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Summary. We present a formalization of Witt’s proof of the Wedderburn theorem
following Chapter 5 ofProofs from THE BOOKby Martin Aigner and G̈unter M. Ziegler, 2nd
ed., Springer 1999.

MML Identifier: WEDDWITT.
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The articles [21], [31], [23], [7], [12], [24], [3], [25], [14], [32], [5], [6], [4], [8], [28], [16], [9],
[15], [2], [29], [18], [10], [27], [13], [1], [17], [26], [30], [33], [19], [22], [20], and [11] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The following propositions are true:

(1) For every natural numbera and for every real numberq such that 1< q andqa = 1 holds
a = 0.

(2) For all natural numbersa, k, r and for every real numberx such that 1< x and 0< k holds
xa·k+r = xa ·xa·(k−′1)+r .

(3) For all natural numbersq, a, b such that 0< a and 1< q andqa−′ 1 | qb−′ 1 holdsa | b.

(4) For all natural numbersn, q such that 0< q holdsqn = qn.

(5) Let f be a finite sequence of elements ofN andi be a natural number. If for every natural
numberj such thatj ∈ dom f holdsi | f j , theni | ∑ f .

(6) Let X be a finite set,Y be a partition ofX, and f be a finite sequence of elements ofY.
Supposef is one-to-one and rngf = Y. Let c be a finite sequence of elements ofN. Suppose

lenc = len f and for every natural numberi such thati ∈ domc holds c(i) = f (i) . Then
cardX = ∑c.

1This work has been supported by NSERC Grant OGP9207.
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2. CLASS FORMULA FOR GROUPS

Let us mention that there exists a group which is finite.
Let G be a finite group. Note that Z(G) is finite.
LetG be a group and leta be an element ofG. The functor Centralizer(a) yields a strict subgroup

of G and is defined as follows:

(Def. 1) The carrier of Centralizer(a) = {b;b ranges over elements ofG: a·b = b·a}.

Let G be a finite group and leta be an element ofG. Note that Centralizer(a) is finite.
We now state two propositions:

(7) For every groupG and for every elementa of G and for every setx such thatx ∈
Centralizer(a) holdsx∈ G.

(8) For every groupG and for all elementsa, x of G holdsa · x = x ·a iff x is an element of
Centralizer(a).

Let G be a group and leta be an element ofG. One can verify thata• is non empty.
Let G be a group and leta be an element ofG. The functora−con map yields a function from

the carrier ofG into a• and is defined by:

(Def. 2) For every elementx of G holds(a−con map)(x) = ax.

We now state several propositions:

(9) For every finite groupG and for every elementa of G and for every elementx of a• holds
card((a−con map)−1({x})) = ord(Centralizer(a)).

(10) Let G be a group,a be an element ofG, andx, y be elements ofa•. If x 6= y, then(a−
con map)−1({x}) misses(a−con map)−1({y}).

(11) LetG be a group anda be an element ofG. Then{(a−con map)−1({x}) : x ranges over
elements ofa•} is a partition of the carrier ofG.

(12) For every finite groupGand for every elementaof Gholds{(a−con map)−1({x}) : x ranges over elements ofa•} =
carda•.

(13) For every finite groupG and for every elementa of G holds ord(G) = carda• ·
ord(Centralizer(a)).

Let G be a group. The functor conjugateClasses(G) yielding a partition of the carrier ofG is
defined by:

(Def. 3) conjugateClasses(G) = {S;Sranges over subsets ofG:
∨

a:element ofG S= a•}.

One can prove the following propositions:

(14) For every groupG and for every setx holdsx ∈ conjugateClasses(G) iff there exists an
elementa of G such thata• = x.

(15) Let G be a finite group andf be a finite sequence of elements of conjugateClasses(G).
Supposef is one-to-one and rngf = conjugateClasses(G). Let c be a finite sequence of
elements ofN. Suppose lenc = len f and for every natural numberi such thati ∈ domc holds

c(i) = f (i) . Then ord(G) = ∑c.
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3. CENTERS ANDCENTRALIZERS OFSKEW FIELDS

One can prove the following proposition

(16) LetF be a finite field,V be a vector space overF , andn, q be natural numbers. SupposeV

is finite dimensional andn = dim(V) andq = the carrier ofF . Thenthe carrier ofV = qn.

Let R be a skew field. The functor Z(R) yields a strict field and is defined by the conditions
(Def. 4).

(Def. 4)(i) The carrier of Z(R) = {x;x ranges over elements ofR:
∧

s:element ofR x ·s= s·x},
(ii) the addition of Z(R) = (the addition ofR)�[: the carrier of Z(R), the carrier of Z(R) :],

(iii) the multiplication of Z(R) = (the multiplication ofR)�[: the carrier of Z(R), the carrier of
Z(R) :],

(iv) the zero of Z(R) = the zero ofR, and

(v) the unity of Z(R) = the unity ofR.

We now state the proposition

(17) For every skew fieldRholds the carrier of Z(R)⊆ the carrier ofR.

Let Rbe a finite skew field. Note that Z(R) is finite.
One can prove the following propositions:

(18) Let R be a skew field andy be an element ofR. Theny ∈ Z(R) if and only if for every
elements of Rholdsy·s= s·y.

