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Summary. The aim of this paper is to formalize the second part of Chapter | Section 1
(1.9-1.19) in[[10]. Definitions of Scott’s auxiliary and approximating relations are introduced
in this work. We showed that in a meet-continuous lattice, the way-below relation is the
intersection of all approximating auxiliary relations (proposition (40) — compare 1.13lin [10,
pp. 43-47]). By (41) a continuous lattice is a complete lattice in wkiclis the smallest
approximating auxiliary relation. The notions of the strong interpolation property and the
interpolation property are also introduced.
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The articles[[1B],[[9], [[20], [[16],[[19],[[17],[18], (2], [[21],[[23],[[22],[16],[1I7],[[3],.[15],[[1],[[14],
[111, [24], [12], [4], [13], and [5] provide the notation and terminology for this paper.

1. AUXILIARY RELATIONS

Let L be a non empty reflexive relational structure. The funetgryielding a binary relation oh
is defined by:

(Def. 2ff] For all elements, y of L holds(x, y) € < iff x<y.
LetL be a relational structure. The functgy yields a binary relation oh and is defined by:
(Def. 3) < =theinternal relation of.

LetL be a relational structure and Rtbe a binary relation oh. We say thaR is auxiliary(i) if
and only if:

(Def. 4) For all elementg, y of L such that{x, y) € Rholdsx <'y.
We say thaR is auxiliary(ii) if and only if:
(Def. 5) For all elements, y, z, u of L such thau < xand({x, y) € Randy < zholds{u, z) € R

Let L be a non empty relational structure andRebe a binary relation oh. We say thaR is
auxiliary(iii) if and only if:

(Def. 6) For all elements, y, zof L such that{x, z) € Rand(y, z) € Rholds(xUy, z) € R.

We say thaR is auxiliary(iv) if and only if:

1This work was partially supported by the Office of Naval Research Grant NO0014-95-1-1336.
1 The definition (Def. 1) has been removed.
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(Def. 7) For every elementof L holds{ L, ,x) € R.

Let L be a non empty relational structure andRebe a binary relation oh. We say thaR is
auxiliary if and only if:

(Def. 8) Ris auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv).

LetL be a non empty relational structure. One can check that every binary relationtunh is
auxiliary is also auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) and every binary relation
on L which is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) is also auxiliary.

Let L be a lower-bounded transitive antisymmetric relational structure with l.u.b.'s. One can
verify that there exists a binary relation arwhich is auxiliary.

One can prove the following proposition

(1) LetL be alower-bounded sup-semilattidg, be an auxiliary(ii) auxiliary(iii) binary rela-
tion onL, andx, y, z, ube elements df. If (x, z) € A; and(y, u) € A1, then{xUy, zLlu) € A;.

LetL be a lower-bounded sup-semilattice. Note that every binary relatidnvamich is auxil-
iary(i) and auxiliary(ii) is also transitive.

LetL be a relational structure. Note thst is auxiliary(i).

LetL be a transitive relational structure. Note thatis auxiliary(ii).

Let L be an antisymmetric relational structure with l.u.b.'s. One can check<thas auxil-
iary(iii).

LetL be a lower-bounded antisymmetric non empty relational structure. Notethiatauxil-
iary(iv).

In the seque& denotes a set.

LetL be a lower-bounded sup-semilattice. The functor Auxs defined by:

(Def. 9) aec Aux(L) iff ais an auxiliary binary relation oh.

LetL be a lower-bounded sup-semilattice. Observe that(Auis non empty.
We now state two propositions:

(2) For every lower-bounded sup-semilatticand for every auxiliary(i) binary relatioA; on
L holdsA; C <, .

(3) For every lower-bounded sup-semilatticaolds T jayx(),c) = <L -

LetL be a lower-bounded sup-semilattice. One can verify thak(L), C) is upper-bounded.

Let L be a non empty relational structure. The functor AuxBottbjryields a binary relation
onL and is defined by:

(Def. 10) For all elements, y of L holds(x, y) € AuxBottom(L) iff x= L.

