Witt's Proof of the Wedderburn Theorem¹

Broderic Arneson University of Alberta, Edmonton, Canada

Matthias Baaz Technische Universität Wien, Vienna, Austria

Piotr Rudnicki University of Alberta, Edmonton, Canada

Summary. We present a formalization of Witt's proof of the Wedderburn theorem following Chapter 5 of *Proofs from THE BOOK* by Martin Aigner and Günter M. Ziegler, 2nd ed., Springer 1999.

MML Identifier: WEDDWITT.

WWW: http://mizar.org/JFM/Vol15/weddwitt.html

The articles [21], [31], [23], [7], [12], [24], [3], [25], [14], [32], [5], [6], [4], [8], [28], [16], [9], [15], [2], [29], [18], [10], [27], [13], [1], [17], [26], [30], [33], [19], [22], [20], and [11] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:

- (1) For every natural number a and for every real number q such that 1 < q and $q^a = 1$ holds a = 0.
- (2) For all natural numbers a, k, r and for every real number x such that 1 < x and 0 < k holds $x^{a \cdot k + r} = x^a \cdot x^{a \cdot (k 1) + r}$.
- (3) For all natural numbers q, a, b such that 0 < a and 1 < q and $q^a 1 \mid q^b 1$ holds $a \mid b$.
- (4) For all natural numbers n, q such that 0 < q holds $\overline{\overline{q^n}} = q^n$.
- (5) Let f be a finite sequence of elements of \mathbb{N} and i be a natural number. If for every natural number j such that $j \in \text{dom } f$ holds $i \mid f_j$, then $i \mid \sum f$.
- (6) Let X be a finite set, Y be a partition of X, and f be a finite sequence of elements of Y. Suppose f is one-to-one and $\operatorname{rng} f = Y$. Let c be a finite sequence of elements of $\underline{\mathbb{N}}$. Suppose $\operatorname{len} c = \operatorname{len} f$ and for every natural number i such that $i \in \operatorname{dom} c$ holds $c(i) = \overline{f(i)}$. Then $\operatorname{card} X = \sum c$.

1

¹This work has been supported by NSERC Grant OGP9207.

2. Class Formula for Groups

Let us mention that there exists a group which is finite.

Let G be a finite group. Note that Z(G) is finite.

Let G be a group and let a be an element of G. The functor Centralizer(a) yields a strict subgroup of G and is defined as follows:

(Def. 1) The carrier of Centralizer(a) = {b;b ranges over elements of G: $a \cdot b = b \cdot a$ }.

Let G be a finite group and let a be an element of G. Note that Centralizer(a) is finite. We now state two propositions:

- (7) For every group G and for every element a of G and for every set x such that $x \in Centralizer(a)$ holds $x \in G$.
- (8) For every group G and for all elements a, x of G holds $a \cdot x = x \cdot a$ iff x is an element of Centralizer(a).

Let G be a group and let a be an element of G. One can verify that a^{\bullet} is non empty.

Let G be a group and let a be an element of G. The functor $a - \text{con_map}$ yields a function from the carrier of G into a^{\bullet} and is defined by:

(Def. 2) For every element *x* of *G* holds $(a - \operatorname{con_map})(x) = a^x$.

We now state several propositions:

- (9) For every finite group G and for every element a of G and for every element x of a^{\bullet} holds $\operatorname{card}((a \operatorname{con_map})^{-1}(\{x\})) = \operatorname{ord}(\operatorname{Centralizer}(a)).$
- (10) Let G be a group, a be an element of G, and x, y be elements of a^{\bullet} . If $x \neq y$, then $(a \text{con_map})^{-1}(\{x\})$ misses $(a \text{con_map})^{-1}(\{y\})$.
- (11) Let G be a group and a be an element of G. Then $\{(a \operatorname{con_map})^{-1}(\{x\}) : x \text{ ranges over elements of } a^{\bullet}\}$ is a partition of the carrier of G.
- $\operatorname{card} a^{\bullet}$. (13) For every finite group G and for every element a of G holds $\operatorname{ord}(G) = \operatorname{card} a^{\bullet}$.

(12) For every finite group G and for every element a of G holds $\overline{\{(a-\text{con_map})^{-1}(\{x\}):x \text{ ranges over elements of } a^{\bullet}\}}$

ord(Centralizer(a)).

