Auxiliary and Approximating Relations¹

Adam Grabowski Warsaw University Białystok

Summary. The aim of this paper is to formalize the second part of Chapter I Section 1 (1.9–1.19) in [10]. Definitions of Scott's auxiliary and approximating relations are introduced in this work. We showed that in a meet-continuous lattice, the way-below relation is the intersection of all approximating auxiliary relations (proposition (40) — compare 1.13 in [10, pp. 43–47]). By (41) a continuous lattice is a complete lattice in which \ll is the smallest approximating auxiliary relation. The notions of the strong interpolation property and the interpolation property are also introduced.

MML Identifier: WAYBEL_4.

WWW: http://mizar.org/JFM/Vol8/waybel_4.html

The articles [18], [9], [20], [16], [19], [17], [8], [2], [21], [23], [22], [6], [7], [3], [15], [1], [14], [11], [24], [12], [4], [13], and [5] provide the notation and terminology for this paper.

1. AUXILIARY RELATIONS

Let *L* be a non empty reflexive relational structure. The functor \ll_L yielding a binary relation on *L* is defined by:

(Def. 2)¹ For all elements x, y of L holds $\langle x, y \rangle \in \ll_L$ iff $x \ll y$.

Let L be a relational structure. The functor \leq_L yields a binary relation on L and is defined by:

(Def. 3) \leq_L = the internal relation of L.

Let *L* be a relational structure and let *R* be a binary relation on *L*. We say that *R* is auxiliary(i) if and only if:

(Def. 4) For all elements x, y of L such that $\langle x, y \rangle \in R$ holds $x \leq y$.

We say that *R* is auxiliary(ii) if and only if:

(Def. 5) For all elements x, y, z, u of L such that $u \le x$ and $\langle x, y \rangle \in R$ and $y \le z$ holds $\langle u, z \rangle \in R$.

Let L be a non empty relational structure and let R be a binary relation on L. We say that R is auxiliary(iii) if and only if:

(Def. 6) For all elements x, y, z of L such that $\langle x, z \rangle \in R$ and $\langle y, z \rangle \in R$ holds $\langle x \sqcup y, z \rangle \in R$.

We say that *R* is auxiliary(iv) if and only if:

¹This work was partially supported by the Office of Naval Research Grant N00014-95-1-1336.

¹ The definition (Def. 1) has been removed.

(Def. 7) For every element x of L holds $\langle \perp_L, x \rangle \in R$.

Let L be a non empty relational structure and let R be a binary relation on L. We say that R is auxiliary if and only if:

(Def. 8) R is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv).

Let L be a non empty relational structure. One can check that every binary relation on L which is auxiliary is also auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) and every binary relation on L which is auxiliary(i), auxiliary(ii), auxiliary(iii), and auxiliary(iv) is also auxiliary.

Let L be a lower-bounded transitive antisymmetric relational structure with l.u.b.'s. One can verify that there exists a binary relation on L which is auxiliary.

One can prove the following proposition

(1) Let *L* be a lower-bounded sup-semilattice, A_1 be an auxiliary(ii) auxiliary(iii) binary relation on *L*, and x, y, z, u be elements of *L*. If $\langle x, z \rangle \in A_1$ and $\langle y, u \rangle \in A_1$, then $\langle x \sqcup y, z \sqcup u \rangle \in A_1$.

Let L be a lower-bounded sup-semilattice. Note that every binary relation on L which is auxiliary(i) and auxiliary(ii) is also transitive.

Let *L* be a relational structure. Note that \leq_L is auxiliary(i).

Let *L* be a transitive relational structure. Note that \leq_L is auxiliary(ii).

Let L be an antisymmetric relational structure with l.u.b.'s. One can check that \leq_L is auxiliary(iii).

Let L be a lower-bounded antisymmetric non empty relational structure. Note that \leq_L is auxiliary(iv).

In the sequel a denotes a set.

Let L be a lower-bounded sup-semilattice. The functor Aux(L) is defined by:

(Def. 9) $a \in Aux(L)$ iff a is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Observe that $\operatorname{Aux}(L)$ is non empty. We now state two propositions:

- (2) For every lower-bounded sup-semilattice L and for every auxiliary(i) binary relation A_1 on L holds $A_1 \subseteq \subseteq_L$.
- (3) For every lower-bounded sup-semilattice *L* holds $\top_{\langle Aux(L), \subset \rangle} = \leq_L$.

