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Summary. The article is continuation of [2] and [1], and the goal of it is show that
Zermelo theorem (every set has a relation which well orders it - proposition (26)) and axiom
of choice (for every non-empty family of non-empty and separate sets there is set which has
exactly one common element with arbitrary family member - proposition (27)) are true. It is
result of the Tarski’s axiom A introduced in [5] and repeated in [6]. Inclusion as a settheo-
retical binary relation is introduced, the correspondence of well ordering relations to ordinal
numbers is shown, and basic properties of equinumerosity are presented. Some facts are based
on [4].

MML Identifier: WELLORD2.
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The articles [6], [7], [8], [3], [2], and [1] provide the notation and terminology for this paper.
For simplicity, we adopt the following rules:X, Y, Z denote sets,a, x denote sets,R denotes a

binary relation, andA, B denote ordinal numbers.
Let us considerX. The functor⊆X yielding a binary relation is defined as follows:

(Def. 1) field(⊆X) = X and for allY, Z such thatY ∈ X andZ ∈ X holds〈〈Y, Z〉〉 ∈ ⊆
X iff Y ⊆ Z.

One can prove the following propositions:

(2)1 ⊆
X is reflexive.

(3) ⊆
X is transitive.

(4) ⊆
A is connected.

(5) ⊆
X is antisymmetric.

(6) ⊆
A is well founded.

(7) ⊆
A is well-ordering.

(8) If Y ⊆ X, then⊆X |2Y = ⊆
Y.

(9) For allA, X such thatX ⊆ A holds⊆X is well-ordering.

(10) If A∈ B, thenA = ⊆
B-Seg(A).

(11) If ⊆A and⊆B are isomorphic, thenA = B.

(12) For allX, R, A, B such thatR and⊆
A are isomorphic andR and⊆

B are isomorphic holds
A = B.

1 The proposition (1) has been removed.
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(13) Let givenR. SupposeR is well-ordering and for everya such thata∈ fieldR there exists
A such thatR|2 R-Seg(a) and⊆A are isomorphic. Then there existsA such thatR and⊆A are
isomorphic.

(14) For everyRsuch thatR is well-ordering there existsA such thatRand⊆A are isomorphic.

Let us considerR. Let us assume thatR is well-ordering. The functorRyields an ordinal number
and is defined as follows:

(Def. 2) Rand⊆R are isomorphic.

Let us considerA, R. We say thatA is an order type ofR if and only if:

(Def. 3) A = R.

One can prove the following proposition

(17)2 If X ⊆ A, then⊆X ⊆ A.

In the sequelf denotes a function.
Let us considerX, Y. Let us observe thatX ≈Y if and only if:

(Def. 4) There existsf such thatf is one-to-one and domf = X and rngf = Y.

Let us notice that the predicateX ≈Y is reflexive and symmetric.
We now state three propositions:

(22)3 If X ≈Y andY ≈ Z, thenX ≈ Z.

(25)4 If Rwell ordersX, then field(R|2 X) = X andR|2 X is well-ordering.

(26) For everyX there existsRsuch thatRwell ordersX.

In the sequelM denotes a non empty set.
Next we state two propositions:

(27) Suppose for everyX such thatX ∈ M holdsX 6= /0 and for allX, Y such thatX ∈ M and
Y ∈M andX 6= Y holdsX missesY. Then there exists a setC1 such that for everyX such that
X ∈ M there existsx such thatC1∩X = {x}.

(28) If for every X such thatX ∈ M holds X 6= /0, then there exists a functionC1 such that
domC1 = M and for everyX such thatX ∈ M holdsC1(X) ∈ X.
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