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Summary. The aim of this paper is to formalize the second part of Chapter I Section 1
(1.9–1.19) in [10]. Definitions of Scott’s auxiliary and approximating relations are introduced
in this work. We showed that in a meet-continuous lattice, the way-below relation is the
intersection of all approximating auxiliary relations (proposition (40) — compare 1.13 in [10,
pp. 43–47]). By (41) a continuous lattice is a complete lattice in which� is the smallest
approximating auxiliary relation. The notions of the strong interpolation property and the
interpolation property are also introduced.
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The articles [18], [9], [20], [16], [19], [17], [8], [2], [21], [23], [22], [6], [7], [3], [15], [1], [14],
[11], [24], [12], [4], [13], and [5] provide the notation and terminology for this paper.

1. AUXILIARY RELATIONS

Let L be a non empty reflexive relational structure. The functor�L yielding a binary relation onL
is defined by:

(Def. 2)1 For all elementsx, y of L holds〈〈x, y〉〉 ∈�L iff x� y.

Let L be a relational structure. The functor≤L yields a binary relation onL and is defined by:

(Def. 3) ≤L = the internal relation ofL.

Let L be a relational structure and letRbe a binary relation onL. We say thatR is auxiliary(i) if
and only if:

(Def. 4) For all elementsx, y of L such that〈〈x, y〉〉 ∈ Rholdsx≤ y.

We say thatR is auxiliary(ii) if and only if:

(Def. 5) For all elementsx, y, z, u of L such thatu≤ x and〈〈x, y〉〉 ∈ Randy≤ z holds〈〈u, z〉〉 ∈ R.

Let L be a non empty relational structure and letR be a binary relation onL. We say thatR is
auxiliary(iii) if and only if:

(Def. 6) For all elementsx, y, z of L such that〈〈x, z〉〉 ∈ Rand〈〈y, z〉〉 ∈ Rholds〈〈xty, z〉〉 ∈ R.

We say thatR is auxiliary(iv) if and only if:

1This work was partially supported by the Office of Naval Research Grant N00014-95-1-1336.
1 The definition (Def. 1) has been removed.
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(Def. 7) For every elementx of L holds〈〈⊥L, x〉〉 ∈ R.

Let L be a non empty relational structure and letR be a binary relation onL. We say thatR is
auxiliary if and only if:

(Def. 8) R is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv).

Let L be a non empty relational structure. One can check that every binary relation onL which is
auxiliary is also auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) and every binary relation
onL which is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) is also auxiliary.

Let L be a lower-bounded transitive antisymmetric relational structure with l.u.b.’s. One can
verify that there exists a binary relation onL which is auxiliary.

One can prove the following proposition

(1) Let L be a lower-bounded sup-semilattice,A1 be an auxiliary(ii) auxiliary(iii) binary rela-
tion onL, andx, y, z, u be elements ofL. If 〈〈x, z〉〉 ∈A1 and〈〈y, u〉〉 ∈A1, then〈〈xty, ztu〉〉 ∈A1.

Let L be a lower-bounded sup-semilattice. Note that every binary relation onL which is auxil-
iary(i) and auxiliary(ii) is also transitive.

Let L be a relational structure. Note that≤L is auxiliary(i).
Let L be a transitive relational structure. Note that≤L is auxiliary(ii).
Let L be an antisymmetric relational structure with l.u.b.’s. One can check that≤L is auxil-

iary(iii).
Let L be a lower-bounded antisymmetric non empty relational structure. Note that≤L is auxil-

iary(iv).
In the sequela denotes a set.
Let L be a lower-bounded sup-semilattice. The functor Aux(L) is defined by:

(Def. 9) a∈ Aux(L) iff a is an auxiliary binary relation onL.

Let L be a lower-bounded sup-semilattice. Observe that Aux(L) is non empty.
We now state two propositions:

(2) For every lower-bounded sup-semilatticeL and for every auxiliary(i) binary relationA1 on
L holdsA1 ⊆≤L .

(3) For every lower-bounded sup-semilatticeL holds>〈Aux(L),⊆〉 =≤L .

Let L be a lower-bounded sup-semilattice. One can verify that〈Aux(L),⊆〉 is upper-bounded.
Let L be a non empty relational structure. The functor AuxBottom(L) yields a binary relation

onL and is defined by:

(Def. 10) For all elementsx, y of L holds〈〈x, y〉〉 ∈ AuxBottom(L) iff x =⊥L.