Let L be a lower-bounded sup-semilattice. One can verify that $\langle \operatorname{Aux}(L), \subseteq \rangle$ is upper-bounded. Let L be a non empty relational structure. The functor $\operatorname{AuxBottom}(L)$ yields a binary relation on L and is defined by:

(Def. 10) For all elements x, y of L holds $\langle x, y \rangle \in \text{AuxBottom}(L)$ iff $x = \bot_L$.

Let L be a lower-bounded sup-semilattice. One can verify that $\operatorname{AuxBottom}(L)$ is auxiliary. We now state two propositions:

- (4) For every lower-bounded sup-semilattice L and for every auxiliary(iv) binary relation A_1 on L holds $AuxBottom(L) \subseteq A_1$.
- (5) For every lower-bounded sup-semilattice L and for every auxiliary(iv) binary relation A_1 on L holds $\perp_{\langle \operatorname{Aux}(L), \subseteq \rangle} = \operatorname{AuxBottom}(L)$.

Let L be a lower-bounded sup-semilattice. One can verify that $\langle \operatorname{Aux}(L), \subseteq \rangle$ is lower-bounded. Next we state several propositions:

- (6) Let L be a lower-bounded sup-semilattice and a, b be auxiliary(i) binary relations on L. Then $a \cap b$ is an auxiliary(i) binary relation on L.
- (7) Let L be a lower-bounded sup-semilattice and a, b be auxiliary(ii) binary relations on L. Then $a \cap b$ is an auxiliary(ii) binary relation on L.

- (8) Let L be a lower-bounded sup-semilattice and a, b be auxiliary(iii) binary relations on L. Then $a \cap b$ is an auxiliary(iii) binary relation on L.
- (9) Let L be a lower-bounded sup-semilattice and a, b be auxiliary(iv) binary relations on L. Then $a \cap b$ is an auxiliary(iv) binary relation on L.
- (10) Let L be a lower-bounded sup-semilattice and a, b be auxiliary binary relations on L. Then $a \cap b$ is an auxiliary binary relation on L.
- (11) Let L be a lower-bounded sup-semilattice and X be a non empty subset of $\langle \operatorname{Aux}(L), \subseteq \rangle$. Then $\bigcap X$ is an auxiliary binary relation on L.

Let L be a lower-bounded sup-semilattice. Observe that $\langle Aux(L), \subseteq \rangle$ has g.l.b.'s.

Let L be a lower-bounded sup-semilattice. One can check that $\langle \operatorname{Aux}(L), \subseteq \rangle$ is complete.

Let *L* be a non empty relational structure, let *x* be an element of *L*, and let A_1 be a binary relation on the carrier of *L*. The functor $\downarrow_{A_1} x$ yields a subset of *L* and is defined by:

(Def. 11) $\downarrow_{A_1} x = \{y; y \text{ ranges over elements of } L: \langle y, x \rangle \in A_1 \}.$

The functor $\uparrow_{A_1} x$ yields a subset of L and is defined by:

(Def. 12) $\uparrow_{A_1} x = \{y; y \text{ ranges over elements of } L: \langle x, y \rangle \in A_1 \}.$

One can prove the following proposition

(12) Let *L* be a lower-bounded sup-semilattice, *x* be an element of *L*, and A_1 be an auxiliary(i) binary relation on *L*. Then $\downarrow_{A_1} x \subseteq \downarrow x$.

Let *L* be a lower-bounded sup-semilattice, let *x* be an element of *L*, and let A_1 be an auxiliary(iv) binary relation on *L*. Observe that $\downarrow_{A_1} x$ is non empty.

Let *L* be a lower-bounded sup-semilattice, let *x* be an element of *L*, and let A_1 be an auxiliary(ii) binary relation on *L*. Observe that $\downarrow_{A_1} x$ is lower.

Let L be a lower-bounded sup-semilattice, let x be an element of L, and let A_1 be an auxiliary(iii) binary relation on L. Note that $\downarrow_{A_1} x$ is directed.

Let *L* be a lower-bounded sup-semilattice and let A_1 be an auxiliary(ii) auxiliary(iii) auxiliary(iv) binary relation on *L*. The functor $\downarrow A_1$ yields a map from *L* into $\langle Ids(L), \subseteq \rangle$ and is defined by:

(Def. 13) For every element x of L holds $({\downarrow}A_1)(x) = {\downarrow}_{A_1}x$.

