The "Way-Below" Relation1

Grzegorz Bancerek Warsaw University Białystok

Summary. In the paper the "way-below" relation, in symbols $x \ll y$, is introduced. Some authors prefer the term "relatively compact" or "way inside", since in the poset of open sets of a topology it is natural to read $U \ll V$ as "U is relatively compact in V". A compact element of a poset (or an element isolated from below) is defined to be way below itself. So, the compactness in the poset of open sets of a topology is equivalent to the compactness in that topology.

The article includes definitions, facts and examples 1.1–1.8 presented in [11, pp. 38–42].

MML Identifier: WAYBEL_3.

WWW: http://mizar.org/JFM/Vol8/waybel_3.html

The articles [15], [19], [20], [10], [6], [7], [16], [1], [18], [17], [14], [21], [9], [8], [5], [2], [3], [12], [4], and [13] provide the notation and terminology for this paper.

1. The "Way-Below" Relation

Let L be a non empty reflexive relational structure and let x, y be elements of L. We say that x is way below y if and only if:

(Def. 1) For every non empty directed subset D of L such that $y \le \sup D$ there exists an element d of L such that $d \in D$ and $x \le d$.

We introduce $x \ll y$ and $y \gg x$ as synonyms of x is way below y.

Let *L* be a non empty reflexive relational structure and let *x* be an element of *L*. We say that *x* is compact if and only if:

(Def. 2) x is way below x.

We introduce x is isolated from below as a synonym of x is compact.

Next we state several propositions:

- (1) Let *L* be a non empty reflexive antisymmetric relational structure and *x*, *y* be elements of *L*. If $x \ll y$, then $x \leq y$.
- (2) Let *L* be a non empty reflexive transitive relational structure and *u*, *x*, *y*, *z* be elements of *L*. If $u \le x$ and $x \ll y$ and $y \le z$, then $u \ll z$.
- (3) Let L be a non empty poset. Suppose L is inf-complete and has l.u.b.'s. Let x, y, z be elements of L. If $x \ll z$ and $y \ll z$, then sup $\{x,y\}$ exists in L and $x \sqcup y \ll z$.

¹This work has been partially supported by Office of Naval Research Grant N00014-95-1-1336.

- (4) Let *L* be a lower-bounded antisymmetric reflexive non empty relational structure and *x* be an element of *L*. Then $\perp_L \ll x$.
- (5) For every non empty poset *L* and for all elements *x*, *y*, *z* of *L* such that $x \ll y$ and $y \ll z$ holds $x \ll z$.
- (6) Let *L* be a non empty reflexive antisymmetric relational structure and *x*, *y* be elements of *L*. If $x \ll y$ and $x \gg y$, then x = y.

Let L be a non empty reflexive relational structure and let x be an element of L. The functor $\downarrow x$ yields a subset of L and is defined by:

(Def. 3) $\downarrow x = \{y; y \text{ ranges over elements of } L: y \ll x \}.$

The functor $\uparrow x$ yielding a subset of *L* is defined as follows:

(Def. 4) $\uparrow x = \{y; y \text{ ranges over elements of } L: y \gg x\}.$

Next we state several propositions:

- (7) For every non empty reflexive relational structure L and for all elements x, y of L holds $x \in y$ iff $x \ll y$.
- (8) For every non empty reflexive relational structure L and for all elements x, y of L holds $x \in \uparrow y$ iff $x \gg y$.
- (9) For every non empty reflexive antisymmetric relational structure L and for every element x of L holds $x \ge \mspace{1mu} x$.
- (10) For every non empty reflexive antisymmetric relational structure L and for every element x of L holds $x \le \uparrow x$.
- (11) Let *L* be a non empty reflexive antisymmetric relational structure and *x* be an element of *L*. Then $\downarrow x \subseteq \downarrow x$ and $\uparrow x \subseteq \uparrow x$.
- (12) Let *L* be a non empty reflexive transitive relational structure and *x*, *y* be elements of *L*. If $x \le y$, then $\ \downarrow x \subseteq \ \downarrow y$ and $\ \uparrow y \subseteq \ \uparrow x$.

Let L be a lower-bounded non empty reflexive antisymmetric relational structure and let x be an element of L. One can check that $\downarrow x$ is non empty.

Let *L* be a non empty reflexive transitive relational structure and let *x* be an element of *L*. Note that $\downarrow x$ is lower and $\uparrow x$ is upper.

Let L be a sup-semilattice and let x be an element of L. Note that $\downarrow x$ is directed.

Let L be an inf-complete non empty poset and let x be an element of L. Observe that $\downarrow x$ is directed.

Let *L* be a connected non empty relational structure. Note that every subset of *L* is directed and filtered.

Let us note that every non empty chain which is up-complete and lower-bounded is also complete.

Let us note that there exists a non empty chain which is complete.

