Introduction to Arithmetic of Real Numbers

Library Committee Association of Mizar Users

MML Identifier: XREAL_0.

WWW: http://mizar.org/JFM/EMM/xreal_0.html

The articles [4], [3], [7], [1], [2], [5], and [6] provide the notation and terminology for this paper.

1. MAIN DEFINITIONS

Let r be a number. We say that r is real if and only if:

(Def. 1) $r \in \mathbb{R}$.

Let us mention that every number which is natural is also real and every number which is real is also complex.

Let us note that there exists a number which is real.

Let x, y be real numbers. The predicate $x \le y$ is defined by:

- (Def. 2)(i) There exist elements x', y' of \mathbb{R}_+ such that x = x' and y = y' and $x' \le y'$ if $x \in \mathbb{R}_+$ and $y \in \mathbb{R}_+$,
 - (ii) there exist elements x', y' of \mathbb{R}_+ such that $x = \langle 0, x' \rangle$ and $y = \langle 0, y' \rangle$ and $y' \leq x'$ if $x \in [:\{0\}, \mathbb{R}_+:]$ and $y \in [:\{0\}, \mathbb{R}_+:]$,
 - (iii) $y \in \mathbb{R}_+$ and $x \in [:\{0\}, \mathbb{R}_+:]$, otherwise.

Let us notice that the predicate $x \le y$ is reflexive and connected. We introduce $y \ge x$ as a synonym of $x \le y$. We introduce y < x and x > y as antonyms of $x \le y$.

Let *x* be a real number. We say that *x* is positive if and only if:

(Def. 3) x > 0.

We say that *x* is negative if and only if:

(Def. 4) x < 0.

Let x be a real number. One can verify that -x is real and x^{-1} is real. Let y be a real number. Observe that x + y is real and $x \cdot y$ is real.

Let x, y be real numbers. Note that x - y is real and $\frac{x}{y}$ is real.

2. Clusters

One can check the following observations:

- * every real number which is positive is also non negative and non zero,
- * every real number which is non negative and non zero is also positive,

- * every real number which is negative is also non positive and non zero,
- * every real number which is non positive and non zero is also negative,
- * every real number which is zero is also non negative and non positive, and
- * every real number which is non negative and non positive is also zero.

One can check the following observations:

- * there exists a real number which is positive,
- * there exists a real number which is negative, and
- * there exists a real number which is zero.

Let r, s be non negative real numbers. Note that r + s is non negative.

Let r, s be non positive real numbers. Note that r + s is non positive.

Let r be a positive real number and let s be a non negative real number. One can verify that r+s is positive and s+r is positive.

Let r be a negative real number and let s be a non positive real number. Note that r+s is negative and s+r is negative.

Let r be a non positive real number. Observe that -r is non negative.

Let r be a non negative real number. One can verify that -r is non positive.

Let r be a non negative real number and let s be a non positive real number. One can check that r-s is non negative and s-r is non positive.

Let r be a positive real number and let s be a non positive real number. Note that r-s is positive and s-r is negative.

Let r be a negative real number and let s be a non negative real number. Note that r-s is negative and s-r is positive.

Let r be a non positive real number and let s be a non negative real number. Observe that $r \cdot s$ is non positive and $s \cdot r$ is non positive.

Let r, s be non positive real numbers. One can check that $r \cdot s$ is non negative.

Let r, s be non negative real numbers. Note that $r \cdot s$ is non negative.

Let r be a non positive real number. Note that r^{-1} is non positive.

Let r be a non negative real number. One can check that r^{-1} is non negative.

Let r be a non negative real number and let s be a non positive real number. Note that $\frac{r}{s}$ is non positive and $\frac{s}{r}$ is non positive.

Let r, s be non negative real numbers. One can verify that $\frac{r}{s}$ is non negative.

Let r, s be non positive real numbers. Note that $\frac{r}{s}$ is non negative.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/ordinall.html.
- [2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [4] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Andrzej Trybulec. Non negative real numbers. Part I. Journal of Formalized Mathematics, Addenda, 1998. http://mizar.org/JFM/Addenda/arytm_2.html.
- [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.

 $[7] \begin{tabular}{ll} Zinaida\ Trybulec.\ Properties\ of\ subsets.\ {\it Journal\ of\ Formalized\ Mathematics},1,1989.\ \verb|http://mizar.org/JFM/Vol1/subset_1.html|.\\ \end{tabular}$

Received February 11, 2003

Published January 2, 2004