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Summary. The basic purpose of this article is to prove the important Weierstrass’ the-
orem which states that a real valued continuous functionf on a topological spaceT assumes
a maximum and a minimum value on the compact subsetS of T, i.e., there exist pointsx1,
x2 of T being elements ofS, such thatf (x1) and f (x2) are the supremum and the infimum,
respectively, off (S), which is the image ofSunder the functionf . The paper is divided into
three parts. In the first part, we prove some auxiliary theorems concerning properties of balls
in metric spaces and define special families of subsets of topological spaces. These concepts
are used in the next part of the paper which contains the essential part of the article, namely the
formalization of the proof of Weierstrass’ theorem. Here, we also prove a theorem concerning
the compactness of images of compact sets ofT under a continuous function. The final part
of this work is developed for the purpose of defining some measures of the distance between
compact subsets of topological metric spaces. Some simple theorems about these measures
are also proved.

MML Identifier: WEIERSTR.
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The articles [18], [20], [21], [5], [6], [2], [19], [12], [1], [11], [13], [7], [14], [16], [3], [9], [15], [8],
[17], [10], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following three propositions are true:

(1) LetM be a metric space,x1, x2 be points ofM, andr1, r2 be real numbers. Then there exists
a pointx of M and there exists a real numberr such that Ball(x1, r1)∪Ball(x2, r2)⊆Ball(x, r).

(2) Let M be a metric space,n be a natural number,F be a family of subsets ofM, and p
be a finite sequence. SupposeF is finite and a family of balls and rngp = F and domp =
Seg(n+1). Then there exists a familyG of subsets ofM such that

(i) G is finite and a family of balls, and

(ii) there exists a finite sequenceq such that rngq = G and domq = Segn and there exists a
pointx of M and there exists a real numberr such that

⋃
F ⊆

⋃
G∪Ball(x, r).

(3) Let M be a metric space andF be a family of subsets ofM. SupposeF is finite and a
family of balls. Then there exists a pointx of M and there exists a real numberr such that⋃

F ⊆ Ball(x, r).

Let T, Sbe non empty topological spaces, letf be a map fromT into S, and letG be a family
of subsets ofS. The functorf−1(G) yields a family of subsets ofT and is defined by:
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(Def. 1) For every subsetA of T holdsA∈ f−1(G) iff there exists a subsetB of Ssuch thatB∈ G
andA = f−1(B).

We now state two propositions:

(4) Let T, Sbe non empty topological spaces,f be a map fromT into S, andA, B be families
of subsets ofS. If A⊆ B, then f−1(A)⊆ f−1(B).

(5) Let T, Sbe non empty topological spaces,f be a map fromT into S, andB be a family of
subsets ofS. If f is continuous andB is open, thenf−1(B) is open.

Let T, Sbe non empty topological spaces, letf be a map fromT into S, and letG be a family
of subsets ofT. The functorf ◦G yielding a family of subsets ofS is defined by:

(Def. 2) For every subsetA of SholdsA∈ f ◦G iff there exists a subsetB of T such thatB∈G and
A = f ◦B.

We now state several propositions:

(6) Let T, Sbe non empty topological spaces,f be a map fromT into S, andA, B be families
of subsets ofT. If A⊆ B, then f ◦A⊆ f ◦B.

(7) Let T, S be non empty topological spaces,f be a map fromT into S, B be a family of
subsets ofS, andP be a subset ofS. If f ◦ f−1(B) is a cover ofP, thenB is a cover ofP.

(8) Let T, S be non empty topological spaces,f be a map fromT into S, B be a family of
subsets ofT, andP be a subset ofT. If B is a cover ofP, then f−1( f ◦B) is a cover ofP.

(9) Let T, Sbe non empty topological spaces,f be a map fromT into S, andQ be a family of
subsets ofS. Then

⋃
( f ◦ f−1(Q))⊆

⋃
Q.

