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The articles([8],[10],[[5],1[3],04],[6], 1], [2], [9], and/[7] provide the notation and terminology for
this paper.
The functori is defined by:

(Def.1) i=[0—0,1+—1].
Let c be a number. We say thais complex if and only if:
(Def.2) ceC.

Let us note thaitis complex.
Let us mention that there exists a number which is complex.
Letx be a complex number. Let us observe thi empty if and only if:

(Def.3) x=0.

We introducex is zero as a synonym afis empty.
Letx, y be complex numbers. The functosy is defined as follows:

(Def. 4) There exist elemenig, Xz, y1, ¥2 of R such thai = x1 + x2i andy = y1 + y»i andx+y =
(X1, Y1) + +(X2, y2)i.

Let us note that the functor+ y is commutative. The functoc-y is defined by:

(Def. 5) There exist elemenig, X2, y1, Y2 of R such thatx = x; + xoi andy = y1 + y»i andx-y =
+(- (X1, Y1), %P (X2, ¥2)) + +(- (X1, Y2), - (X2, y1))i.

Let us observe that the functery is commutative.
Letz, Z be complex numbers. Observe that Z is complex and- Z is complex.
Let zbe a complex number. The functer yields a complex number and is defined as follows:

(Def.6) z+-—-z=0.

Let us notice that the functerzis involutive. The functoz* yielding a complex number is defined
by:

(Def. 7)(i) z-z1=1ifz#0,
(i) z1=0, otherwise.

Let us observe that the functar? is involutive.
Letx, y be complex numbers. The functory is defined by:
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(Def. 8) x—y=x+-V.

The functor’—; is defined by:

(Def.9) = x-y L.

Letx, y be complex numbers. Note thaty is complex anc{/f is complex.
One can verify that there exists a complex number which is non zero.
Let x be a non zero complex number. One can verify thatis non zero and! is non zero.

Lety be a non zero complex number. One can verify thatis non zero.
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Letx, y be non zero complex numbers. Observe gfm;t non zero.
Let us observe that every elementifs complex.
Let us observe that every number which is natural is also complex.
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