Let L be a lower-bounded sup-semilattice. One can verify that AuxBottom(L) is auxiliary.
We now state two propositions:

(4) For every lower-bounded sup-semilatticeL and for every auxiliary(iv) binary relationA1

onL holds AuxBottom(L)⊆ A1.

(5) For every lower-bounded sup-semilatticeL and for every auxiliary(iv) binary relationA1

onL holds⊥〈Aux(L),⊆〉 = AuxBottom(L).

Let L be a lower-bounded sup-semilattice. One can verify that〈Aux(L),⊆〉 is lower-bounded.
Next we state several propositions:

(6) Let L be a lower-bounded sup-semilattice anda, b be auxiliary(i) binary relations onL.
Thena∩b is an auxiliary(i) binary relation onL.

(7) Let L be a lower-bounded sup-semilattice anda, b be auxiliary(ii) binary relations onL.
Thena∩b is an auxiliary(ii) binary relation onL.
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(8) Let L be a lower-bounded sup-semilattice anda, b be auxiliary(iii) binary relations onL.
Thena∩b is an auxiliary(iii) binary relation onL.

(9) Let L be a lower-bounded sup-semilattice anda, b be auxiliary(iv) binary relations onL.
Thena∩b is an auxiliary(iv) binary relation onL.

(10) LetL be a lower-bounded sup-semilattice anda, b be auxiliary binary relations onL. Then
a∩b is an auxiliary binary relation onL.

(11) Let L be a lower-bounded sup-semilattice andX be a non empty subset of〈Aux(L),⊆〉.
Then

⋂
X is an auxiliary binary relation onL.

Let L be a lower-bounded sup-semilattice. Observe that〈Aux(L),⊆〉 has g.l.b.’s.
Let L be a lower-bounded sup-semilattice. One can check that〈Aux(L),⊆〉 is complete.
Let L be a non empty relational structure, letx be an element ofL, and letA1 be a binary relation

on the carrier ofL. The functor↓↓A1x yields a subset ofL and is defined by:

(Def. 11) ↓↓A1x = {y;y ranges over elements ofL: 〈〈y, x〉〉 ∈ A1}.

The functor↑↑A1
x yields a subset ofL and is defined by:

(Def. 12) ↑↑A1
x = {y;y ranges over elements ofL: 〈〈x, y〉〉 ∈ A1}.

One can prove the following proposition

(12) LetL be a lower-bounded sup-semilattice,x be an element ofL, andA1 be an auxiliary(i)
binary relation onL. Then↓↓A1x⊆ ↓x.

Let L be a lower-bounded sup-semilattice, letx be an element ofL, and letA1 be an auxiliary(iv)
binary relation onL. Observe that↓↓A1x is non empty.

Let L be a lower-bounded sup-semilattice, letx be an element ofL, and letA1 be an auxiliary(ii)
binary relation onL. Observe that↓↓A1x is lower.

Let L be a lower-bounded sup-semilattice, letx be an element ofL, and letA1 be an auxiliary(iii)
binary relation onL. Note that↓↓A1x is directed.

Let L be a lower-bounded sup-semilattice and letA1 be an auxiliary(ii) auxiliary(iii) auxiliary(iv)
binary relation onL. The functor↓↓A1 yields a map fromL into 〈Ids(L),⊆〉 and is defined by:

(Def. 13) For every elementx of L holds(↓↓A1)(x) = ↓↓A1x.

We now state three propositions:

(13) LetL be a non empty relational structure,A1 be a binary relation onL, a be a set, andy be
an element ofL. Thena∈ ↓↓A1y if and only if 〈〈a, y〉〉 ∈ A1.

(14) LetL be a sup-semilattice,A1 be a binary relation onL, andy be an element ofL. Then
a∈ ↑↑A1

y if and only if 〈〈y, a〉〉 ∈ A1.

(15) LetL be a lower-bounded sup-semilattice,A1 be an auxiliary(i) binary relation onL, andx
be an element ofL. If A1 = the internal relation ofL, then↓↓A1x = ↓x.

Let L be a non empty poset. The functor MonSet(L) yields a strict relational structure and is
defined by the conditions (Def. 14).

(Def. 14)(i) a∈ the carrier of MonSet(L) iff there exists a maps from L into 〈Ids(L),⊆〉 such that
a = s ands is monotone and for every elementx of L holdss(x)⊆ ↓x, and

(ii) for all setsc, d holds〈〈c, d〉〉 ∈ the internal relation of MonSet(L) iff there exist mapsf ,
g from L into 〈Ids(L),⊆〉 such thatc = f andd = g andc ∈ the carrier of MonSet(L) and
d ∈ the carrier of MonSet(L) and f ≤ g.