LetL be a lower-bounded sup-semilattice. One can verify that AuxBdttoms auxiliary.
We now state two propositions:

(4) For every lower-bounded sup-semilatticand for every auxiliary(iv) binary relatioA;
onL holds AuxBottonfL) C A;.

(5) For every lower-bounded sup-semilatticand for every auxiliary(iv) binary relatioA;
onL holds L ayx),c) = AuxBottom(L ).

LetL be a lower-bounded sup-semilattice. One can verify thak(L), C) is lower-bounded.
Next we state several propositions:

(6) LetL be a lower-bounded sup-semilattice amd be auxiliary(i) binary relations oh.
Thenanb s an auxiliary(i) binary relation oh.

(7) LetL be a lower-bounded sup-semilattice amd be auxiliary(ii) binary relations oh.
Thenanb s an auxiliary(ii) binary relation oh.
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(8) LetL be a lower-bounded sup-semilattice amd be auxiliary(iii) binary relations ot
Thenanhb is an auxiliary(iii) binary relation om.

(9) LetL be a lower-bounded sup-semilattice and be auxiliary(iv) binary relations oh.
Thenanb s an auxiliary(iv) binary relation oh.

(10) LetL be a lower-bounded sup-semilattice and be auxiliary binary relations oh. Then
anbis an auxiliary binary relation oh.

(11) LetL be a lower-bounded sup-semilattice axide a non empty subset ¢hux(L), C).
Then X is an auxiliary binary relation oh.

LetL be a lower-bounded sup-semilattice. Observe thax(L),C) has g.l.b.’s.

LetL be a lower-bounded sup-semilattice. One can check#at(L),C) is complete.

LetL be a non empty relational structure, ¥die an element df, and letA; be a binary relation
on the carrier of.. The functor|a,x yields a subset df and is defined by:

(Def. 11) [a,x= {y;y ranges over elements bf (y, x) € A;}.
The functorf, xyields a subset df and is defined by:

(Def. 12) 1, x= {y;y ranges over elements bf {x, y) € A; }.
One can prove the following proposition

(12) LetL be a lower-bounded sup-semilatticehe an element df, andA; be an auxiliary(i)
binary relation orl_. ThenLAlx C Ix

LetL be a lower-bounded sup-semilattice Xdte an element df, and letA; be an auxiliary(iv)

binary relation orL.. Observe thafa, X is non empty.
LetL be a lower-bounded sup-semilattice Xdte an element df, and letA; be an auxiliary(ii)

binary relation orL. Observe thafa,x is lower.
LetL be a lower-bounded sup-semilattice Xdte an element df, and letA; be an auxiliary(iii)

binary relation ori.. Note thatLAlx is directed.
LetL be a lower-bounded sup-semilattice anddebe an auxiliary(ii) auxiliary(iii) auxiliary(iv)
binary relation ori.. The functor|A; yields a map front into (Ids(L), C) and is defined by:

(Def. 13)  For every elementof L holds({A1)(X) = |a, .
We now state three propositions:

(13) LetL be a non empty relational structuig, be a binary relation oh, a be a set, ang be
an element of.. Thena € |4, yif and only if (a, y) € As.

(14) LetL be a sup-semilatticédy be a binary relation oh, andy be an element of. Then
ac 1, yifand only if {y,a) € A;.

(15) LetL be a lower-bounded sup-semilattiég,be an auxiliary(i) binary relation oh, andx
be an element df. If A; = the internal relation of, theniAlx: I

Let L be a non empty poset. The functor Mon@gtyields a strict relational structure and is
defined by the conditions (Def. 14).

(Def. 14)()) a < the carrier of MonSét) iff there exists a mag from L into (lds(L), C) such that
a=sandsis monotone and for every elemendf L holdss(x) C |x, and

(i) for all setsc, d holds{c, d) € the internal relation of MonSét) iff there exist mapsf,
g from L into (lds(L),C) such thatc = f andd = g andc < the carrier of MonSé€t.) and
d € the carrier of MonSét.) andf < g.

