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1. PRELIMINARIES

LetL be a non empty relational structure. Note thatislmonotone.

LetS T be non empty relational structures andfidde a map fronSinto T. Let us observe that
f is antitone if and only if:

(Def. 1) For all elementg, y of Ssuch thak < y holds f (x) > f(y).

We now state several propositions:
(1) LetS T be relational structure&, L be non empty relational structuresbe a map from
Sinto T, andg be a map fronK into L. Suppose that
(i) the relational structure @ = the relational structure df,
(i) the relational structure of = the relational structure df,
(i) f=g,and
(iv)  fis monotone.
Theng is monotone.
(2) LetS T be relational structure&, L be non empty relational structuresbe a map from
Sinto T, andg be a map fronK into L. Suppose that
(i) the relational structure @ = the relational structure df,
(i) the relational structure of = the relational structure df,
(i) f=g,and
(iv) fis antitone.
Theng is antitone.
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(3) LetA, Bbe 1-sorted structureB, be a family of subsets &%, andG be a family of subsets
of B. Suppose the carrier &= the carrier oB andF = G andF is a cover ofA. ThenG is
a cover ofB.

(4) For every antisymmetric reflexive relational structureith l.u.b.’s and for every element
xof L holdstx={x}UQ,.

(5) For every antisymmetric reflexive relational structureith g.l.b.’s and for every element
xof L holds |[x= {x} Q.

(6) For every antisymmetric reflexive relational structureith g.l.b.’s and for every element
yof L holds(ynd)°1y = {y}.

(7) For every antisymmetric reflexive relational structureith g.l.b.'s and for every element
x of L holds(xn ) ~1({x}) = 1x.

(8) For every non empty 1-sorted structdrénolds every non empty net structudeoverT is
eventually in rng (the mapping of).

LetL be a non empty reflexive relational structure Ddie a non empty directed subsetofind
let n be a function fronD into the carrier oL. Observe thatD, (the internal relation of) |2 D, n)
is directed.

Let L be a non empty reflexive transitive relational structure Ddbte a non empty directed
subset oL, and letn be a function fronD into the carrier oL.. One can check thgD, (the internal
relation ofL) |>D, n) is transitive.

One can prove the following propositions:

(9) LetL be a non empty reflexive transitive relational structure such that for every elament
of L and for every neN in L such thai is eventually-directed holdsT supN = sup({x} M
rngnetmapN,L)). ThenL satisfies MC.

(10) LetL be a non empty relational structueebe an element df, andN be a netirL. Then
arNisanetinL.

LetL be a non empty relational structure, ¥dte an element df, and letN be a netirL. Then
XN is a strict netirlL.

Let L be a non empty relational structure, Jebe an element of, and letN be a non empty
reflexive net structure ovér. Note thatxM N is reflexive.

Let L be a non empty relational structure, Jebe an element of, and letN be a non empty
antisymmetric net structure over Observe thatMN is antisymmetric.

Let L be a non empty relational structure, Jebe an element of, and letN be a non empty
transitive net structure ovér. Note thatxMN is transitive.

Let L be a non empty relational structure, Jebbe a set, and let be a function fromJ into the
carrier ofL. Observe that FinSups) is transitive.

2. THE OPERATIONSDEFINED ONNETS

LetL be a non empty relational structure andNbe a net structure ovér The functor inN yields
an element of. and is defined as follows:

(Def. 2) infN = Inf(the mapping ofN).

LetL be a relational structure and Mtbe a net structure ovér We say that supl exists if and
only if:

(Def. 3) Sup rng(the mapping o) exists inL.
We say that inN exists if and only if:

(Def. 4) Inf rng (the mapping dfl) exists inL.
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LetL be a relational structure. The functr, id) yielding a strict net structure oveéris defined
by:

(Def. 5) The relational structure ot ;id) = the relational structure &fand the mapping di_;id) =
id.

LetL be a non empty relational structure. One can check(thad) is non empty.

Let L be a reflexive relational structure. Note tiktid) is reflexive.

Let L be an antisymmetric relational structure. One can verify ¢hatl) is antisymmetric.

LetL be a transitive relational structure. Note tKiafid) is transitive.

LetL be a relational structure with l.u.b.’s. One can check that) is directed.

LetL be a directed relational structure. One can check(lhadl) is directed.

LetL be a non empty relational structure. One can verify thatd) is monotone and eventually-
directed.

Let L be a relational structure. The functd®P;id) yielding a strict net structure ovér is
defined by the conditions (Def. 6).

(Def. 6)(i) The carrier of L°;id) = the carrier ofL,
(i) the internal relation of L°P;id) = (the internal relation of)~, and
(iii)  the mapping of(L°P;id) = id|..
One can prove the following proposition

(11) For every relational structuteholds the relational structure bf = the relational structure
of (L°F;id).

LetL be a non empty relational structure. One can verify thé;id) is non empty.

Let L be a reflexive relational structure. Observe tha?;id) is reflexive.

Let L be an antisymmetric relational structure. Observe th#ft id) is antisymmetric.