We now state two propositions:
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(16) LetL be a lower-bounded sup-semilattice. Then MonSet(L) is a full relational substructure
of (〈Ids(L),⊆〉)the carrier ofL.

(17) LetL be a lower-bounded sup-semilattice,A1 be an auxiliary(ii) binary relation onL, and
x, y be elements ofL. If x≤ y, then↓↓A1x⊆ ↓↓A1y.

Let L be a lower-bounded sup-semilattice and letA1 be an auxiliary(ii) auxiliary(iii) auxiliary(iv)
binary relation onL. Observe that↓↓A1 is monotone.

Next we state the proposition

(18) LetL be a lower-bounded sup-semilattice andA1 be an auxiliary binary relation onL. Then
↓↓A1 ∈ the carrier of MonSet(L).

Let L be a lower-bounded sup-semilattice. Note that MonSet(L) is non empty.
One can prove the following propositions:

(19) For every lower-bounded sup-semilatticeL holds IdsMap(L) ∈ the carrier of MonSet(L).

(20) For every lower-bounded sup-semilatticeL and for every auxiliary binary relationA1 on L
holds↓↓A1 ≤ IdsMap(L).

(21) For every lower-bounded non empty posetL and for every idealI of L holds⊥L ∈ I .

(22) For every upper-bounded non empty posetL and for every filterF of L holds>L ∈ F.

(23) For every lower-bounded non empty posetL holds↓(⊥L) = {⊥L}.

(24) For every upper-bounded non empty posetL holds↑(>L) = {>L}.

In the sequelL is a lower-bounded sup-semilattice andx is an element ofL.
Next we state three propositions:

(25) (The carrier ofL) 7−→ {⊥L} is a map fromL into 〈Ids(L),⊆〉.

(26) (The carrier ofL) 7−→ {⊥L} ∈ the carrier of MonSet(L).

(27) For every auxiliary binary relationA1 on L holds〈〈(the carrier ofL) 7−→ {⊥L}, ↓↓A1〉〉 ∈ the
internal relation of MonSet(L).

Let us considerL. Note that MonSet(L) is upper-bounded.
Let us considerL. The functor Rel2Map(L) yields a map from〈Aux(L),⊆〉 into MonSet(L) and

is defined as follows:

(Def. 15) For every auxiliary binary relationA1 onL holds(Rel2Map(L))(A1) = ↓↓A1.

The following propositions are true:

(28) For all auxiliary binary relationsR1, R2 onL such thatR1 ⊆ R2 holds↓↓R1 ≤ ↓↓R2.

(29) For all binary relationsR1, R2 onL such thatR1 ⊆ R2 holds↓↓R1x⊆ ↓↓R2x.

Let us considerL. Note that Rel2Map(L) is monotone.
Let us considerL. The functor Map2Rel(L) yields a map from MonSet(L) into 〈Aux(L),⊆〉 and

is defined by the condition (Def. 16).

(Def. 16) Lets be a set. Supposes∈ the carrier of MonSet(L). Then there exists an auxiliary binary
relationA1 onL such that

(i) A1 = (Map2Rel(L))(s), and

(ii) for all setsx, y holds〈〈x, y〉〉 ∈ A1 iff there exist elementsx′, y′ of L and there exists a map
s′ from L into 〈Ids(L),⊆〉 such thatx′ = x andy′ = y ands′ = s andx′ ∈ s′(y′).
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Let us considerL. Note that Map2Rel(L) is monotone.
We now state two propositions:

(30) Map2Rel(L) ·Rel2Map(L) = iddomRel2Map(L).

(31) Rel2Map(L) ·Map2Rel(L) = idthe carrier ofMonSet(L).

Let us considerL. Observe that Rel2Map(L) is one-to-one.
We now state three propositions:

(32) (Rel2Map(L))−1 = Map2Rel(L).

(33) Rel2Map(L) is isomorphic.

(34) For every complete latticeL and for every elementx of L holds
⋂
{I ; I ranges over ideals of

L: x≤ supI}= ↓↓x.

The schemeLambdaC’deals with a non empty relational structureA , a unary functorF yielding
a set, a unary functorG yielding a set, and a unary predicateP , and states that:

There exists a functionf such that domf = the carrier ofA and for every elementx
of A holds if P [x], then f (x) = F (x) and if notP [x], then f (x) = G(x)

for all values of the parameters.
Let L be a semilattice and letI be an ideal ofL. The functor DownMap(I) yielding a map from

L into 〈Ids(L),⊆〉 is defined as follows:

(Def. 17) For every elementx of L holds ifx≤ supI , then(DownMap(I))(x) = ↓x∩ I and ifx 6≤ supI ,
then(DownMap(I))(x) = ↓x.