We now state three propositions:

- (13) Let *L* be a non empty relational structure, A_1 be a binary relation on *L*, *a* be a set, and *y* be an element of *L*. Then $a \in \downarrow_{A_1} y$ if and only if $\langle a, y \rangle \in A_1$.
- (14) Let *L* be a sup-semilattice, A_1 be a binary relation on *L*, and *y* be an element of *L*. Then $a \in \uparrow_{A_1} y$ if and only if $\langle y, a \rangle \in A_1$.
- (15) Let L be a lower-bounded sup-semilattice, A_1 be an auxiliary(i) binary relation on L, and x be an element of L. If A_1 = the internal relation of L, then $\downarrow_{A_1} x = \downarrow x$.

Let L be a non empty poset. The functor MonSet(L) yields a strict relational structure and is defined by the conditions (Def. 14).

- (Def. 14)(i) $a \in \text{the carrier of MonSet}(L)$ iff there exists a map s from L into $\langle \text{Ids}(L), \subseteq \rangle$ such that a = s and s is monotone and for every element s of s holds s (s) s (s) s (s) s (s) such that
 - (ii) for all sets c, d holds $\langle c, d \rangle \in$ the internal relation of $\operatorname{MonSet}(L)$ iff there exist maps f, g from L into $\langle \operatorname{Ids}(L), \subseteq \rangle$ such that c = f and d = g and $c \in$ the carrier of $\operatorname{MonSet}(L)$ and $d \in$ the carrier of $\operatorname{MonSet}(L)$ and $f \leq g$.

We now state two propositions:

- (16) Let L be a lower-bounded sup-semilattice. Then MonSet(L) is a full relational substructure of $(\langle \operatorname{Ids}(L), \subseteq \rangle)^{\operatorname{the carrier of } L}$.
- (17) Let L be a lower-bounded sup-semilattice, A_1 be an auxiliary(ii) binary relation on L, and x, y be elements of L. If $x \le y$, then $\downarrow_{A_1} x \subseteq \downarrow_{A_1} y$.

Let *L* be a lower-bounded sup-semilattice and let A_1 be an auxiliary(ii) auxiliary(iii) auxiliary(iv) binary relation on *L*. Observe that $\d A_1$ is monotone.

Next we state the proposition

(18) Let L be a lower-bounded sup-semilattice and A_1 be an auxiliary binary relation on L. Then $A_1 \in \text{the carrier of MonSet}(L)$.

Let L be a lower-bounded sup-semilattice. Note that MonSet(L) is non empty. One can prove the following propositions:

- (19) For every lower-bounded sup-semilattice L holds $IdsMap(L) \in the carrier of MonSet(<math>L$).
- (21) For every lower-bounded non empty poset *L* and for every ideal *I* of *L* holds $\bot_L \in I$.
- (22) For every upper-bounded non empty poset L and for every filter F of L holds $T_L \in F$.
- (23) For every lower-bounded non empty poset *L* holds $\downarrow(\bot_L) = \{\bot_L\}$.
- (24) For every upper-bounded non empty poset *L* holds $\uparrow(\top_L) = \{\top_L\}$.

In the sequel L is a lower-bounded sup-semilattice and x is an element of L. Next we state three propositions:

- (25) (The carrier of L) $\longmapsto \{\bot_L\}$ is a map from L into $\langle Ids(L), \subseteq \rangle$.
- (26) (The carrier of L) $\longmapsto \{\bot_L\} \in \text{the carrier of MonSet}(L)$.
- (27) For every auxiliary binary relation A_1 on L holds \langle (the carrier of L) $\longmapsto \{\bot_L\}, \ \ \downarrow A_1 \rangle \in$ the internal relation of MonSet(L).

Let us consider L. Note that MonSet(L) is upper-bounded.

Let us consider L. The functor Rel2Map(L) yields a map from $\langle Aux(L), \subseteq \rangle$ into MonSet(L) and is defined as follows:

(Def. 15) For every auxiliary binary relation A_1 on L holds $(\text{Rel2Map}(L))(A_1) = \downarrow A_1$.

