Zermelo's Theorem¹

Bogdan Nowak Sławomir Białecki Łódź University Łódź University

Summary. The article contains direct proof of Zermelo's theorem about the existence of a well ordering for any set and the lemma the proof depends on.

MML Identifier: WELLSET1.

WWW: http://mizar.org/JFM/Vol1/wellset1.html

The articles [4], [3], [5], [2], and [1] provide the notation and terminology for this paper.

We adopt the following rules: x, y, B, D, N, X, Y denote sets, R, W denote binary relations, and F denotes a function.

We now state two propositions:

- (1) $x \in \text{field } R \text{ iff there exists } y \text{ such that } \langle x, y \rangle \in R \text{ or } \langle y, x \rangle \in R.$
- $(3)^1$ If $X \neq \emptyset$ and $Y \neq \emptyset$ and W = [:X, Y:], then field $W = X \cup Y$.

The scheme *R Separation* deals with a set \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists B such that for every binary relation R holds $R \in B$ iff $R \in \mathcal{A}$ and $\mathcal{P}[R]$ for all values of the parameters.

One can prove the following four propositions:

- (6)² For all x, y, W such that $x \in \text{field } W$ and $y \in \text{field } W$ and W is well-ordering holds if $x \notin W\text{-Seg}(y)$, then $\langle y, x \rangle \in W$.
- (7) For all x, y, W such that $x \in \text{field } W$ and $y \in \text{field } W$ and W is well-ordering holds if $x \in W\text{-Seg}(y)$, then $\langle y, x \rangle \notin W$.
- (8) Let given F, D. Suppose that for every X such that $X \in D$ holds $F(X) \notin X$ and $F(X) \in \bigcup D$. Then there exists R such that field $R \subseteq \bigcup D$ and R is well-ordering and field $R \notin D$ and for every Y such that $Y \in A$ holds $Y \in A$ holds $Y \in A$ and $Y \in A$ holds $Y \in A$ and $Y \in A$ holds $Y \in A$
- (9) For every N there exists R such that R is well-ordering and field R = N.

REFERENCES

- Grzegorz Bancerek. The well ordering relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/wellordl.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html.

¹Supported by RPBP.III-24.C9.

¹ The proposition (2) has been removed.

² The propositions (4) and (5) have been removed.

- [4] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [5] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.

Received October 27, 1989

Published January 2, 2004