LetL be a transitive relational structure. Observe tha¥;id) is transitive.

LetL be a relational structure with g.l.b.'s. Note tH{afP;id) is directed.

Let L be a non empty relational structure. Observe th&¥F;id) is antitone and eventually-
filtered.

Let L be a non empty 1-sorted structure, lebe a non empty net structure ouderand leti be
an element oN. The functomN[i yields a strict net structure overand is defined by the conditions
(Def. 7).

(Def. 7)(i) For every sex holdsx € the carrier ofN|i iff there exists an elementof N such that
y=xandi <y,
(i) the internal relation oN[i = (the internal relation oN) |2 (the carrier oN i), and
(iiiy  the mapping ofN[i = (the mapping oN) [(the carrier oiNi).
The following three propositions are true:

(12) LetL be a non empty 1-sorted structukebe a non empty net structure overandi be an
element ofN. Then the carrier o [i = {y;y ranges over elements bf i <y}.

(13) LetL be a non empty 1-sorted structukebe a non empty net structure olerandi be an
element ofN. Then the carrier o |i C the carrier ofN.

(14) LetL be a non empty 1-sorted structuiebe a non empty net structure oderandi be an
element ofN. ThenNi is a full structure of a subnet ¢f.

LetL be a non empty 1-sorted structure,Nebe a non empty reflexive net structure olkzeand
leti be an element dfl. Observe thal[i is non empty and reflexive.

LetL be a non empty 1-sorted structure,Nebe a non empty directed net structure oveand
leti be an element dfl. One can verify thal [i is non empty.

Let L be a non empty 1-sorted structure, Ktbe a non empty reflexive antisymmetric net
structure ovet., and leti be an element dfl. Observe thal i is antisymmetric.
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LetL be a non empty 1-sorted structure,Nebe a non empty directed antisymmetric net struc-
ture overlL, and leti be an element dfl. One can check thad|i is antisymmetric.

Let L be a non empty 1-sorted structure,Nebe a non empty reflexive transitive net structure
overL, and leti be an element dfl. Note thatN]i is transitive.

LetL be a non empty 1-sorted structure, éebe a netinL, and leti be an element di. One
can verify thatN i is transitive and directed.

One can prove the following propositions:

(15) LetL be a non empty 1-sorted structuképe a non empty reflexive net structure oleer,
x be elements o, andx; be an element dfl Ji. If x = xq, thenN(x) = (NTi)(x1).

(16) LetL be a non empty 1-sorted structudpe a non empty directed net structure olegr,
x be elements o, andx; be an element dfl[i. If x = x1, thenN(x) = (N]i)(x1).

(17) LetL be a non empty 1-sorted structuMébe a net inL, andi be an element dil. Then
NTi is a subnet oN.

Let T be a non empty 1-sorted structure andNdbe a net inT. Note that there exists a subnet
of N which is strict.

LetL be a non empty 1-sorted structure,ebe a net irL, and leti be an element dfl. Then
NTi is a strict subnet of.

Let Sbe a non empty 1-sorted structure, Tebe a 1-sorted structure, létbe a map frons
into T, and letN be a net structure ov& The functorf - N yielding a strict net structure ovéris
defined by the conditions (Def. 8).

(Def. 8)() The relational structure df- N = the relational structure df, and
(i) the mapping off - N = f - the mapping oN.

Let Sbe a non empty 1-sorted structure,Tebe a 1-sorted structure, lIétbe a map fron8into
T, and letN be a non empty net structure ov&@rObserve thaf - N is non empty.

Let Sbe a non empty 1-sorted structure,Tebe a 1-sorted structure, létbe a map fronSinto
T, and letN be a reflexive net structure ovBr Observe thaf - N is reflexive.

Let Sbe a non empty 1-sorted structure,Tebe a 1-sorted structure, létbe a map fron8into
T, and letN be an antisymmetric net structure 081One can verify thaf - N is antisymmetric.

Let Sbe a non empty 1-sorted structure, Tebe a 1-sorted structure, létbe a map fronSinto
T, and letN be a transitive net structure ov@rObserve thaf - N is transitive.

Let Sbe a non empty 1-sorted structure,Tebe a 1-sorted structure, létbe a map fronSinto
T, and letN be a directed net structure ov@rOne can check thédt- N is directed.

Next we state the proposition

(18) LetL be a non empty relational structuié be a non empty net structure oudegrandx be
an element of.. Then(xMO)-N =xrN.

3. THE PROPERTIES OFTOPOLOGICAL SPACES
One can prove the following propositions:

(19) LetS T be topological structures; be a family of subsets db, andG be a family of
subsets off. Suppose the topological structure $f the topological structure of and
F = G andF is open. TherG is open.

(20) LetS T be topological structures; be a family of subsets db, andG be a family of
subsets off. Suppose the topological structure $f the topological structure of and
F = G andF is closed. Theit is closed.

We introduce FR-structures which are extensions of topological structure and relational structure
and are systems
( a carrier, an internal relation, a topology
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where the carrier is a set, the internal relation is a binary relation on the carrier, and the topology is
a family of subsets of the carrier.