The following propositions are true:

- (28) For all auxiliary binary relations R_1 , R_2 on L such that $R_1 \subseteq R_2$ holds $\mit R_1 \leq \mit R_2$.
- (29) For all binary relations R_1 , R_2 on L such that $R_1 \subseteq R_2$ holds $\downarrow_{R_1} x \subseteq \downarrow_{R_2} x$.

Let us consider L. Note that Rel2Map(L) is monotone.

Let us consider L. The functor Map2Rel(L) yields a map from MonSet(L) into $\langle Aux(L), \subseteq \rangle$ and is defined by the condition (Def. 16).

- (Def. 16) Let s be a set. Suppose $s \in$ the carrier of MonSet(L). Then there exists an auxiliary binary relation A_1 on L such that
 - (i) $A_1 = (\text{Map2Rel}(L))(s)$, and
 - (ii) for all sets x, y holds $\langle x, y \rangle \in A_1$ iff there exist elements x', y' of L and there exists a map s' from L into $\langle Ids(L), \subseteq \rangle$ such that x' = x and y' = y and s' = s and $x' \in s'(y')$.

Let us consider L. Note that Map2Rel(L) is monotone. We now state two propositions:

- (30) $\operatorname{Map2Rel}(L) \cdot \operatorname{Rel2Map}(L) = \operatorname{id}_{\operatorname{domRel2Map}(L)}.$
- $(31) \quad \mathsf{Rel2Map}(L) \cdot \mathsf{Map2Rel}(L) = \mathsf{id}_{\mathsf{the \ carrier \ of \ MonSet}(L)}.$

Let us consider L. Observe that Rel2Map(L) is one-to-one. We now state three propositions:

- (32) $(\text{Rel2Map}(L))^{-1} = \text{Map2Rel}(L)$.
- (33) Rel2Map(L) is isomorphic.
- (34) For every complete lattice *L* and for every element *x* of *L* holds $\bigcap \{I; I \text{ ranges over ideals of } L: x \le \sup I\} = \downarrow x$.

The scheme LambdaC' deals with a non empty relational structure \mathcal{A} , a unary functor \mathcal{F} yielding a set, a unary functor \mathcal{G} yielding a set, and a unary predicate \mathcal{P} , and states that:

There exists a function f such that dom f = the carrier of \mathcal{A} and for every element x of \mathcal{A} holds if $\mathcal{P}[x]$, then $f(x) = \mathcal{F}(x)$ and if not $\mathcal{P}[x]$, then $f(x) = \mathcal{G}(x)$ for all values of the parameters.

Let L be a semilattice and let I be an ideal of L. The functor DownMap(I) yielding a map from L into $\langle Ids(L), \subset \rangle$ is defined as follows:

(Def. 17) For every element x of L holds if $x \le \sup I$, then $(\operatorname{DownMap}(I))(x) = \downarrow x \cap I$ and if $x \not\le \sup I$, then $(\operatorname{DownMap}(I))(x) = \downarrow x$.

Next we state two propositions:

- (35) For every semilattice L and for every ideal I of L holds $DownMap(I) \in the carrier of MonSet(<math>L$).
- (36) Let L be an antisymmetric reflexive relational structure with g.l.b.'s, x be an element of L, and D be a non empty lower subset of L. Then $\{x\} \cap D = \downarrow x \cap D$.

2. APPROXIMATING RELATIONS

Let L be a non empty relational structure and let A_1 be a binary relation on L. We say that A_1 is approximating if and only if:

(Def. 18) For every element x of L holds $x = \sup_{A_1} x$.

Let L be a non empty poset and let m_1 be a map from L into $\langle Ids(L), \subseteq \rangle$. We say that m_1 is approximating if and only if:

(Def. 19) For every element x of L there exists a subset i_1 of L such that $i_1 = m_1(x)$ and $x = \sup i_1$.

One can prove the following propositions:

- (37) For every lower-bounded meet-continuous semilattice L and for every ideal I of L holds DownMap(I) is approximating.
- (38) Every lower-bounded continuous lattice is meet-continuous.

One can verify that every lower-bounded lattice which is continuous is also meet-continuous. We now state the proposition

(39) For every lower-bounded continuous lattice L and for every ideal I of L holds DownMap(I) is approximating.

Let L be a non empty reflexive antisymmetric relational structure. One can verify that \ll_L is auxiliary(i).