Next we state two propositions:

(35) For every semilatticeL and for every idealI of L holds DownMap(I) ∈ the carrier of
MonSet(L).

(36) LetL be an antisymmetric reflexive relational structure with g.l.b.’s,x be an element ofL,
andD be a non empty lower subset ofL. Then{x}uD = ↓x∩D.

2. APPROXIMATING RELATIONS

Let L be a non empty relational structure and letA1 be a binary relation onL. We say thatA1 is
approximating if and only if:

(Def. 18) For every elementx of L holdsx = sup↓↓A1x.

Let L be a non empty poset and letm1 be a map fromL into 〈Ids(L),⊆〉. We say thatm1 is
approximating if and only if:

(Def. 19) For every elementx of L there exists a subseti1 of L such thati1 = m1(x) andx = supi1.

One can prove the following propositions:

(37) For every lower-bounded meet-continuous semilatticeL and for every idealI of L holds
DownMap(I) is approximating.

(38) Every lower-bounded continuous lattice is meet-continuous.

One can verify that every lower-bounded lattice which is continuous is also meet-continuous.
We now state the proposition

(39) For every lower-bounded continuous latticeL and for every idealI of L holds DownMap(I)
is approximating.
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Let L be a non empty reflexive antisymmetric relational structure. One can verify that�L is
auxiliary(i).

Let L be a non empty reflexive transitive relational structure. One can check that�L is auxil-
iary(ii).

Let L be a poset with l.u.b.’s. Note that�L is auxiliary(iii).
Let L be an inf-complete non empty poset. One can verify that�L is auxiliary(iii).
Let L be a lower-bounded antisymmetric reflexive non empty relational structure. Note that�L

is auxiliary(iv).
We now state two propositions:

(40) For every complete latticeL and for every elementx of L holds↓↓�Lx = ↓↓x.

(41) For every latticeL holds≤L is approximating.

Let L be a lower-bounded continuous lattice. Observe that�L is approximating.
Let L be a complete lattice. One can check that there exists a binary relation onL which is

approximating and auxiliary.
Let L be a complete lattice. The functor App(L) is defined as follows:

(Def. 20) a∈ App(L) iff a is an approximating auxiliary binary relation onL.

Let L be a complete lattice. One can check that App(L) is non empty.
One can prove the following propositions:

(42) Let L be a complete lattice andm1 be a map fromL into 〈Ids(L),⊆〉. Supposem1 is ap-
proximating andm1 ∈ the carrier of MonSet(L). Then there exists an approximating auxiliary
binary relationA1 onL such thatA1 = (Map2Rel(L))(m1).

(43) For every complete latticeL and for every elementx of L holds
⋂
{(DownMap(I))(x) : I

ranges over ideals ofL}= ↓↓x.

(44) Let L be a lower-bounded meet-continuous lattice andx be an element ofL. Then⋂
{↓↓A1x;A1 ranges over auxiliary binary relations onL: A1 ∈ App(L)}= ↓↓x.

In the sequelL is a complete lattice.
One can prove the following propositions:

(45) L is continuous if and only if for every approximating auxiliary binary relationRonL holds
�L ⊆ Rand�L is approximating.

(46) L is continuous if and only if the following conditions are satisfied:

(i) L is meet-continuous, and

(ii) there exists an approximating auxiliary binary relationRonL such that for every approxi-
mating auxiliary binary relationR′ onL holdsR⊆ R′.

Let L be a relational structure and letA1 be a binary relation onL. We say thatA1 satisfies strong
interpolation property if and only if:

(Def. 21) For all elementsx, zof L such that〈〈x, z〉〉 ∈ A1 andx 6= z there exists an elementy of L such
that〈〈x, y〉〉 ∈ A1 and〈〈y, z〉〉 ∈ A1 andx 6= y.

Let L be a relational structure and letA1 be a binary relation onL. We say thatA1 satisfies
interpolation property if and only if:

(Def. 22) For all elementsx, z of L such that〈〈x, z〉〉 ∈ A1 there exists an elementy of L such that〈〈x,
y〉〉 ∈ A1 and〈〈y, z〉〉 ∈ A1.

We now state the proposition
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(48)2 Let L be a relational structure andA1 be a binary relation onL. SupposeA1 satisfies strong
interpolation property. ThenA1 satisfies interpolation property.

