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Summary. The basic purpose of this article is to prove the important Weierstrass' the-
orem which states that a real valued continuous function a topological spac€ assumes
a maximum and a minimum value on the compact suBs#tT, i.e., there exist pointsy,
xg of T being elements o8, such thatf (x;) and f(x2) are the supremum and the infimum,
respectively, off (S), which is the image o8 under the functiorf. The paper is divided into
three parts. In the first part, we prove some auxiliary theorems concerning properties of balls
in metric spaces and define special families of subsets of topological spaces. These concepts
are used in the next part of the paper which contains the essential part of the article, namely the
formalization of the proof of Weierstrass’ theorem. Here, we also prove a theorem concerning
the compactness of images of compact seff ahder a continuous function. The final part
of this work is developed for the purpose of defining some measures of the distance between
compact subsets of topological metric spaces. Some simple theorems about these measures
are also proved.

MML Identifier: WEIERSTR.
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The articles([18],[120],[[21],[15],[[6],[2],[119],[12],[1],[[11],[13] [17],[[14],[16], [3], [9],[15] [[8],
[17], [10], and [4] provide the notation and terminology for this paper.

1. PRELIMINARIES
The following three propositions are true:

(1) LetM be a metric spacey, xz be points oM, andry, r» be real numbers. Then there exists
a pointx of M and there exists a real numbesuch that Ballx;, r1) UBall(xz,r2) C Ball(x,r).

(2) LetM be a metric space) be a natural numbefF; be a family of subsets dfl, and p
be a finite sequence. Suppdsas finite and a family of balls and rqg= F and donp =
Sedn-+1). Then there exists a familg of subsets oM such that

(i) Gis finite and a family of balls, and
(i) there exists a finite sequengesuch that rng = G and dong = Segn and there exists a
pointx of M and there exists a real numbresuch that JF C (JGUBAall(x,r).

(3) LetM be a metric space arfd be a family of subsets dfl. SupposeF is finite and a
family of balls. Then there exists a poirtof M and there exists a real numhesuch that
UF CBall(x,r).

Let T, She non empty topological spaces, febe a map fronT into S, and letG be a family
of subsets o8. The functorf ~1(G) yields a family of subsets &f and is defined by:
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(Def. 1) For every subsét of T holdsA € f~1(G) iff there exists a subsd of Ssuch thaB € G
andA = f~1(B).

We now state two propositions:

(4) LetT, Sbe non empty topological spacdsbe a map fronT into S andA, B be families
of subsets o8. If AC B, thenf~1(A) C f~1(B).

(5) LetT, Sbe non empty topological spacdsbe a map fronT into S, andB be a family of
subsets o8 If f is continuous an@ is open, therf ~1(B) is open.

Let T, Sbe non empty topological spaces, febe a map fronT into S and letG be a family
of subsets off . The functorf°G yielding a family of subsets dis defined by:

(Def. 2) For every subsét of SholdsA € f°G iff there exists a subs& of T such thaB € G and
A= f°B.

We now state several propositions:

(6) LetT, Sbe non empty topological spacdsbe a map fronT into S andA, B be families
of subsets of. If AC B, thenf°AC f°B.

(7) LetT, Sbe non empty topological spacelsbe a map fronil into S B be a family of
subsets 08, andP be a subset &&. If f°f~1(B) is a cover ofP, thenB is a cover ofP.

(8) LetT, Sbe non empty topological spacesbe a map fronil into S B be a family of
subsets of, andP be a subset of . If Bis a cover ofP, thenf~1(f°B) is a cover ofP.

(9) LetT, Sbe non empty topological spacdsbe a map fromT into S, andQ be a family of
subsets 08, Then(f°f~(Q)) CUQ.

(10) LetT, Sbhe non empty topological spacdsbe a map fronT into S, andP be a family of
subsets off. ThenP C J(f~1(f°P)).

(11) LetT, Sbe non empty topological spacedsbe a map fronT into S, andQ be a family of
subsets o8. If Qs finite, thenf ~1(Q) is finite.