(19) For every skew fieldRholds 0R∈ Z(R).

(20) For every skew fieldRholds1R∈ Z(R).

(21) For every finite skew fieldRholds 1< card(the carrier of Z(R)).

(22) For every finite skew fieldR holds card(the carrier of Z(R)) = card(the carrier ofR) iff R
is commutative.

(23) For every skew fieldRholds the carrier of Z(R) = (the carrier of Z(MultGroup(R)))∪{0R}.

Let Rbe a skew field and letsbe an element ofR. The functor centralizer(s) yields a strict skew
field and is defined by the conditions (Def. 5).

(Def. 5)(i) The carrier of centralizer(s) = {x;x ranges over elements ofR: x ·s= s·x},
(ii) the addition of centralizer(s) = (the addition ofR)�[: the carrier of centralizer(s), the carrier

of centralizer(s) :],

(iii) the multiplication of centralizer(s) = (the multiplication of R)�[: the carrier of
centralizer(s), the carrier of centralizer(s) :],

(iv) the zero of centralizer(s) = the zero ofR, and

(v) the unity of centralizer(s) = the unity ofR.

The following propositions are true:

(24) For every skew fieldRand for every elementsof Rholds the carrier of centralizer(s)⊆ the
carrier ofR.

(25) For every skew fieldR and for all elementss, a of R holdsa∈ the carrier of centralizer(s)
iff a·s= s·a.

(26) For every skew fieldR and for every elements of R holds the carrier of Z(R) ⊆ the carrier
of centralizer(s).
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(27) Let R be a skew field ands, a, b be elements ofR. Supposea ∈ the carrier of Z(R) and
b∈ the carrier of centralizer(s). Thena·b∈ the carrier of centralizer(s).

(28) For every skew fieldRand for every elementsof Rholds 0R is an element of centralizer(s)
and1R is an element of centralizer(s).

Let Rbe a finite skew field and lets be an element ofR. Note that centralizer(s) is finite.
The following propositions are true:

(29) For every finite skew fieldR and for every elements of R holds 1< card(the carrier of
centralizer(s)).

(30) LetRbe a skew field,sbe an element ofR, andt be an element of MultGroup(R). If t = s,
then the carrier of centralizer(s) = (the carrier of Centralizer(t))∪{0R}.

(31) LetR be a finite skew field,s be an element ofR, andt be an element of MultGroup(R). If
t = s, then ord(Centralizer(t)) = card(the carrier of centralizer(s))−1.

4. VECTORSPACES OVERCENTERS OFSKEW FIELDS

Let Rbe a skew field. The functor VectSpover center(R) yielding a strict vector space over Z(R) is
defined by the conditions (Def. 6).

(Def. 6)(i) The loop structure of VectSpover center(R) = the loop structure ofR, and

(ii) the left multiplication of VectSpover center(R) = (the multiplication ofR)�[: the carrier
of Z(R), the carrier ofR:].

The following two propositions are true:

(32) For every finite skew fieldR holds card(the carrier ofR) = (card(the carrier of
Z(R)))dim(VectSp over center(R)).

(33) For every finite skew fieldRholds 0< dim(VectSpover center(R)).

Let R be a skew field and lets be an element ofR. The functor VectSpover center(s) yielding
a strict vector space over Z(R) is defined by the conditions (Def. 7).

(Def. 7)(i) The loop structure of VectSpover center(s) = the loop structure of centralizer(s), and

(ii) the left multiplication of VectSpover center(s) = (the multiplication ofR)�[: the carrier of
Z(R), the carrier of centralizer(s) :].

One can prove the following propositions:

(34) For every finite skew fieldR and for every elements of R holds card(the carrier of
centralizer(s)) = (card(the carrier of Z(R)))dim(VectSp over center(s)).

(35) For every finite skew fieldR and for every elements of R holds 0 <
dim(VectSpover center(s)).

(36) Let R be a finite skew field andr be an element ofR. Supposer is an element of
MultGroup(R). Then(card(the carrier of Z(R)))dim(VectSp over center(r))−1 | (card(the carrier
of Z(R)))dim(VectSp over center(R))−1.

(37) For every finite skew fieldR and for every elements of R such thats is an element of
MultGroup(R) holds dim(VectSpover center(s)) | dim(VectSpover center(R)).

(38) For every finite skew fieldRholds card(the carrier of Z(MultGroup(R))) = card(the carrier
of Z(R))−1.



WITT ’ S PROOF OF THE WEDDERBURN THEOREM 5

5. WITT ’ S PROOF OFWEDDERBURN’ S THEOREM

The following proposition is true

(39) Every finite skew field is commutative.
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[33] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space.Journal of Formalized Mathematics, 7, 1995. http:
//mizar.org/JFM/Vol7/vectsp_9.html.

Received December 30, 2003

Published January 6, 2004

http://mizar.org/JFM/Vol2/group_1.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol2/finseq_4.html
http://mizar.org/JFM/Vol2/group_2.html
http://mizar.org/JFM/Vol2/group_2.html
http://mizar.org/JFM/Vol3/group_5.html
http://mizar.org/JFM/Vol3/group_5.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol7/vectsp_9.html
http://mizar.org/JFM/Vol7/vectsp_9.html

	witt's proof of the wedderburn theorem By broderic arneson et al.

