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Summary. The aim of this work is the formalization of Chapter 0 Section 4 of [11].
In this paper the definition of meet-continuous lattices is introduced. Theorem 4.2 and Remark
4.3 are proved.
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The articles [18], [8], [21], [22], [19], [5], [14], [10], [7], [6], [17], [4], [20], [12], [1], [2], [3], [13],
[23], [9], [15], and [16] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let X, Y be non empty sets, letf be a function fromX into Y, and letZ be a non empty subset of
X. One can verify thatf ◦Z is non empty.

Let us note that every non empty relational structure which is reflexive and connected has also
g.l.b.’s and l.u.b.’s.

Let C be a chain. Note thatΩC is directed.
Next we state a number of propositions:

(1) Let L be an up-complete semilattice,D be a non empty directed subset ofL, andx be an
element ofL. Then sup{x}uD exists inL.

(2) Let L be an up-complete sup-semilattice,D be a non empty directed subset ofL, andx be
an element ofL. Then sup{x}tD exists inL.

(3) For every up-complete sup-semilatticeL and for all non empty directed subsetsA, B of L
holdsA≤ sup(AtB).

(4) For every up-complete sup-semilatticeL and for all non empty directed subsetsA, B of L
holds sup(AtB) = supAtsupB.

(5) LetL be an up-complete semilattice andD be a non empty directed subset of[:L, L :]. Then
{sup({x} u π2(D));x ranges over elements ofL: x ∈ π1(D)} = {supX;X ranges over non
empty directed subsets ofL:

∨
x:element ofL (X = {x}uπ2(D) ∧ x∈ π1(D))}.

(6) LetL be a semilattice andD be a non empty directed subset of[:L, L :]. Then
⋃
{X;X ranges

over non empty directed subsets ofL:
∨

x:element ofL (X = {x} u π2(D) ∧ x ∈ π1(D))} =
π1(D)uπ2(D).
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(7) LetL be an up-complete semilattice andD be a non empty directed subset of[:L, L :]. Then
sup

⋃
{X;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X = {x}uπ2(D) ∧

x∈ π1(D))} exists inL.

(8) LetL be an up-complete semilattice andD be a non empty directed subset of[:L, L :]. Then
sup{supX;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X = {x}uπ2(D) ∧

x∈ π1(D))} exists inL.

(9) LetL be an up-complete semilattice andD be a non empty directed subset of[:L, L :]. Then⊔
L{supX;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X = {x}uπ2(D) ∧

x∈ π1(D))} ≤
⊔

L
⋃
{X;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X =

{x}uπ2(D) ∧ x∈ π1(D))}.

(10) LetL be an up-complete semilattice andD be a non empty directed subset of[:L, L :]. Then⊔
L{supX;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X = {x}uπ2(D) ∧

x∈ π1(D))} =
⊔

L
⋃
{X;X ranges over non empty directed subsets ofL:

∨
x:element ofL (X =

{x}uπ2(D) ∧ x∈ π1(D))}.

Let S, T be up-complete non empty reflexive relational structures. Observe that[:S, T :] is up-
complete.

The following four propositions are true:

(11) Let S, T be non empty reflexive antisymmetric relational structures. If[:S, T :] is up-
complete, thenS is up-complete andT is up-complete.

(12) LetL be an up-complete antisymmetric non empty reflexive relational structure andD be a
non empty directed subset of[:L, L :]. Then supD = 〈〈supπ1(D), supπ2(D)〉〉.

(13) LetS1, S2 be relational structures,D be a subset ofS1, and f be a map fromS1 into S2. If
f is monotone, thenf ◦↓D ⊆ ↓( f ◦D).

(14) LetS1, S2 be relational structures,D be a subset ofS1, and f be a map fromS1 into S2. If
f is monotone, thenf ◦↑D ⊆ ↑( f ◦D).

One can check that every non empty reflexive relational structure which is trivial is also dis-
tributive and complemented.

One can check that there exists a lattice which is strict, non empty, and trivial.
Next we state three propositions:

(15) LetH be a distributive complete lattice,a be an element ofH, andX be a finite subset of
H. Then sup({a}uX) = ausupX.