(12) LetT, Sbe non empty topological spacdsbe a map fronT into S, andP be a family of
subsets off. If Pis finite, thenf°P is finite.

(13) LetT, Sbe non empty topological spacesbe a map fronT into S P be a subset of,
andF be a family of subsets @& Given a familyB of subsets of such thaB C f~1(F) and
B is a cover ofP and finite. Then there exists a famiByof subsets oS such thaiG C F and
G is a cover off °P and finite.

2. THE WEIERSTRASS THEOREM
One can prove the following propositions:

(14) LetT, Sbe non empty topological spacdsbe a map fronT into S, andP be a subset of
T. If Pis compact and is continuous, theri°P is compact.

(15) LetT be a non empty topological spadebe a map fronT into R?, andP be a subset of
T. If Pis compact and is continuous, theri°P is compact.

(16) Letf be a map fromZ2 into R and P be a subset ofc2. If P is compact andf is
continuous, theri°P is compact.

Let P be a subset dk1. The functorQp yielding a subset oR is defined as follows:

(Def.3) Qp=P
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One can prove the following three propositions:
(17) For every subsdt of R! such thaP is compact hold€p is bounded.
(18) For every subsdt of R! such thaP is compact hold€p is closed.
(19) For every subsdt of R? such thaP is compact hold€p is compact.
Let P be a subset dk1. The functor sup yielding a real number is defined as follows:
(Def. 4) suP =supQp).
The functor infP yielding a real number is defined as follows:
(Def. 5) infP =inf(Qp).
Next we state two propositions:

(20) LetT be a non empty topological spadebe a map fronT into R?, andP be a subset of
T. Suppose® # 0 andP is compact and is continuous. Then there exists a paigtof T
such that; € Pandf(x1) = sup(f°P).

(21) LetT be a non empty topological spadebe a map fronT into R, andP be a subset of
T. Suppose® # 0 andP is compact and is continuous. Then there exists a poigtof T
such tha € P and f(xz) = inf(f°P).

3. THE MEASURE OF THEDISTANCE BETWEEN COMPACT SETS

LetM be a non empty metric space andxXdte a point oM. The functor distx) yields a map from
Miop into R and is defined by:

(Def. 6) For every poiny of M holds(dist(x))(y) = p(Y, X).
Next we state three propositions:
(22) For every non empty metric spadeand for every poink of M holds distx) is continuous.

(23) LetM be a non empty metric spacepe a point ofM, andP be a subset ofp. Sup-
poseP # 0 and P is compact. Then there exists a pokitof Mgy such thatx; € P and

(dist(x)) (x) = sup((dist(x))°P).

(24) LetM be a non empty metric spacepe a point ofM, andP be a subset oMp. Sup-
poseP # 0 andP is compact. Then there exists a poiatof My, such thatx, € P and
(dist(x))(x2) = inf((dist(x))°P).

Let M be a non empty metric space andfebe a subset dfliop. The functor diskax(P) yields
a map fromMgp into R! and is defined by:

(Def. 7)  For every poink of M holds(distnax(P))(x) = sup((dist(x))°P).
The functor diskin(P) yielding a map fromvi, into R? is defined by:
(Def. 8)  For every poink of M holds(distmin(P))(x) = inf((dist(x))°P).

The following propositions are true:

(25) LetM be a non empty metric space aRdbe a subset d¥liop. Suppose® is compact. Let
p1, p2 be points oM. If p; € P, thenp(p1, p2) < sup((dist(p2))°P) and inf(dist(pz))°P) <
P(P1, P2).-

(26) LetM be a non empty metric space aRdoe a subset oM. SupposeP # 0 and P
is compact. Letp;, p2 be points ofM. Then |sup((dist(p1))°P) — sup((dist(p2))°P)| <
P(p1, P2)-
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(27) LetM be a non empty metric space aRwe a subset o¥lp. SupposeP # 0 andP is
compact. Letps, pz be points oM andx;, xp be real numbers. b; = (distnax(P))(p1) and

X2 = (distmax(P))(p2), then|xy — x| < p(p1, p2).