The following propositions are true:

- (13) For every up-complete non empty chain L and for all elements x, y of L such that x < y holds $x \ll y$.
- (14) Let L be a non empty reflexive antisymmetric relational structure and x, y be elements of L. If x is not compact and $x \ll y$, then x < y.
- (15) For every non empty lower-bounded reflexive antisymmetric relational structure L holds \perp_L is compact.
- (16) For every up-complete non empty poset L and for every non empty finite directed subset D of L holds $\sup D \in D$.
- (17) For every up-complete non empty poset L such that L is finite holds every element of L is isolated from below.

2. THE WAY-BELOW RELATION IN OTHER TERMS

The scheme SSubsetEx deals with a non empty relational structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

There exists a subset X of \mathcal{A} such that for every element x of \mathcal{A} holds $x \in X$ iff $\mathcal{P}[x]$ for all values of the parameters.

Next we state several propositions:

- (18) Let *L* be a complete lattice and *x*, *y* be elements of *L*. Suppose $x \ll y$. Let *X* be a subset of *L*. If $y \le \sup X$, then there exists a finite subset *A* of *L* such that $A \subseteq X$ and $x \le \sup A$.
- (19) Let L be a complete lattice and x, y be elements of L. Suppose that for every subset X of L such that $y \le \sup X$ there exists a finite subset A of L such that $A \subseteq X$ and $x \le \sup A$. Then $x \ll y$.
- (20) Let *L* be a non empty reflexive transitive relational structure and *x*, *y* be elements of *L*. If $x \ll y$, then for every ideal *I* of *L* such that $y \leq \sup I$ holds $x \in I$.
- (21) Let *L* be an up-complete non empty poset and *x*, *y* be elements of *L*. If for every ideal *I* of *L* such that $y \le \sup I$ holds $x \in I$, then $x \ll y$.
- (22) Let *L* be a lower-bounded lattice. Suppose *L* is meet-continuous. Let *x*, *y* be elements of *L*. Then $x \ll y$ if and only if for every ideal *I* of *L* such that $y = \sup I$ holds $x \in I$.
- (23) Let L be a complete lattice. Then every element of L is compact if and only if for every non empty subset X of L there exists an element x of L such that $x \in X$ and for every element y of L such that $y \in X$ holds $x \not< y$.

3. CONTINUOUS LATTICES

Let *L* be a non empty reflexive relational structure. We say that *L* satisfies axiom of approximation if and only if:

(Def. 5) For every element x of L holds $x = \sup \frac{1}{x}$.

Let us mention that every non empty reflexive relational structure which is trivial satisfies also axiom of approximation.

Let L be a non empty reflexive relational structure. We say that L is continuous if and only if:

(Def. 6) For every element x of L holds $\downarrow x$ is non empty and directed and L is up-complete and satisfies axiom of approximation.

Let us mention that every non empty reflexive relational structure which is continuous is also up-complete and satisfies axiom of approximation and every lower-bounded sup-semilattice which is up-complete satisfies axiom of approximation is also continuous.

Let us note that there exists a lattice which is continuous, complete, and strict.

Let *L* be a continuous non empty reflexive relational structure and let *x* be an element of *L*. Note that $\mbox{$\downarrow$} x$ is non empty and directed.

We now state two propositions:

- (24) Let L be an up-complete semilattice. Suppose that for every element x of L holds $\downarrow x$ is non empty and directed. Then L satisfies axiom of approximation if and only if for all elements x, y of L such that $x \not \leq y$ there exists an element u of L such that $u \ll x$ and $u \not \leq y$.
- (25) For every continuous lattice *L* and for all elements *x*, *y* of *L* holds $x \le y$ iff $\downarrow x \subseteq \downarrow y$.

Let us note that every non empty chain which is complete satisfies also axiom of approximation. The following proposition is true

(26) For every complete lattice L such that every element of L is compact holds L satisfies axiom of approximation.

4. THE WAY-BELOW RELATION IN DIRECT POWERS

Let f be a binary relation. We say that f is nonempty if and only if:

(Def. 7) For every 1-sorted structure S such that $S \in \operatorname{rng} f$ holds S is non empty.

We say that f is reflexive-yielding if and only if:

(Def. 8) For every relational structure S such that $S \in \operatorname{rng} f$ holds S is reflexive.

Let *I* be a set. Note that there exists a many sorted set indexed by *I* which is relational structure yielding, nonempty, and reflexive-yielding.

Let I be a set and let J be a relational structure yielding nonempty many sorted set indexed by I. Observe that $\prod J$ is non empty.

Let I be a non empty set, let J be a relational structure yielding nonempty many sorted set indexed by I, and let i be an element of I. Then J(i) is a non empty relational structure.

Let *I* be a set and let *J* be a relational structure yielding nonempty many sorted set indexed by *I*. Note that every element of $\prod J$ is function-like and relation-like.

Let I be a non empty set, let J be a relational structure yielding nonempty many sorted set indexed by I, let x be an element of $\prod J$, and let i be an element of I. Then x(i) is an element of J(i).