(16) LetH be a distributive complete lattice,a be an element ofH, andX be a finite subset of
H. Then inf({a}tX) = at inf X.

(17) LetH be a complete distributive lattice,a be an element ofH, andX be a finite subset of
H. Thenau� preserves sup ofX.

2. THE PROPERTIES OF NETS

The schemeExNetdeals with a non empty relational structureA , a prenetB overA , and a unary
functorF yielding an element ofA , and states that:

There exists a prenetM overA such that
(i) the relational structure ofM = the relational structure ofB, and

(ii) for every elementi of M holds (the mapping ofM)(i) = F ((the mapping of
B)(i))

for all values of the parameters.
The following propositions are true:



MEET – CONTINUOUS LATTICES 3

(18) Let L be a non empty relational structure andN be a prenet overL. If N is eventually-
directed, then rngnetmap(N,L) is directed.

(19) LetL be a non empty reflexive relational structure,D be a non empty directed subset ofL,
andn be a function fromD into the carrier ofL. Then〈D, (the internal relation ofL) |2 D,n〉
is a prenet overL.

(20) LetL be a non empty reflexive relational structure,D be a non empty directed subset ofL,
n be a function fromD into the carrier ofL, andN be a prenet overL. Supposen = idD and
N = 〈D, (the internal relation ofL) |2 D,n〉. ThenN is eventually-directed.

Let L be a non empty relational structure and letN be a net structure overL. The functor supN
yielding an element ofL is defined as follows:

(Def. 1) supN = Sup(the mapping ofN).

Let L be a non empty relational structure, letJ be a set, and letf be a function fromJ into the
carrier ofL. The functor FinSups( f ) yields a prenet overL and is defined by the condition (Def. 2).

(Def. 2) There exists a functiong from FinJ into the carrier ofL such that for every elementx of
FinJ holds

g(x) = sup( f ◦x) and FinSups( f ) = 〈FinJ,⊆FinJ,g〉.

One can prove the following proposition

(21) LetL be a non empty relational structure,J, x be sets, andf be a function fromJ into the
carrier ofL. Thenx is an element of FinSups( f ) if and only if x is an element of FinJ.

Let L be a complete antisymmetric non empty reflexive relational structure, letJ be a set, and
let f be a function fromJ into the carrier ofL. Observe that FinSups( f ) is monotone.

Let L be a non empty relational structure, letx be an element ofL, and letN be a non empty
net structure overL. The functorxuN yields a strict net structure overL and is defined by the
conditions (Def. 3).

(Def. 3)(i) The relational structure ofxuN = the relational structure ofN, and

(ii) for every elementi of xuN there exists an elementy of L such thaty = (the mapping of
N)(i) and (the mapping ofxuN)(i) = xuy.

Next we state the proposition

(22) LetL be a non empty relational structure,N be a non empty net structure overL, x be an
element ofL, andy be a set. Theny is an element ofN if and only if y is an element ofxuN.

Let L be a non empty relational structure, letx be an element ofL, and letN be a non empty net
structure overL. Note thatxuN is non empty.

Let L be a non empty relational structure, letx be an element ofL, and letN be a prenet overL.
One can check thatxuN is directed.

We now state several propositions:

(23) LetL be a non empty relational structure,x be an element ofL, andF be a non empty net
structure overL. Then rng(the mapping ofxuF) = {x}u rng(the mapping ofF).

(24) LetL be a non empty relational structure,J be a set, andf be a function fromJ into the
carrier ofL. If for every setx holds supf ◦x exists inL, then rngnetmap(FinSups( f ),L) ⊆
finsups(rng f ).

(25) Let L be a non empty reflexive antisymmetric relational structure,J be a set, andf be a
function fromJ into the carrier ofL. Then rngf ⊆ rngnetmap(FinSups( f ),L).
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(26) Let L be a non empty reflexive antisymmetric relational structure,J be a set, and
f be a function fromJ into the carrier ofL. Suppose sup rngf exists in L and sup
rngnetmap(FinSups( f ),L) exists inL and for every elementx of FinJ holds supf ◦x exists in
L. Then Sup( f ) = supFinSups( f ).

