Complex Numbers - Basic Definitions

Library Committee
Association of Mizar Users

Abstract

MML Identifier: XCMP LX_0. WWW: http://mizar.org/JFM/EMM/xcmplx_0.html

The articles [8], [10], [5], [3], [4], [6], [1], [2], [9], and [7] provide the notation and terminology for this paper.

The functor i is defined by:
(Def. 1) $\quad i=[0 \longmapsto 0,1 \longmapsto 1]$.
Let c be a number. We say that c is complex if and only if:
(Def. 2) $\quad c \in \mathbb{C}$.
Let us note that i is complex.
Let us mention that there exists a number which is complex.
Let x be a complex number. Let us observe that x is empty if and only if:
(Def. 3) $x=0$.
We introduce x is zero as a synonym of x is empty.
Let x, y be complex numbers. The functor $x+y$ is defined as follows:
(Def. 4) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathbb{R} such that $x=x_{1}+x_{2} i$ and $y=y_{1}+y_{2} i$ and $x+y=$ $+\left(x_{1}, y_{1}\right)++\left(x_{2}, y_{2}\right) i$.

Let us note that the functor $x+y$ is commutative. The functor $x \cdot y$ is defined by:
(Def. 5) There exist elements $x_{1}, x_{2}, y_{1}, y_{2}$ of \mathbb{R} such that $x=x_{1}+x_{2} i$ and $y=y_{1}+y_{2} i$ and $x \cdot y=$ $+\left(\cdot\left(x_{1}, y_{1}\right),{ }^{\mathrm{op}} \cdot\left(x_{2}, y_{2}\right)\right)++\left(\cdot\left(x_{1}, y_{2}\right), \cdot\left(x_{2}, y_{1}\right)\right) i$.

Let us observe that the functor $x \cdot y$ is commutative.
Let z, z^{\prime} be complex numbers. Observe that $z+z^{\prime}$ is complex and $z \cdot z^{\prime}$ is complex.
Let z be a complex number. The functor $-z$ yields a complex number and is defined as follows:
(Def. 6) $z+-z=0$.
Let us notice that the functor $-z$ is involutive. The functor z^{-1} yielding a complex number is defined by:
(Def. 7)(i) $z \cdot z^{-1}=1$ if $z \neq 0$,
(ii) $z^{-1}=0$, otherwise.

Let us observe that the functor z^{-1} is involutive.
Let x, y be complex numbers. The functor $x-y$ is defined by:
(Def. 8) $x-y=x+-y$.
The functor $\frac{x}{y}$ is defined by:
(Def. 9) $\quad \frac{x}{y}=x \cdot y^{-1}$.
Let x, y be complex numbers. Note that $x-y$ is complex and $\frac{x}{y}$ is complex.
One can verify that there exists a complex number which is non zero.
Let x be a non zero complex number. One can verify that $-x$ is non zero and x^{-1} is non zero. Let y be a non zero complex number. One can verify that $x \cdot y$ is non zero.

Let x, y be non zero complex numbers. Observe that $\frac{x}{y}$ is non zero.
Let us observe that every element of \mathbb{R} is complex.
Let us observe that every number which is natural is also complex.

References

[1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll ordinal2.html
[3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[4] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ [2.html]
[5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ Zfmisc_1.html
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Journal of Formalized Mathematics, 2, 1990.http://mizar.org/JFM/Vol2/funct_4.html
[7] Library Committee. Introduction to arithmetic. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/ Addenda/arytm_0.html
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[9] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/ numbers.html
[10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html

Received March 7, 2003
Published January 2, 2004

