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Summary. The article is continuation of [2] andl[1], and the goal of it is show that
Zermelo theorem (every set has a relation which well orders it - proposition (26)) and axiom
of choice (for every non-empty family of non-empty and separate sets there is set which has
exactly one common element with arbitrary family member - proposition (27)) are true. Itis
result of the Tarski’'s axiom A introduced inl[5] and repeated_in [6]. Inclusion as a settheo-
retical binary relation is introduced, the correspondence of well ordering relations to ordinal
numbers is shown, and basic properties of equinumerosity are presented. Some facts are based
on [4].

MML Identifier: WELLORD2.

WWW: http://mizar.org/JFM/Voll/wellord2.html

The articlesl[6],[[7],8],[[3],[2], and[1] provide the notation and terminology for this paper.
For simplicity, we adopt the following rulest, Y, Z denote setsg, x denote setsR denotes a
binary relation, and\, B denote ordinal numbers.
Let us consideX. The functor=y yielding a binary relation is defined as follows:

(Def. 1) field=x) = X and for allY, Z such thal € X andZ € X holds(Y, Z) € Sx iff Y C Z.

One can prove the following propositions:

@] <x is reflexive.

(3) Sx is transitive.

(4) <ais connected.

(5) <x is antisymmetric.

(6) <ais well founded.

(7) <ais well-ordering.

(8) IfY CX,thenSx |2Y =Sy.

(9) ForallA, X such thatX C A holds<y is well-ordering.
(10) If Ae B, thenA==g-SedA).
(11) If <5 and<p are isomorphic, theA = B.
(12) For allX, R, A, B such thaiR and< are isomorphic an® and<g are isomorphic holds

A=B.

1 The proposition (1) has been removed.
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(13) LetgivenR. Supposer is well-ordering and for everg such that < fieldR there exists
A such thaR|?> R-Seda) and<, are isomorphic. Then there exigissuch thaR and<, are

isomorphic.

(14) For evenR such thaR is well-ordering there exist& such thaR and< , are isomorphic.

Let us consideR. Let us assume th&is well-ordering. The functoryields an ordinal number
and is defined as follows:

(Def. 2) Rand&g are isomorphic.
Let us consideA, R. We say tha# is an order type oR if and only if:
(Def.3) A=R
One can prove the following proposition
(A7 1f X C A thenSx CA

In the sequef denotes a function.
Let us considekK, Y. Let us observe that ~ Y if and only if:

(Def. 4) There exist$ such thatf is one-to-one and doiin= X and rngf =Y.

Let us notice that the predicaXex Y is reflexive and symmetric.
We now state three propositions:

(22F] 1f X ~Y andY ~ Z, thenX ~ Z.
25} 1f Rwell ordersX, then fieldR|?X) = X andR|?X is well-ordering.

(26) For everyX there existR such thaR well ordersX.

In the sequeM denotes a non empty set.
Next we state two propositions:

(27) Suppose for ever} such thatX € M holdsX = 0 and for allX, Y such thatX € M and
Y € M andX #Y holdsX missesy. Then there exists a s€{ such that for everx such that
X € M there existx such thaC; N X = {x}.

(28) If for every X such thatX € M holds X # 0, then there exists a functiof; such that
domC; = M and for everyX such thaiX € M holdsC;(X) € X.
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3 The propositions (18)—(21) have been removed.
4 The propositions (23) and (24) have been removed.
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