(10) LetT, Sbe non empty topological spaces,f be a map fromT into S, andP be a family of
subsets ofT. Then

⋃
P⊆

⋃
( f−1( f ◦P)).

(11) LetT, Sbe non empty topological spaces,f be a map fromT into S, andQ be a family of
subsets ofS. If Q is finite, thenf−1(Q) is finite.

(12) LetT, Sbe non empty topological spaces,f be a map fromT into S, andP be a family of
subsets ofT. If P is finite, thenf ◦P is finite.

(13) LetT, Sbe non empty topological spaces,f be a map fromT into S, P be a subset ofT,
andF be a family of subsets ofS. Given a familyB of subsets ofT such thatB⊆ f−1(F) and
B is a cover ofP and finite. Then there exists a familyG of subsets ofSsuch thatG⊆ F and
G is a cover off ◦P and finite.

2. THE WEIERSTRASS’ T HEOREM

One can prove the following propositions:

(14) LetT, Sbe non empty topological spaces,f be a map fromT into S, andP be a subset of
T. If P is compact andf is continuous, thenf ◦P is compact.

(15) LetT be a non empty topological space,f be a map fromT into R1, andP be a subset of
T. If P is compact andf is continuous, thenf ◦P is compact.

(16) Let f be a map fromE2
T into R1 and P be a subset ofE2

T. If P is compact andf is
continuous, thenf ◦P is compact.

Let P be a subset ofR1. The functorΩP yielding a subset ofR is defined as follows:

(Def. 3) ΩP = P.
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One can prove the following three propositions:

(17) For every subsetP of R1 such thatP is compact holdsΩP is bounded.

(18) For every subsetP of R1 such thatP is compact holdsΩP is closed.

(19) For every subsetP of R1 such thatP is compact holdsΩP is compact.

Let P be a subset ofR1. The functor supP yielding a real number is defined as follows:

(Def. 4) supP = sup(ΩP).

The functor infP yielding a real number is defined as follows:

(Def. 5) infP = inf(ΩP).

Next we state two propositions:

(20) LetT be a non empty topological space,f be a map fromT into R1, andP be a subset of
T. SupposeP 6= /0 andP is compact andf is continuous. Then there exists a pointx1 of T
such thatx1 ∈ P and f (x1) = sup( f ◦P).

(21) LetT be a non empty topological space,f be a map fromT into R1, andP be a subset of
T. SupposeP 6= /0 andP is compact andf is continuous. Then there exists a pointx2 of T
such thatx2 ∈ P and f (x2) = inf( f ◦P).

3. THE MEASURE OF THEDISTANCE BETWEEN COMPACT SETS

Let M be a non empty metric space and letx be a point ofM. The functor dist(x) yields a map from
Mtop into R1 and is defined by:

(Def. 6) For every pointy of M holds(dist(x))(y) = ρ(y,x).

Next we state three propositions:

(22) For every non empty metric spaceM and for every pointx of M holds dist(x) is continuous.

(23) Let M be a non empty metric space,x be a point ofM, andP be a subset ofMtop. Sup-
poseP 6= /0 and P is compact. Then there exists a pointx1 of Mtop such thatx1 ∈ P and
(dist(x))(x1) = sup((dist(x))◦P).

(24) Let M be a non empty metric space,x be a point ofM, andP be a subset ofMtop. Sup-
poseP 6= /0 and P is compact. Then there exists a pointx2 of Mtop such thatx2 ∈ P and
(dist(x))(x2) = inf((dist(x))◦P).

Let M be a non empty metric space and letP be a subset ofMtop. The functor distmax(P) yields
a map fromMtop into R1 and is defined by:

(Def. 7) For every pointx of M holds(distmax(P))(x) = sup((dist(x))◦P).

The functor distmin(P) yielding a map fromMtop into R1 is defined by:

(Def. 8) For every pointx of M holds(distmin(P))(x) = inf((dist(x))◦P).