We now state two propositions:
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(16) LetL be alower-bounded sup-semilattice. Then Mo(iISgis a full relational substructure
of ((Ids(L), C))the carrier ofl.

(17) LetL be a lower-bounded sup-semilatti@g, be an auxiliary(ii) binary relation oh, and
X,y be elements of. If x <y, thena, X C |aY.

LetL be a lower-bounded sup-semilattice anddebe an auxiliary(ii) auxiliary(iii) auxiliary(iv)
binary relation orlL.. Observe thatA; is monotone.
Next we state the proposition

(18) LetL be alower-bounded sup-semilattice aqdoe an auxiliary binary relation dn Then
1A € the carrier of MonSét ).

LetL be a lower-bounded sup-semilattice. Note that Mo{iSas non empty.
One can prove the following propositions:

(19) For every lower-bounded sup-semilattickolds IdsMaL) € the carrier of MonSét.).

(20) For every lower-bounded sup-semilatticand for every auxiliary binary relatiofy on L
holds|A; < IdsMap(L).

(21) For every lower-bounded non empty padseind for every ideal of L holds 1| € 1.
(22) For every upper-bounded non empty pdsand for every filtef of L holdsT € F.
(23) For every lower-bounded non empty pdsétolds | (L) = {L.}.

(24) For every upper-bounded non empty pdskolds(TL) = {T.}.

In the sequel is a lower-bounded sup-semilattice anig an element of..
Next we state three propositions:

(25) (The carrier of.) — { L } is a map fronL into (Ids(L), C).
(26) (The carrierot) — {1} € the carrier of MonS¢t.).

(27) For every auxiliary binary relatiofy onL holds{(the carrier ofL) — {1}, |A;) € the
internal relation of MonSéL ).

Let us considet. Note that MonSet ) is upper-bounded.
Let us considek. The functor Rel2Mafl.) yields a map from{Aux(L), C) into MonSetL ) and
is defined as follows:

(Def. 15) For every auxiliary binary relatioly onL holds(Rel2MagL))(A1) = [A;.

The following propositions are true:

(28) For all auxiliary binary relationR;, R, onL such thaR; C R, holds|R; < [R,.

(29) For all binary relation®;, R, onL such thaR; C R, holds g, X C |g,X.

Let us considet.. Note that Rel2Mafl.) is monotone.
Let us considek. The functor Map2RéL) yields a map from MonSét) into (Aux(L), C) and
is defined by the condition (Def. 16).

(Def. 16) Letsbe a set. Supposec the carrier of MonSéL). Then there exists an auxiliary binary
relationA; onL such that
(i) A= (Map2Re[L))(s), and

(i) for all setsx, y holds(x, y) € A; iff there exist elementg’, y of L and there exists a map
s fromL into (Ids(L), C) such that’ = x andy’ =y ands = sandx € S(y).
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Let us considet.. Note that Map2Ré€L) is monotone.
We now state two propositions:

(30) Map2Re(L)-Rel2MagL) = idgom Rel2MagL ) -
(31) ReIZMamL) ’ MaPZRe(L) = idthe carrier ofMonSetL)-

Let us considet. Observe that Rel2Mgp) is one-to-one.
We now state three propositions:

(32) (Rel2MaglL))~! = Map2Re(L).
(33) Rel2MapL) is isomorphic.

(34) For every complete lattideand for every elementof L holds({I;| ranges over ideals of
L: x<supl} = |x

The scheméambdaC'deals with a non empty relational structu@ea unary functorf yielding
a set, a unary functag yielding a set, and a unary predicateand states that:
There exists a functiofi such that donfi = the carrier 0fZ and for every element
of 4 holds if P[x], thenf (x) = 7 (x) and if not?[x], thenf(x) = G(X)
for all values of the parameters.
LetL be a semilattice and létbe an ideal of.. The functor DownMafl) yielding a map from
L into (lds(L), C) is defined as follows:

(Def. 17) For every elementof L holds ifx < supl, then(DownMag(l))(x) = | xN1 and ifx £ supl,
then(DownMapg(1))(x) = |x.

