric non empty relational structures with g.l.b.’s
and l.u.b.’s. One can verify that[:S, T :] is complemented.

We now state the proposition

(64) LetS, T be bounded antisymmetric relational structures with g.l.b.’s and l.u.b.’s. If[:S, T :]
is complemented, thenS is complemented andT is complemented.

Let S, T be distributive antisymmetric non empty relational structures with g.l.b.’s and l.u.b.’s.
Note that[:S, T :] is distributive.

The following propositions are true:

(65) LetSbe an antisymmetric relational structure with g.l.b.’s and l.u.b.’s andT be a reflexive
antisymmetric relational structure with g.l.b.’s and l.u.b.’s. If[:S, T :] is distributive, thenS is
distributive.

(66) LetSbe a reflexive antisymmetric relational structure with g.l.b.’s and l.u.b.’s andT be an
antisymmetric relational structure with g.l.b.’s and l.u.b.’s. If[:S, T :] is distributive, thenT is
distributive.

Let S, T be meet-continuous semilattices. Note that[:S, T :] satisfies MC.
Next we state the proposition

(67) For all semilatticesS, T such that[:S, T :] is meet-continuous holdsS is meet-continuous
andT is meet-continuous.

Let S, T be up-complete inf-complete non empty posets satisfying axiom of approximation.
Note that[:S, T :] satisfies axiom of approximation.

Let S, T be continuous inf-complete non empty posets. Observe that[:S, T :] is continuous.
One can prove the following proposition

(68) LetS, T be up-complete lower-bounded non empty posets. If[:S, T :] is continuous, thenS
is continuous andT is continuous.

Let S, T be up-complete lower-bounded sup-semilattices satisfying axiom K. One can verify
that[:S, T :] satisfies axiom K.

Let S, T be complete algebraic lower-bounded sup-semilattices. Note that[:S, T :] is algebraic.
The following proposition is true
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(69) For all lower-bounded non empty posetsS, T such that[:S, T :] is algebraic holdsS is
algebraic andT is algebraic.

Let S, T be arithmetic lower-bounded lattices. One can check that[:S, T :] is arithmetic.
One can prove the following proposition

(70) For all lower-bounded latticesS, T such that[:S, T :] is arithmetic holdsS is arithmetic and
T is arithmetic.
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