Boolean Properties of Sets — Definitions

Library Committee Association of Mizar Users

MML Identifier: XBOOLE_0.

WWW: http://mizar.org/JFM/EMM/xboole_0.html

The article [1] provides the notation and terminology for this paper.

In this paper X, Y, Z, x are sets.

The scheme *Separation* deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a set *X* such that for every set *x* holds $x \in X$ iff $x \in \mathcal{A}$ and $\mathcal{P}[x]$

for all values of the parameters.

The set 0 is defined by:

(Def. 1) It is not true that there exists a set x such that $x \in \emptyset$.

Let X, Y be sets. The functor $X \cup Y$ yields a set and is defined by:

(Def. 2)
$$x \in X \cup Y \text{ iff } x \in X \text{ or } x \in Y.$$

Let us note that the functor $X \cup Y$ is commutative and idempotent. The functor $X \cap Y$ yields a set and is defined by:

(Def. 3)
$$x \in X \cap Y \text{ iff } x \in X \text{ and } x \in Y.$$

Let us observe that the functor $X \cap Y$ is commutative and idempotent. The functor $X \setminus Y$ yields a set and is defined as follows:

(Def. 4)
$$x \in X \setminus Y \text{ iff } x \in X \text{ and } x \notin Y.$$

Let *X* be a set. We say that *X* is empty if and only if:

(Def. 5)
$$X = \emptyset$$
.

Let *Y* be a set. The functor X = Y yielding a set is defined as follows:

(Def. 6)
$$X \dot{-} Y = (X \setminus Y) \cup (Y \setminus X)$$
.

Let us notice that the functor X = Y is commutative. We say that X misses Y if and only if:

(Def. 7)
$$X \cap Y = \emptyset$$
.

Let us note that the predicate X misses Y is symmetric. We introduce X meets Y as an antonym of X misses Y. The predicate $X \subset Y$ is defined as follows:

(Def. 8)
$$X \subseteq Y$$
 and $X \neq Y$.

Let us note that the predicate $X \subset Y$ is irreflexive. We say that X and Y are \subseteq -comparable if and only if:

(Def. 9) $X \subseteq Y$ or $Y \subseteq X$.

Let us notice that the predicate X and Y are \subseteq -comparable is reflexive and symmetric. Let us observe that X = Y if and only if:

(Def. 10) $X \subseteq Y$ and $Y \subseteq X$.

The following propositions are true:

- (1) $x \in X Y \text{ iff } x \in X \text{ iff } x \notin Y.$
- (2) If for every x holds $x \notin X$ iff $x \in Y$ iff $x \in Z$, then X = Y Z.

One can verify the following observations:

- * 0 is empty,
- * there exists a set which is empty, and
- * there exists a set which is non empty.

Let *D* be a non empty set and let *X* be a set. Observe that $D \cup X$ is non empty and $X \cup D$ is non empty.

One can prove the following three propositions:

- (3) X meets Y iff there exists x such that $x \in X$ and $x \in Y$.
- (4) X meets Y iff there exists x such that $x \in X \cap Y$.
- (5) If *X* misses *Y* and $x \in X \cup Y$, then $x \in X$ and $x \notin Y$ or $x \in Y$ and $x \notin X$.

Now we present two schemes. The scheme *Extensionality* deals with sets \mathcal{A} , \mathcal{B} and a unary predicate \mathcal{P} , and states that:

$$\mathcal{A} = \mathcal{B}$$

provided the following conditions are satisfied:

- For every x holds $x \in \mathcal{A}$ iff $\mathcal{P}[x]$, and
- For every x holds $x \in \mathcal{B}$ iff $\mathcal{P}[x]$.

The scheme SetEq concerns a unary predicate \mathcal{P} , and states that:

Let X_1 , X_2 be sets. Suppose for every set x holds $x \in X_1$ iff $\mathcal{P}[x]$ and for every set x holds $x \in X_2$ iff $\mathcal{P}[x]$. Then $X_1 = X_2$

for all values of the parameters.

REFERENCES

[1] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.

Received April 6, 2002

Published January 2, 2004