Let A be a non empty set, I& be a relation betweeft andA, and letT be a family of subsets
of A. Note that{A,R, T) is non empty.

Let x be a set, leR be a binary relation ofx}, and letT be a family of subsets ofx}. Note
that({x},R,T) is trivial.

Let X be a set, leO be an order irX, and letT be a family of subsets of. Note that(X,0, T)
is reflexive, transitive, and antisymmetric.

Let us note that there exists a FR-structure which is trivial, reflexive, non empty, discrete, strict,
and finite.

A top-lattice is a reflexive transitive antisymmetric topological space-like FR-structure with
g.l.b’sand l.u.b.'s.

Let us observe that there exists a top-lattice which is strict, non empty, trivial, discrete, finite,
compact, and Hausdorff.

Let T be a Hausdorff non empty topological space. Note that every non empty subsfacse of
Hausdorff.

Next we state several propositions:

(21) For every non empty topological spateand for every poinp of T holds every element
of the open neighbourhoods pfis a neighbourhood gb.

(22) LetT be a non empty topological spagebe a point ofT, andA, B be elements of the
open neighbourhoods @ ThenANB is an element of the open neighbourhoodg.of

(23) LetT be a non empty topological spagebe a point ofT, andA, B be elements of the
open neighbourhoods @ ThenAUB is an element of the open neighbourhoodg.of

(24) LetT be a non empty topological spagehe an element of, andN be a netinl. Suppose
p € LimN. Let Sbe a subset of . If S= rng(the mapping oN), thenpc S.

(25) LetT be a Hausdorff top-latticd\l be a convergent net ifi, andf be a map fronT into
T. If fis continuous, therf(limN) € Lim(f-N).

(26) LetT be a Hausdorff top-latticé\ be a convergent net if, andx be an element of. If
xMOis continuous, therMlimN € Lim(xN).

(27) LetSbe a Hausdorff top-lattice andbe an element db. If for every elemeng of Sholds
anis continuous, themx is closed.

(28) LetSbe a compact Hausdorff top-lattice anthe an element d&. If for every elemenb
of Sholdsbm O is continuous, thex is closed.

4. THE CLUSTERPOINTS OFNETS

Let T be a non empty topological space, be a non empty net structure overand letp be a
point of T. We say thap is a cluster point oN if and only if:

(Def. 9) For every neighbourhodd of p holdsN is often inO.

The following propositions are true:

(29) LetL be a non empty topological spadébe a netirl, andc be a pointol. If ce LimN,
thencis a cluster point oN.

(30) For every compact Hausdorff non empty topological sgaard for every nel in T holds
there exists a point of which is a cluster point dfl.

(31) LetL be a non empty topological spad¢be a netinL, M be a subnet oN, andc be a
point of L. If cis a cluster point oM, thenc is a cluster point oN.
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(32) LetT be a non empty topological spadé,be a net inT, andx be a point ofT. If xis a
cluster point ofN, then there exists a subridtof N such thai € Lim M.

(33) LetL be a compact Hausdorff non empty topological spaceNib@ a net inL. Suppose
that for all pointsc, d of L such that is a cluster point oN andd is a cluster point oN holds
c=d. Letsbe a point olL. If sis a cluster point oN, thens € Lim N.

(34) LetSbe a non empty topological spacdye a point ofS, N be a net ir§, andA be a subset
of S Suppose is a cluster point oN andA is closed and rng (the mapping N C A. Then
ceA

(35) LetSbe a compact Hausdorff top-latticebe a point ofS, andN be a net irs. Suppose for
every element of Sholdsxm [ is continuous andl is eventually-directed andlis a cluster
point of N. Thenc = supN.

(36) LetSbe a compact Hausdorff top-lattiaebe a point ofS, andN be a net irs. Suppose for
every elemenk of SholdsxmMJ is continuous and\ is eventually-filtered and is a cluster
point of N. Thenc =infN.

5. ON THE TOPOLOGICAL PROPERTIES OFMEET-CONTINUOUS LATTICES
The following propositions are true:

(87) LetSbe a Hausdorff top-lattice. Suppose that

(i) for every netN in Ssuch thatN is eventually-directed holds suy exists and sul €
LimN, and

(i) for every elemenk of Sholdsxm [ is continuous.
ThenSis meet-continuous.
(38) LetSbe a compact Hausdorff top-lattice. Suppose that for every elemehs holds

xM 0O is continuous. LeN be a netinS. If N is eventually-directed, then siyb exists and
supN € Lim N.

(39) LetSbe a compact Hausdorff top-lattice. Suppose that for every elermehs holds
xM O is continuous. LeN be a net inS. If N is eventually-filtered, then in exists and
infN € Lim N.

(40) LetShe a compact Hausdorff top-lattice. If for every element SholdsxM [ is contin-
uous, therSis bounded.

(41) LetSbe acompact Hausdorff top-lattice. Suppose that for every elextdr@holdsx]
is continuous. The®is meet-continuous.
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