Let L be a non empty reflexive transitive relational structure. One can check that \ll_L is auxiliary(ii).

Let *L* be a poset with l.u.b.'s. Note that \ll_L is auxiliary(iii).

Let *L* be an inf-complete non empty poset. One can verify that \ll_L is auxiliary(iii).

Let *L* be a lower-bounded antisymmetric reflexive non empty relational structure. Note that \ll_L is auxiliary(iv).

We now state two propositions:

- (40) For every complete lattice *L* and for every element *x* of *L* holds $\downarrow_{\ll_I} x = \downarrow x$.
- (41) For every lattice *L* holds \leq_L is approximating.

Let *L* be a lower-bounded continuous lattice. Observe that \ll_L is approximating.

Let L be a complete lattice. One can check that there exists a binary relation on L which is approximating and auxiliary.

Let L be a complete lattice. The functor App(L) is defined as follows:

(Def. 20) $a \in App(L)$ iff a is an approximating auxiliary binary relation on L.

Let L be a complete lattice. One can check that $\mathrm{App}(L)$ is non empty. One can prove the following propositions:

- (42) Let L be a complete lattice and m_1 be a map from L into $\langle Ids(L), \subseteq \rangle$. Suppose m_1 is approximating and $m_1 \in$ the carrier of MonSet(L). Then there exists an approximating auxiliary binary relation A_1 on L such that $A_1 = (Map2Rel(L))(m_1)$.
- (43) For every complete lattice *L* and for every element *x* of *L* holds $\bigcap \{(\text{DownMap}(I))(x) : I \text{ ranges over ideals of } L\} = \downarrow x.$
- (44) Let L be a lower-bounded meet-continuous lattice and x be an element of L. Then $\bigcap \{ \downarrow_{A_1} x; A_1 \text{ ranges over auxiliary binary relations on } L: A_1 \in \operatorname{App}(L) \} = \downarrow x.$

In the sequel L is a complete lattice.

One can prove the following propositions:

- (45) L is continuous if and only if for every approximating auxiliary binary relation R on L holds $\ll_L \subseteq R$ and \ll_L is approximating.
- (46) L is continuous if and only if the following conditions are satisfied:
 - (i) L is meet-continuous, and
- (ii) there exists an approximating auxiliary binary relation R on L such that for every approximating auxiliary binary relation R' on L holds $R \subseteq R'$.

Let L be a relational structure and let A_1 be a binary relation on L. We say that A_1 satisfies strong interpolation property if and only if:

(Def. 21) For all elements x, z of L such that $\langle x, z \rangle \in A_1$ and $x \neq z$ there exists an element y of L such that $\langle x, y \rangle \in A_1$ and $\langle y, z \rangle \in A_1$ and $x \neq y$.

Let L be a relational structure and let A_1 be a binary relation on L. We say that A_1 satisfies interpolation property if and only if:

(Def. 22) For all elements x, z of L such that $\langle x, z \rangle \in A_1$ there exists an element y of L such that $\langle x, y \rangle \in A_1$ and $\langle y, z \rangle \in A_1$.

We now state the proposition

 $(48)^2$ Let L be a relational structure and A_1 be a binary relation on L. Suppose A_1 satisfies strong interpolation property. Then A_1 satisfies interpolation property.

Let L be a non empty relational structure. One can verify that every binary relation on L which satisfies strong interpolation property satisfies also interpolation property.

In the sequel A_1 denotes a binary relation on L and x, y, z denote elements of L.

The following four propositions are true:

- (49) For every approximating binary relation A_1 on L such that $x \not\leq y$ there exists an element u of L such that $\langle u, x \rangle \in A_1$ and $u \not\leq y$.
- (50) Let *R* be an approximating auxiliary(i) auxiliary(iii) binary relation on *L*. If $\langle x, z \rangle \in R$ and $x \neq z$, then there exists *y* such that $x \leq y$ and $\langle y, z \rangle \in R$ and $x \neq y$.
- (51) Let *R* be an approximating auxiliary binary relation on *L*. Suppose $x \ll z$ and $x \neq z$. Then there exists an element *y* of *L* such that $\langle x, y \rangle \in R$ and $\langle y, z \rangle \in R$ and $x \neq y$.
- (52) For every lower-bounded continuous lattice L holds \ll_L satisfies strong interpolation property.