The following propositions are true:

(25) LetM be a non empty metric space andP be a subset ofMtop. SupposeP is compact. Let
p1, p2 be points ofM. If p1 ∈ P, thenρ(p1, p2)≤ sup((dist(p2))◦P) and inf((dist(p2))◦P)≤
ρ(p1, p2).

(26) Let M be a non empty metric space andP be a subset ofMtop. SupposeP 6= /0 and P
is compact. Letp1, p2 be points ofM. Then |sup((dist(p1))◦P)− sup((dist(p2))◦P)| ≤
ρ(p1, p2).
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(27) Let M be a non empty metric space andP be a subset ofMtop. SupposeP 6= /0 andP is
compact. Letp1, p2 be points ofM andx1, x2 be real numbers. Ifx1 = (distmax(P))(p1) and
x2 = (distmax(P))(p2), then|x1−x2| ≤ ρ(p1, p2).

(28) Let M be a non empty metric space andP be a subset ofMtop. SupposeP 6= /0 andP is
compact. Letp1, p2 be points ofM. Then|inf((dist(p1))◦P)− inf((dist(p2))◦P)| ≤ ρ(p1, p2).

(29) Let M be a non empty metric space andP be a subset ofMtop. SupposeP 6= /0 andP is
compact. Letp1, p2 be points ofM andx1, x2 be real numbers. Ifx1 = (distmin(P))(p1) and
x2 = (distmin(P))(p2), then|x1−x2| ≤ ρ(p1, p2).

(30) For every non empty metric spaceM and for every subsetX of Mtop such thatX 6= /0 andX
is compact holds distmax(X) is continuous.

(31) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exists a pointx1 of Mtop such thatx1 ∈ Q
and(distmax(P))(x1) = sup((distmax(P))◦Q).

(32) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exists a pointx2 of Mtop such thatx2 ∈ Q
and(distmax(P))(x2) = inf((distmax(P))◦Q).

(33) For every non empty metric spaceM and for every subsetX of Mtop such thatX 6= /0 andX
is compact holds distmin(X) is continuous.

(34) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exists a pointx1 of Mtop such thatx1 ∈ Q
and(distmin(P))(x1) = sup((distmin(P))◦Q).

(35) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exists a pointx2 of Mtop such thatx2 ∈ Q
and(distmin(P))(x2) = inf((distmin(P))◦Q).

Let M be a non empty metric space and letP, Q be subsets ofMtop. The functor distmin
min(P,Q)

yields a real number and is defined as follows:

(Def. 9) distmin
min(P,Q) = inf((distmin(P))◦Q).

The functor distmax
min (P,Q) yielding a real number is defined by:

(Def. 10) distmax
min (P,Q) = sup((distmin(P))◦Q).

The functor distmin
max(P,Q) yielding a real number is defined by:

(Def. 11) distmin
max(P,Q) = inf((distmax(P))◦Q).

The functor distmax
max(P,Q) yielding a real number is defined as follows:

(Def. 12) distmax
max(P,Q) = sup((distmax(P))◦Q).

We now state several propositions:

(36) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exist pointsx1, x2 of M such thatx1 ∈ P
andx2 ∈Q andρ(x1,x2) = distmin

min(P,Q).

(37) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exist pointsx1, x2 of M such thatx1 ∈ P
andx2 ∈Q andρ(x1,x2) = distmin

max(P,Q).

(38) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exist pointsx1, x2 of M such thatx1 ∈ P
andx2 ∈Q andρ(x1,x2) = distmax

min (P,Q).
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(39) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP 6= /0 andP is
compact andQ 6= /0 andQ is compact. Then there exist pointsx1, x2 of M such thatx1 ∈ P
andx2 ∈Q andρ(x1,x2) = distmax

max(P,Q).

(40) LetM be a non empty metric space andP, Q be subsets ofMtop. SupposeP is compact and
Q is compact. Letx1, x2 be points ofM. If x1 ∈ P andx2 ∈Q, then distmin

min(P,Q)≤ ρ(x1,x2)
andρ(x1,x2)≤ distmax

max(P,Q).
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[5] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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