(27) LetL be an antisymmetric transitive relational structure with g.l.b.’s,N be a prenet overL,
andx be an element ofL. If N is eventually-directed, thenxuN is eventually-directed.

(28) LetL be an up-complete semilattice. Suppose that for every elementx of L and for every
non empty directed subsetE of L such thatx≤ supE holdsx≤ sup({x}uE). Let D be a non
empty directed subset ofL andx be an element ofL. ThenxusupD = sup({x}uD).

(29) LetL be a poset with l.u.b.’s. Suppose that for every directed subsetX of L and for every
elementx of L holdsxusupX = sup({x}uX). Let X be a subset ofL andx be an element of
L. If supX exists inL, thenxusupX = sup({x}ufinsups(X)).

(30) LetL be an up-complete lattice. Suppose that for every subsetX of L and for every element
x of L holdsxu supX = sup({x}u finsups(X)). Let X be a non empty directed subset ofL
andx be an element ofL. ThenxusupX = sup({x}uX).

3. ON THE INF AND SUP OPERATION

Let L be a non empty relational structure. The functoruL yields a map from[:L, L :] into L and is
defined by:

(Def. 4) For all elementsx, y of L holdsuL(〈〈x, y〉〉) = xuy.

One can prove the following proposition

(31) For every non empty relational structureL and for every elementx of [:L, L :] holdsuL(x) =
x1ux2.

Let L be a transitive antisymmetric relational structure with g.l.b.’s. Observe thatuL is mono-
tone.

Next we state two propositions:

(32) For every non empty relational structureSand for all subsetsD1, D2 of Sholds(uS)◦[:D1,
D2 :] = D1uD2.

(33) For every up-complete semilatticeL and for every non empty directed subsetD of [:L, L :]
holds sup((uL)◦D) = sup(π1(D)uπ2(D)).

Let L be a non empty relational structure. The functortL yielding a map from[:L, L :] into L is
defined as follows:

(Def. 5) For all elementsx, y of L holdstL(〈〈x, y〉〉) = xty.

We now state the proposition

(34) For every non empty relational structureL and for every elementx of [:L, L :] holdstL(x) =
x1tx2.

Let L be a transitive antisymmetric relational structure with l.u.b.’s. Note thattL is monotone.
Next we state two propositions:

(35) For every non empty relational structureSand for all subsetsD1, D2 of Sholds(tS)◦[:D1,
D2 :] = D1tD2.

(36) For every complete non empty posetL and for every non empty filtered subsetD of [:L, L :]
holds inf((tL)◦D) = inf(π1(D)tπ2(D)).
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4. MEET-CONTINUOUS LATTICES

Let Rbe a non empty reflexive relational structure. We say thatRsatisfies MC if and only if:

(Def. 6) For every elementx of Rand for every non empty directed subsetD of RholdsxusupD =
sup({x}uD).

Let Rbe a non empty reflexive relational structure. We say thatR is meet-continuous if and only
if:

(Def. 7) R is up-complete and satisfies MC.

Let us note that every non empty reflexive relational structure which is trivial satisfies also MC.
Let us observe that every non empty reflexive relational structure which is meet-continuous

is also up-complete and satisfies MC and every non empty reflexive relational structure which is
up-complete satisfies MC is also meet-continuous.

Let us observe that there exists a lattice which is strict, non empty, and trivial.
One can prove the following two propositions:

(37) LetSbe a non empty reflexive relational structure such that for every subsetX of Sand for
every elementx of SholdsxusupX =

⊔
S{xuy;y ranges over elements ofS: y∈ X}. ThenS

satisfies MC.

(38) LetL be an up-complete semilattice. If SupMap(L) is meet-preserving, then for all ideals
I1, I2 of L holds supI1usupI2 = sup(I1u I2).

Let L be an up-complete sup-semilattice. One can check that SupMap(L) is join-preserving.
One can prove the following propositions:

(39) Let L be an up-complete semilattice. If for all idealsI1, I2 of L holds supI1u supI2 =
sup(I1u I2), then SupMap(L) is meet-preserving.