Let L be a non empty relational structure. One can verify that every binary relation onL which
satisfies strong interpolation property satisfies also interpolation property.

In the sequelA1 denotes a binary relation onL andx, y, z denote elements ofL.
The following four propositions are true:

(49) For every approximating binary relationA1 on L such thatx 6≤ y there exists an elementu
of L such that〈〈u, x〉〉 ∈ A1 andu 6≤ y.

(50) LetR be an approximating auxiliary(i) auxiliary(iii) binary relation onL. If 〈〈x, z〉〉 ∈ R and
x 6= z, then there existsy such thatx≤ y and〈〈y, z〉〉 ∈ Randx 6= y.

(51) LetR be an approximating auxiliary binary relation onL. Supposex� z andx 6= z. Then
there exists an elementy of L such that〈〈x, y〉〉 ∈ Rand〈〈y, z〉〉 ∈ Randx 6= y.

(52) For every lower-bounded continuous latticeL holds�L satisfies strong interpolation prop-
erty.

Let L be a lower-bounded continuous lattice. Observe that�L satisfies strong interpolation
property.

Next we state two propositions:

(53) LetL be a lower-bounded continuous lattice andx, y be elements ofL. If x� y, then there
exists an elementx′ of L such thatx� x′ andx′� y.

(54) LetL be a lower-bounded continuous lattice andx, y be elements ofL. Thenx� y if and
only if for every non empty directed subsetD of L such thaty≤ supD there exists an element
d of L such thatd ∈ D andx� d.

3. EXERCISES

Let L be a relational structure, letX be a subset ofL, and letR be a binary relation on the carrier of
L. We say thatX is directed w.r.t.R if and only if:

(Def. 23) For all elementsx, y of L such thatx∈ X andy∈ X there exists an elementzof L such that
z∈ X and〈〈x, z〉〉 ∈ Rand〈〈y, z〉〉 ∈ R.

One can prove the following proposition

(55) Let L be a relational structure andX be a subset ofL. SupposeX is directed w.r.t. the
internal relation ofL. ThenX is directed.

Let X, x be sets and letR be a binary relation. We say thatx is maximal w.r.t.X, R if and only
if:

(Def. 24) x∈ X and it is not true that there exists a sety such thaty∈ X andy 6= x and〈〈x, y〉〉 ∈ R.

Let L be a relational structure, letX be a set, and letx be an element ofL. We say thatx is
maximal inX if and only if:

(Def. 25) x is maximal w.r.t.X, the internal relation ofL.

One can prove the following proposition

(56) LetL be a relational structure,X be a set, andx be an element ofL. Thenx is maximal in
X if and only if the following conditions are satisfied:

(i) x∈ X, and

(ii) it is not true that there exists an elementy of L such thaty∈ X andx < y.

2 The proposition (47) has been removed.
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Let X, x be sets and letRbe a binary relation. We say thatx is minimal w.r.t.X, R if and only if:

(Def. 26) x∈ X and it is not true that there exists a sety such thaty∈ X andy 6= x and〈〈y, x〉〉 ∈ R.

Let L be a relational structure, letX be a set, and letx be an element ofL. We say thatx is
minimal inX if and only if:

(Def. 27) x is minimal w.r.t.X, the internal relation ofL.

The following propositions are true:

(57) LetL be a relational structure,X be a set, andx be an element ofL. Thenx is minimal inX
if and only if the following conditions are satisfied:

(i) x∈ X, and

(ii) it is not true that there exists an elementy of L such thaty∈ X andx > y.

(58) If A1 satisfies strong interpolation property, then for everyx such that there existsy which
is maximal w.r.t.↓↓A1x, A1 holds〈〈x, x〉〉 ∈ A1.

(59) If for everyx such that there existsy which is maximal w.r.t.↓↓A1x, A1 holds〈〈x, x〉〉 ∈ A1,
thenA1 satisfies strong interpolation property.

(60) LetA1 be an auxiliary(ii) auxiliary(iii) binary relation onL. SupposeA1 satisfies interpo-
lation property. Let givenx. Then↓↓A1x is directed w.r.t.A1.

(61) If for everyx holds↓↓A1x is directed w.r.t.A1, thenA1 satisfies interpolation property.

(62) LetRbe an approximating auxiliary(i) auxiliary(ii) auxiliary(iii) binary relation onL. Sup-
poseRsatisfies interpolation property. ThenRsatisfies strong interpolation property.

Let us considerL. One can check that every approximating auxiliary binary relation onL which
satisfies interpolation property satisfies also strong interpolation property.
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