(28) LetM be a non empty metric space aRde a subset oo, Supposd? # 0 andP is
compact. Leps, pz be points oM. Then|inf((dist(p1))°P) —inf((dist(p2))°P)| < p(p1, p2)-

(29) LetM be a non empty metric space aRce a subset of¥lp. Suppose® # 0 andP is
compact. Letps, p2 be points oM andxy, x2 be real numbers. K; = (distyin(P))(p1) and
X2 = (distmin(P))(P2), then|xy — Xz < p(p1, P2).

(30) For every non empty metric spadeand for every subset of Mo, such thaiX # 0 andX
is compact holds dighx(X) is continuous.

(31) LetM be a non empty metric space aRdQ be subsets dfliop. Supposd® # 0 andP is
compact and # 0 andQ is compact. Then there exists a pokatof Mip such thatx; € Q

and(distnax(P)) (x1) = sup((distnax(P))° Q).

(32) LetM be a non empty metric space aRpQ be subsets ¥y, Suppose® # 0 andP is
compact and) # 0 andQ is compact. Then there exists a pawatof My, such that, € Q
and(distmax(P))(x2) = inf((distnax(P))°Q).

(33) For every non empty metric spadeand for every subset of Mo, such thaiX # 0 andX
is compact holds digf,(X) is continuous.

(34) LetM be a non empty metric space aRdQ be subsets dfliop. Supposd® # 0 andP is
compact and # 0 andQ is compact. Then there exists a pokatof Mip such thatx; € Q

and(distyin(P)) (x1) = sup((distyin(P))°Q).

(35) LetM be a non empty metric space aRpQ be subsets d¥liy,. Suppose® # 0 andP is
compact and) # 0 andQ is compact. Then there exists a pakatof My, such thatx, € Q
and(distmin(P))(x2) = inf((distnin(P))°Q).

Let M be a non empty metric space and RetQ be subsets dflop. The functor digpin(P,
yields a real number and is defined as follows:

(Def. 9)  disfi(P,Q) = inf((distin(P))°Q).
The functor dish>(P, Q) yielding a real number is defined by:
(Def. 10)  disF(P, Q) = sup((distmin(P))°Q).
The functor disE(P, Q) yielding a real number is defined by:
(Def. 11) disfin(P,Q) = inf((distnax(P))°Q).
The functor dighaX(P, Q) yielding a real number is defined as follows:
(Def. 12)  disP3Y(P,Q) = suf(distmax(P))°Q).

We now state several propositions:

(36) LetM be a non empty metric space aRpQ be subsets ¥y, Suppose® # 0 andP is
compact and) # 0 andQ is compact Then there exist pointg Xz of M such thatx; € P
andx, € Q andp(x1,x2) = disthin(

(37) LetM be a non empty metric space aRdQ be subsets dfliop. Supposd® # 0 andP is
compact andQ # 0 andQ is compact Then there exist pointg X of M such thatx; € P
andx; € Q andp(xg,xz) = distim(

(38) LetM be a non empty metric space aRpQ be subsets ¥y, Suppose® # 0 andP is
compact and) # 0 andQ is compact Then there exist pointg X, of M such thatx; € P
andxz € Q andp(x1,x2) = disth®(
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(39) LetM be a non empty metric space aRpQ be subsets ¥y, Suppose® # 0 andP is

compact and) # 0 andQ is compact. Then there exist pointg X2 of M such thatx; € P
andx; € Q andp(xy,%2) = disthaX(P, Q).

(40) LetM be a non empty metric space aPdQ be subsets dfliop. Supposé is compact and
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Q s compact. Lek;, x2 be points oM. If x; € P andx, € Q, then disfin(P,Q) < p(x1,X2)
andp(x1,X2) < dis{haX(P, Q).
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