(40) LetL be an up-complete semilattice. Suppose that for all idealsI1, I2 of L holds supI1u
supI2 = sup(I1u I2). Let D1, D2 be directed non empty subsets ofL. Then supD1usupD2 =
sup(D1uD2).

(41) Let L be a non empty reflexive relational structure. SupposeL satisfies MC. Letx be an
element ofL andN be a non empty prenet overL. If N is eventually-directed, thenxusupN =
sup({x}u rngnetmap(N,L)).

(42) LetL be a non empty reflexive relational structure such that for every elementx of L and
for every prenetN over L such thatN is eventually-directed holdsxu supN = sup({x} u
rngnetmap(N,L)). ThenL satisfies MC.

(43) LetL be an up-complete antisymmetric non empty reflexive relational structure. Suppose
uL is directed-sups-preserving. LetD1, D2 be non empty directed subsets ofL. Then supD1u
supD2 = sup(D1uD2).

(44) Let L be a non empty reflexive antisymmetric relational structure such that for all non
empty directed subsetsD1, D2 of L holds supD1u supD2 = sup(D1uD2). ThenL satisfies
MC.

(45) LetL be an antisymmetric non empty reflexive relational structure with g.l.b.’s and satisfy-
ing MC, x be an element ofL, andD be a non empty directed subset ofL. If x≤ supD, then
x = sup({x}uD).

(46) LetL be an up-complete semilattice. Suppose that for every elementx of L and for every
non empty directed subsetE of L such thatx≤ supE holdsx≤ sup({x}uE). ThenuL is
directed-sups-preserving.
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(47) LetL be a complete antisymmetric non empty reflexive relational structure. Suppose that
for every elementx of L and for every prenetN over L such thatN is eventually-directed
holdsxusupN = sup({x}u rngnetmap(N,L)). Let x be an element ofL, J be a set, andf be
a function fromJ into the carrier ofL. ThenxuSup( f ) = sup(xuFinSups( f )).

(48) LetL be a complete semilattice. Suppose that for every elementx of L and for every setJ
and for every functionf from J into the carrier ofL holdsxuSup( f ) = sup(xuFinSups( f )).
Let x be an element ofL andN be a prenet overL. If N is eventually-directed, thenxusupN =
sup({x}u rngnetmap(N,L)).

(49) For every up-complete latticeL holds L is meet-continuous iff SupMap(L) is meet-
preserving and join-preserving.

Let L be a meet-continuous lattice. One can verify that SupMap(L) is meet-preserving and
join-preserving.

We now state four propositions:

(50) LetL be an up-complete lattice. ThenL is meet-continuous if and only if for all idealsI1,
I2 of L holds supI1usupI2 = sup(I1u I2).

(51) LetL be an up-complete lattice. ThenL is meet-continuous if and only if for all non empty
directed subsetsD1, D2 of L holds supD1usupD2 = sup(D1uD2).

(52) LetL be an up-complete lattice. ThenL is meet-continuous if and only if for every element
x of L and for every non empty directed subsetD of L such thatx≤ supD holdsx= sup({x}u
D).

(53) For every up-complete semilatticeL holdsL is meet-continuous iffuL is directed-sups-
preserving.

Let L be a meet-continuous semilattice. Note thatuL is directed-sups-preserving.
One can prove the following propositions:

(54) Let L be an up-complete semilattice. ThenL is meet-continuous if and only if for every
elementx of L and for every non empty prenetN over L such thatN is eventually-directed
holdsxusupN = sup({x}u rngnetmap(N,L)).

(55) LetL be a complete semilattice. ThenL is meet-continuous if and only if for every element
x of L and for every setJ and for every functionf from J into the carrier ofL holdsxu
Sup( f ) = sup(xuFinSups( f )).

Let L be a meet-continuous semilattice and letx be an element ofL. One can verify thatxu�
is directed-sups-preserving.

The following proposition is true

(56) For every complete non empty posetH holdsH is Heyting iff H is meet-continuous and
distributive.

Let us observe that every non empty poset which is complete and Heyting is also meet-continuous
and distributive and every non empty poset which is complete, meet-continuous, and distributive is
also Heyting.
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[5] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.
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[7] Czesław Bylínski. Partial functions.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/partfun1.html.
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