Next we state two propositions:

(35) For every semilattick and for every ideal of L holds DownMayl) € the carrier of
MonSetL).

(86) LetL be an antisymmetric reflexive relational structure with g.l.B.Be an element df,
andD be a non empty lower subsetlof Then{x} MD = |xND.

2. APPROXIMATING RELATIONS

Let L be a non empty relational structure andAetbe a binary relation oh. We say tha#\; is
approximating if and only if:

(Def. 18)  For every elementof L holdsx = supa, .

Let L be a non empty poset and let be a map fronl into (Ids(L),C). We say thatm is
approximating if and only if:

(Def. 19) For every elememtof L there exists a subsatof L such thai; = my(x) andx = supis.

One can prove the following propositions:

(37) For every lower-bounded meet-continuous semilattiesd for every ideal of L holds
DownMagp(l) is approximating.

(38) Every lower-bounded continuous lattice is meet-continuous.

One can verify that every lower-bounded lattice which is continuous is also meet-continuous.
We now state the proposition

(39) For every lower-bounded continuous latticand for every idedl of L holds DownMal )
is approximating.
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Let L be a non empty reflexive antisymmetric relational structure. One can verifythas
auxiliary(i).

Let L be a non empty reflexive transitive relational structure. One can checkthad auxil-
iary(ii).

LetL be a poset with l.u.b.’s. Note th&t_ is auxiliary(iii).

LetL be an inf-complete non empty poset. One can verify iatis auxiliary(iii).

LetL be a lower-bounded antisymmetric reflexive non empty relational structure. Notethat
is auxiliary(iv).

We now state two propositions:

(40) For every complete lattideand for every elementof L holds |« x= |x.

(41) For every latticé holds<, is approximating.

LetL be a lower-bounded continuous lattice. Observe &iais approximating.

Let L be a complete lattice. One can check that there exists a binary relatibnuich is
approximating and auxiliary.

Let L be a complete lattice. The functor Aty is defined as follows:

(Def. 20) ac App(L) iff ais an approximating auxiliary binary relation an

Let L be a complete lattice. One can check that Apds non empty.
One can prove the following propositions:

(42) LetL be a complete lattice anty, be a map fronL into (Ids(L), C). Supposemy is ap-
proximating andm € the carrier of MonSéL). Then there exists an approximating auxiliary
binary relationA; onL such thaty; = (Map2Re(L))(my).

(43) For every complete lattide and for every element of L holdsN{(DownMag())(x) : |
ranges over ideals df} = |x.

(44) LetL be a lower-bounded meet-continuous lattice ande an element of.. Then
N{{a, X A1 ranges over auxiliary binary relations bnA; € App(L)} = Ix.

In the sequel is a complete lattice.
One can prove the following propositions:

(45) Lis continuous if and only if for every approximating auxiliary binary relaon L holds
< € Rand« is approximating.
(46) L is continuous if and only if the following conditions are satisfied:
(i) Lis meet-continuous, and

(i) there exists an approximating auxiliary binary relati®ion L such that for every approxi-
mating auxiliary binary relatioR® onL holdsRC R.

LetL be arelational structure and It be a binary relation oh. We say tha#\; satisfies strong
interpolation property if and only if:

(Def. 21) For all elements, zof L such that(x, z) € A; andx # zthere exists an elemepbf L such
that(x, y) € Aq and(y, z) € Ay andx#Y.

Let L be a relational structure and 18§ be a binary relation oh. We say thatA; satisfies
interpolation property if and only if:

(Def. 22) For all elements, z of L such that(x, z) € A; there exists an elementof L such that(x,
y) € Aj and(y, z) € Ag.

We now state the proposition
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(48E] LetL be a relational structure ad be a binary relation oh. Supposé\; satisfies strong
interpolation property. TheA; satisfies interpolation property.