Let G be a group. The functor conjugate_Classes(G) yielding a partition of the carrier of G is defined by:

(Def. 3) conjugate_Classes(G) = {S; S ranges over subsets of G: $\bigvee_{a:\text{element of }G} S = a^{\bullet}$ }.

One can prove the following propositions:

- (14) For every group G and for every set x holds $x \in \text{conjugate_Classes}(G)$ iff there exists an element a of G such that $a^{\bullet} = x$.
- (15) Let G be a finite group and f be a finite sequence of elements of conjugate_Classes(G). Suppose f is one-to-one and $\operatorname{rng} f = \operatorname{conjugate_Classes}(G)$. Let c be a finite sequence of elements of $\mathbb N$. Suppose $\operatorname{len} c = \operatorname{len} f$ and for every natural number i such that $i \in \operatorname{dom} c$ holds $c(i) = \overline{f(i)}$. Then $\operatorname{ord}(G) = \sum c$.

3. CENTERS AND CENTRALIZERS OF SKEW FIELDS

One can prove the following proposition

(16) Let F be a finite field, V be a vector space over F, and n, q be natural numbers. Suppose V is finite dimensional and $n = \dim(V)$ and $q = \overline{\text{the carrier of } F}$. Then $\overline{\text{the carrier of } V} = q^n$.

Let R be a skew field. The functor Z(R) yields a strict field and is defined by the conditions (Def. 4).

- (Def. 4)(i) The carrier of $Z(R) = \{x; x \text{ ranges over elements of } R: \bigwedge_{s:\text{element of } R} x \cdot s = s \cdot x \},$
 - (ii) the addition of Z(R) =(the addition of $R) \upharpoonright [$: the carrier of Z(R), the carrier of Z(R):],
 - (iii) the multiplication of Z(R) = (the multiplication of R) | [: the carrier of Z(R), the carrier of Z(R):],
 - (iv) the zero of Z(R) = the zero of R, and
 - (v) the unity of Z(R) = the unity of R.

We now state the proposition

(17) For every skew field *R* holds the carrier of $Z(R) \subseteq$ the carrier of *R*.

Let R be a finite skew field. Note that Z(R) is finite.

One can prove the following propositions:

- (18) Let R be a skew field and y be an element of R. Then $y \in Z(R)$ if and only if for every element s of R holds $y \cdot s = s \cdot y$.
- (19) For every skew field R holds $0_R \in \mathbb{Z}(R)$.
- (20) For every skew field *R* holds $\mathbf{1}_R \in \mathbb{Z}(R)$.
- (21) For every finite skew field *R* holds 1 < card (the carrier of $\mathbb{Z}(R)$).
- (22) For every finite skew field R holds card (the carrier of Z(R)) = card (the carrier of R) iff R is commutative.
- (23) For every skew field *R* holds the carrier of $Z(R) = (\text{the carrier of } Z(\text{MultGroup}(R))) \cup \{0_R\}.$

Let R be a skew field and let s be an element of R. The functor centralizer(s) yields a strict skew field and is defined by the conditions (Def. 5).

- (Def. 5)(i) The carrier of centralizer(s) = {x;x ranges over elements of R: $x \cdot s = s \cdot x$ },
 - (ii) the addition of centralizer(s) = (the addition of R) \upharpoonright [: the carrier of centralizer(s), the carrier of centralizer(s):],
 - (iii) the multiplication of centralizer(s) = (the multiplication of R) \upharpoonright [: the carrier of centralizer(s), the carrier of centralizer(s):],
 - (iv) the zero of centralizer(s) = the zero of R, and
 - (v) the unity of centralizer(s) = the unity of R.

The following propositions are true:

- (24) For every skew field R and for every element s of R holds the carrier of centralizer(s) \subseteq the carrier of R.
- (25) For every skew field R and for all elements s, a of R holds $a \in$ the carrier of centralizer(s) iff $a \cdot s = s \cdot a$.
- (26) For every skew field R and for every element s of R holds the carrier of $Z(R) \subseteq$ the carrier of centralizer(s).

- (27) Let R be a skew field and s, a, b be elements of R. Suppose $a \in$ the carrier of Z(R) and $b \in$ the carrier of centralizer(s). Then $a \cdot b \in$ the carrier of centralizer(s).
- (28) For every skew field R and for every element s of R holds 0_R is an element of centralizer(s) and $\mathbf{1}_R$ is an element of centralizer(s).