Let I be a non empty set, let J be a relational structure yielding nonempty many sorted set indexed by I, let i be an element of I, and let X be a subset of $\prod J$. Then $\pi_i X$ is a subset of J(i).

Next we state two propositions:

- (27) Let I be a non empty set, J be a relational structure yielding nonempty many sorted set indexed by I, and x be a function. Then x is an element of $\prod J$ if and only if $\operatorname{dom} x = I$ and for every element i of I holds x(i) is an element of J(i).
- (28) Let *I* be a non empty set, *J* be a relational structure yielding nonempty many sorted set indexed by *I*, and *x*, *y* be elements of $\prod J$. Then $x \le y$ if and only if for every element *i* of *I* holds $x(i) \le y(i)$.

Let I be a non empty set and let J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I. Observe that $\prod J$ is reflexive. Let i be an element of I. Then J(i) is a non empty reflexive relational structure.

Let I be a non empty set, let J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I, let x be an element of $\prod J$, and let i be an element of I. Then x(i) is an element of J(i).

The following propositions are true:

- (29) Let I be a non empty set and J be a relational structure yielding nonempty many sorted set indexed by I. If for every element i of I holds J(i) is transitive, then $\prod J$ is transitive.
- (30) Let I be a non empty set and J be a relational structure yielding nonempty many sorted set indexed by I. Suppose that for every element i of I holds J(i) is antisymmetric. Then $\prod J$ is antisymmetric.
- (31) Let I be a non empty set and J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete lattice. Then $\prod J$ is a complete lattice.
- (32) Let I be a non empty set and J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete lattice. Let X be a subset of $\prod J$ and i be an element of I. Then $(\sup X)(i) = \sup \pi_i X$.
- (33) Let I be a non empty set and J be a relational structure yielding nonempty reflexive-yielding many sorted set indexed by I. Suppose that for every element i of I holds J(i) is a complete lattice. Let x, y be elements of $\prod J$. Then $x \ll y$ if and only if the following conditions are satisfied:
 - (i) for every element *i* of *I* holds $x(i) \ll y(i)$, and
- (ii) there exists a finite subset K of I such that for every element i of I such that $i \notin K$ holds $x(i) = \bot_{J(i)}$.

5. THE WAY-BELOW RELATION IN TOPOLOGICAL SPACES

We now state four propositions:

- (34) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose x is way below y. Let F be a family of subsets of T. If F is open and $y \subseteq \bigcup F$, then there exists a finite subset G of F such that $x \subseteq \bigcup G$.
- (35) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. Suppose that for every family F of subsets of T such that F is open and $y \subseteq \bigcup F$ there exists a finite subset G of F such that $x \subseteq \bigcup G$. Then x is way below y.
- (36) Let T be a non empty topological space, x be an element of \langle the topology of T, $\subseteq \rangle$, and X be a subset of T. If x = X, then x is compact iff X is compact.
- (37) Let T be a non empty topological space and x be an element of \langle the topology of $T, \subseteq \rangle$. Suppose x = the carrier of T. Then x is compact if and only if T is compact.

Let T be a non empty topological space. We say that T is locally-compact if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let x be a point of T and X be a subset of T. Suppose $x \in X$ and X is open. Then there exists a subset Y of T such that $x \in \text{Int } Y$ and $Y \subseteq X$ and Y is compact.

Let us observe that every non empty topological space which is compact and T_2 is also T_3 , T_4 , and locally-compact.

One can prove the following proposition

(38) For every set x holds $\{\{x\}\}_{top}$ is T_2 .

Let us observe that there exists a non empty topological space which is compact and T_2 . Next we state several propositions:

- (39) Let T be a non empty topological space and x, y be elements of \langle the topology of T, $\subseteq \rangle$. If there exists a subset Z of T such that $x \subseteq Z$ and $Z \subseteq y$ and Z is compact, then $x \ll y$.
- (40) Let T be a non empty topological space. Suppose T is locally-compact. Let x, y be elements of \langle the topology of T, \subseteq \rangle . If $x \ll y$, then there exists a subset Z of T such that $x \subseteq Z$ and $Z \subseteq y$ and Z is compact.
- (41) Let T be a non empty topological space. Suppose T is locally-compact and a T_2 space. Let x, y be elements of \langle the topology of T, $\subseteq \rangle$. If $x \ll y$, then there exists a subset Z of T such that Z = x and $\overline{Z} \subseteq y$ and \overline{Z} is compact.
- (42) Let X be a non empty topological space. Suppose X is a T_3 space and \langle the topology of X, $\subseteq \rangle$ is continuous. Then X is locally-compact.
- (43) For every non empty topological space T such that T is locally-compact holds \langle the topology of $T, \subseteq \rangle$ is continuous.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Leszek Borys. Paracompact and metrizable spaces. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/pcomps_1.html.

- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct 1.html.
- [7] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [8] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [12] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [13] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.
- [14] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [15] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [16] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [17] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [18] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [19] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [20] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [21] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/tops_1.html.

Received October 11, 1996

Published January 2, 2004