Let L be a lower-bounded continuous lattice. Observe that \ll_L satisfies strong interpolation property.

Next we state two propositions:

- (53) Let *L* be a lower-bounded continuous lattice and *x*, *y* be elements of *L*. If $x \ll y$, then there exists an element x' of *L* such that $x \ll x'$ and $x' \ll y$.
- (54) Let L be a lower-bounded continuous lattice and x, y be elements of L. Then $x \ll y$ if and only if for every non empty directed subset D of L such that $y \leq \sup D$ there exists an element d of L such that $d \in D$ and $x \ll d$.

3. Exercises

Let L be a relational structure, let X be a subset of L, and let R be a binary relation on the carrier of L. We say that X is directed w.r.t. R if and only if:

(Def. 23) For all elements x, y of L such that $x \in X$ and $y \in X$ there exists an element z of L such that $z \in X$ and $\langle x, z \rangle \in R$ and $\langle y, z \rangle \in R$.

One can prove the following proposition

(55) Let L be a relational structure and X be a subset of L. Suppose X is directed w.r.t. the internal relation of L. Then X is directed.

Let X, x be sets and let R be a binary relation. We say that x is maximal w.r.t. X, R if and only if:

(Def. 24) $x \in X$ and it is not true that there exists a set y such that $y \in X$ and $y \neq x$ and $\langle x, y \rangle \in R$.

Let L be a relational structure, let X be a set, and let x be an element of L. We say that x is maximal in X if and only if:

(Def. 25) x is maximal w.r.t. X, the internal relation of L.

One can prove the following proposition

- (56) Let *L* be a relational structure, *X* be a set, and *x* be an element of *L*. Then *x* is maximal in *X* if and only if the following conditions are satisfied:
 - (i) $x \in X$, and
- (ii) it is not true that there exists an element y of L such that $y \in X$ and x < y.

² The proposition (47) has been removed.

- Let X, x be sets and let R be a binary relation. We say that x is minimal w.r.t. X, R if and only if:
- (Def. 26) $x \in X$ and it is not true that there exists a set y such that $y \in X$ and $y \neq x$ and $\langle y, x \rangle \in R$.
 - Let L be a relational structure, let X be a set, and let x be an element of L. We say that x is minimal in X if and only if:
- (Def. 27) x is minimal w.r.t. X, the internal relation of L.

The following propositions are true:

- (57) Let *L* be a relational structure, *X* be a set, and *x* be an element of *L*. Then *x* is minimal in *X* if and only if the following conditions are satisfied:
 - (i) $x \in X$, and
 - (ii) it is not true that there exists an element y of L such that $y \in X$ and x > y.
- (58) If A_1 satisfies strong interpolation property, then for every x such that there exists y which is maximal w.r.t. $\downarrow_{A_1} x, A_1$ holds $\langle x, x \rangle \in A_1$.
- (59) If for every x such that there exists y which is maximal w.r.t. $\downarrow_{A_1} x$, A_1 holds $\langle x, x \rangle \in A_1$, then A_1 satisfies strong interpolation property.
- (60) Let A_1 be an auxiliary(ii) auxiliary(iii) binary relation on L. Suppose A_1 satisfies interpolation property. Let given x. Then $\downarrow_{A_1} x$ is directed w.r.t. A_1 .
- (61) If for every x holds $\downarrow_{A_1} x$ is directed w.r.t. A_1 , then A_1 satisfies interpolation property.
- (62) Let *R* be an approximating auxiliary(i) auxiliary(ii) auxiliary(iii) binary relation on *L*. Suppose *R* satisfies interpolation property. Then *R* satisfies strong interpolation property.

Let us consider L. One can check that every approximating auxiliary binary relation on L which satisfies interpolation property satisfies also strong interpolation property.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel 0.html.
- [5] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- $\textbf{[8] Czesław Byliński. Partial functions. } \textit{Journal of Formalized Mathematics}, \textbf{1, 1989}. \ \texttt{http://mizar.org/JFM/Vol1/partfun1.html}.$
- [9] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [12] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_4.html.
- [13] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.

- [14] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralq_1.html.
- [15] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/pre_circ.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [18] Andrzej Trybulec. Tarski Grothendieck set theory. *Journal of Formalized Mathematics*, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [19] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [22] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [23] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_2.html.
- [24] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received October 21, 1996

Published January 2, 2004