Let R be a finite skew field and let s be an element of R. Note that centralizer(s) is finite. The following propositions are true:

- (29) For every finite skew field R and for every element s of R holds $1 < \operatorname{card}$ (the carrier of centralizer(s)).
- (30) Let R be a skew field, s be an element of R, and t be an element of MultGroup(R). If t = s, then the carrier of centralizer(s) = (the carrier of Centralizer(t)) \cup {0 $_R$ }.
- (31) Let R be a finite skew field, s be an element of R, and t be an element of MultGroup(R). If t = s, then ord(Centralizer(t)) = card(the carrier of centralizer(s)) 1.
 - 4. VECTOR SPACES OVER CENTERS OF SKEW FIELDS

Let R be a skew field. The functor VectSp_over_center(R) yielding a strict vector space over Z(R) is defined by the conditions (Def. 6).

- (Def. 6)(i) The loop structure of VectSp_over_center(R) = the loop structure of R, and
 - (ii) the left multiplication of VectSp_over_center(R) = (the multiplication of R) \uparrow [: the carrier of Z(R), the carrier of R:].

The following two propositions are true:

- (32) For every finite skew field R holds card(the carrier of R) = (card(the carrier of Z(R))) $^{\dim(\text{VectSp_over_center}(R))}$.
- (33) For every finite skew field R holds $0 < \dim(\text{VectSp_over_center}(R))$.

Let R be a skew field and let s be an element of R. The functor VectSp_over_center(s) yielding a strict vector space over Z(R) is defined by the conditions (Def. 7).

- (Def. 7)(i) The loop structure of VectSp_over_center(s) = the loop structure of centralizer(s), and
 - (ii) the left multiplication of VectSp_over_center(s) = (the multiplication of R) \upharpoonright [: the carrier of Z(R), the carrier of centralizer(s):].

One can prove the following propositions:

- (34) For every finite skew field R and for every element s of R holds card(the carrier of centralizer(s)) = (card(the carrier of Z(R))) $^{\dim(\text{VectSp_over_center}(s))}$.
- (35) For every finite skew field R and for every element s of R holds $0 < \dim(\text{VectSp_over_center}(s))$.
- (36) Let R be a finite skew field and r be an element of R. Suppose r is an element of MultGroup(R). Then (card(the carrier of Z(R))) $^{\dim(\text{VectSp_over_center}(r))} 1 \mid (\text{card}(\text{the carrier of } Z(R)))^{\dim(\text{VectSp_over_center}(R))} 1$.
- (37) For every finite skew field R and for every element s of R such that s is an element of MultGroup(R) holds dim(VectSp_over_center(s)) | dim(VectSp_over_center(R)).
- (38) For every finite skew field *R* holds card (the carrier of Z(MultGroup(R))) = card (the carrier of Z(R)) 1.

5. WITT'S PROOF OF WEDDERBURN'S THEOREM

The following proposition is true

(39) Every finite skew field is commutative.

REFERENCES

- [1] Broderic Arneson and Piotr Rudnicki. Primitive roots of unity and cyclotomic polynomials. *Journal of Formalized Mathematics*, 15, 2003. http://mizar.org/JFM/Vol15/uniroots.html.
- [2] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat 1.html.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [5] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [6] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [7] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [9] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Euler's Theorem and small Fermat's Theorem. *Journal of Formalized Mathematics*, 10, 1998. http://mizar.org/JFM/Vol10/euler_2.html.
- [12] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [13] Andrzej Kondracki. The Chinese Remainder Theorem. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/wsierp 1.html.
- [14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [15] Anna Justyna Milewska. The field of complex numbers. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Voll2/complfld.html.
- [16] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/binarith.html.
- [17] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [18] Konrad Raczkowski. Integer and rational exponents. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/prepower.html.
- [19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/eqrel_1.html.
- [20] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [21] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [22] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/fraenkel.html.
- [23] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [24] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [25] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.
- [26] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/group_3.html.

- [27] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [28] Wojciech A. Trybulec. Pigeon hole principle. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [29] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [30] Wojciech A. Trybulec. Commutator and center of a group. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/group_5.html.
- $[31] \enskip \textbf{Zinaida Trybulec. Properties of subsets.} \enskip \textbf{Journal of Formalized Mathematics}, \textbf{1, 1989}. \\ \texttt{http://mizar.org/JFM/Vol1/subset_1.html.}$
- [32] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html.
- [33] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. *Journal of Formalized Mathematics*, 7, 1995. http://mizar.org/JFM/Vol7/vectsp_9.html.

Received December 30, 2003

Published January 6, 2004