LetL be a non empty relational structure. One can verify that every binary relatiarwdrich
satisfies strong interpolation property satisfies also interpolation property.

In the sequeR; denotes a binary relation dnandx, y, zdenote elements df.

The following four propositions are true:

(49) For every approximating binary relatida on L such thatx £ y there exists an element
of L such that{u, x) € A andu £ y.

(50) LetRbe an approximating auxiliary(i) auxiliary(iii) binary relation énlf (x, z) € Rand
X # z, then there existg such thak < yand(y, zZ) € Randx # .

(51) LetRbe an approximating auxiliary binary relation bn Suppos& <« zandx # z Then
there exists an elemenbf L such thatx, y} € Rand(y, z) € Randx #.

(52) For every lower-bounded continuous lattickolds <, satisfies strong interpolation prop-
erty.

Let L be a lower-bounded continuous lattice. Observe thatsatisfies strong interpolation

property.
Next we state two propositions:

(53) LetL be a lower-bounded continuous lattice ang be elements df. If x <y, then there
exists an element of L such that < X' andX' < y.

(54) LetL be a lower-bounded continuous lattice ang be elements of. Thenx <« y if and
only if for every non empty directed subdaof L such thaty < supD there exists an element
d of L such thad € D andx <« d.

3. EXERCISES

Let L be a relational structure, &t be a subset df, and letR be a binary relation on the carrier of
L. We say thaKX is directed w.r.tRif and only if:

(Def. 23) For all elements, y of L such thak € X andy € X there exists an elemenbdf L such that
ze Xand(x,z) e Rand(y,z) e R.

One can prove the following proposition

(55) LetL be a relational structure arXl be a subset of. SupposeX is directed w.r.t. the
internal relation oL.. ThenX is directed.

Let X, X be sets and |eR be a binary relation. We say thais maximal w.r.t.X, Rif and only
if:

(Def. 24) x e X and it is not true that there exists a geiuch thaly € X andy # x and(x, y) € R

Let L be a relational structure, l&t be a set, and let be an element of. We say thak is
maximal inX if and only if:

(Def. 25) xis maximal w.r.t.X, the internal relation of.

One can prove the following proposition
(56) LetL be arelational structur& be a set, and be an element df. Thenx is maximal in
X if and only if the following conditions are satisfied:
(i) xeX,and
(i) itis not true that there exists an elemerf L such thay € X andx < y.

2 The proposition (47) has been removed.



AUXILIARY AND APPROXIMATING RELATIONS 8

Let X, x be sets and |€R be a binary relation. We say thats minimal w.r.t. X, Rif and only if:
(Def. 26) x e X and itis not true that there exists a getuch that € X andy £ x and(y, X} € R.

Let L be a relational structure, & be a set, and let be an element of. We say thaik is
minimal in X if and only if:

(Def. 27) xis minimal w.r.t.X, the internal relation of.

The following propositions are true:

(57) LetL be arelational structur& be a set, and be an element df. Thenx is minimal inX
if and only if the following conditions are satisfied:

(i) xeX,and
(ii) itis not true that there exists an elemerf L such thaty € X andx > .

(58) If A; satisfies strong interpolation property, then for evesuch that there exisiswhich
is maximal w.r.t.La,x, A; holds(x, x) € A;.

(59) If for everyx such that there existswhich is maximal w.r.t.|a, X, A1 holds (x, ) € Aq,
thenA; satisfies strong interpolation property.

(60) LetA; be an auxiliary(ii) auxiliary(iii) binary relation oh. Supposeé\; satisfies interpo-
lation property. Let giverx. Then|a, X is directed w.r.tA;.

(61) If for everyx holds|a, x is directed w.r.tA, thenA satisfies interpolation property.

(62) LetRbe an approximating auxiliary(i) auxiliary(ii) auxiliary(iii) binary relation anSup-
poseR satisfies interpolation property. Th&®satisfies strong interpolation property.

Let us considek. One can check that every approximating auxiliary binary relation which
satisfies interpolation property satisfies also strong interpolation property.
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