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Summary. The aim of this work is the formalization of Chapter 0 Section 4°0f [11].
In this paper the definition of meet-continuous lattices is introduced. Theorem 4.2 and Remark

4.3 are proved.
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The articles[[18],[[8],[121],[122],[19][5].114] /[10], [7],16]..[17], 4] [120], [12] [ 11], 2] [8].[[13],
[23], [9], [15], and [16] provide the notation and terminology for this paper.

1. PRELIMINARIES

Let X, Y be non empty sets, ldtbe a function fronX into Y, and letZ be a non empty subset of

X. One can verify that°Z is non empty.
Let us note that every non empty relational structure which is reflexive and connected has also

g.l.b’sand l.u.b.'s.
LetC be a chain. Note th&®¢ is directed.
Next we state a number of propositions:

(1) LetL be an up-complete semilattic,be a non empty directed subsetlgfandx be an
element ofL. Then sup{x} M D exists inL.

(2) LetL be an up-complete sup-semilatti€zpe a non empty directed subsetlgfandx be
an element of.. Then sup{x} LID exists inL.

(3) For every up-complete sup-semilatticend for all non empty directed subsétsB of L
holdsA < sugALB).

(4) For every up-complete sup-semilatticend for all non empty directed subsétsB of L
holds supAL B) = supALIsupB.

(5) LetL be an up-complete semilattice abde a non empty directed subsef.df, L:]. Then

{sup({x} Mm(D));x ranges over elements &f x € Ty(D)} = {supX;X ranges over non
empty directed subsets bf \/y. ciement 0. (X = {X} MT(D) A x€ m(D))}.

(6) LetL be asemilattice and be a non empty directed subset.df, L ]. ThenJ{X; X ranges
over non empty directed subsetslaf \/y.gement ot (X = {X} M T(D) A x€ m(D))} =
m (D) Mm(D).
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(7) LetL be an up-complete semilattice abDde a non empty directed subsef.df, L:]. Then

supU{X; X ranges over non empty directed subsets:0fy: ciement of. (X = {X} M TR2(D) A
x e m(D))} exists inL.

(8) LetL be an up-complete semilattice abde a non empty directed subset:df, L. Then

sup{supX; X ranges over non empty directed subsets:0f . clement or. (X = {X} N TR(D) A
xem(D))} exists inL.

(9) LetL be an up-complete semilattice abde a non empty directed subsef:.df, L:]. Then
LI {supX; X ranges over non empty directed subsets:of y: ciement of. (X = {X} MTR2(D) A

xem (D))} < U{X; X ranges over non empty directed subsets:o¥/ . giement of. (X =
{x}nm(D) A xe Tu(D))}.

(10) LetL be an up-complete semilattice abde a non empty directed subset:df, L ]. Then
LI {supX; X ranges over non empty directed subsets:0§ . clement oi. (X = {X} MT(D) A

x e m(D))} = L. U{X; X ranges over non empty directed subset&:of/,.eiement oi. (X =
{x}Nm(D) A xe m(D))}.

Let S T be up-complete non empty reflexive relational structures. Observé hat] is up-
complete.

The following four propositions are true:

(11) LetS T be non empty reflexive antisymmetric relational structures. SfT ] is up-
complete, thei®is up-complete and is up-complete.

(12) LetL be an up-complete antisymmetric non empty reflexive relational structur® aed
non empty directed subset pE, L. Then su = (supm (D), supriz(D)).

(13) LetS;, S be relational structuref) be a subset df, andf be a map frong,; into $. If
f is monotone, theri°|D C | (f°D).

(14) LetS, S be relational structuref) be a subset df, andf be a map frong,; into $. If
f is monotone, theri°TD C 1(f°D).

One can check that every non empty reflexive relational structure which is trivial is also dis-
tributive and complemented.

One can check that there exists a lattice which is strict, non empty, and trivial.
Next we state three propositions:

(15) LetH be a distributive complete lattica,be an element afl, andX be a finite subset of
H. Then sup{a} MX) = ansupX.

(16) LetH be a distributive complete lattica,be an element dfl, andX be a finite subset of
H. Theninf{{a} UX) =aUinfX.

(17) LetH be a complete distributive lattica,be an element dfl, andX be a finite subset of
H. Thenamn preserves sup of.

2. THE PROPERTIES OF NETS

The schemé&xNetdeals with a non empty relational structufie a prenetB over 4, and a unary
functor ¥ yielding an element ofl, and states that:

There exists a prendl over 4 such that
(i) the relational structure d¥1 = the relational structure @B, and

(i) for every element of M holds (the mapping di)(i) = ¥ ((the mapping of
B)(i))
for all values of the parameters.

The following propositions are true:
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(18) LetL be a non empty relational structure aNdbe a prenet ovek. If N is eventually-
directed, then rngnetm@y, L) is directed.

(19) LetL be a non empty reflexive relational structubebe a non empty directed subsetiof
andn be a function fronD into the carrier ol. Then(D, (the internal relation ok) |> D, n)
is a prenet ovek.

(20) LetL be a non empty reflexive relational structubebe a non empty directed subsetlof
n be a function fronD into the carrier oL, andN be a prenet over. Supposen = idp and
N = (D, (the internal relation ok ) |2 D, n). ThenN is eventually-directed.

Let L be a non empty relational structure andNebe a net structure ovér. The functor supl
yielding an element of is defined as follows:

(Def. 1) supN = Supthe mapping oN).

Let L be a non empty relational structure, Iebbe a set, and let be a function fromJ into the
carrier ofL. The functor FinSufd) yields a prenet over and is defined by the condition (Def. 2).

(Def. 2) There exists a functiog from FinJ into the carrier ofL such that for every elementof
FinJ holds

g(x) = sup f°x) and FinSup§f) = (Find, iny, ).
One can prove the following proposition

(21) LetL be a non empty relational structutk x be sets, and be a function fromJ into the
carrier ofL. Thenxis an element of FinSup$) if and only if x is an element of Fid.

Let L be a complete antisymmetric non empty reflexive relational structurd beta set, and
let f be a function fromJ into the carrier oL. Observe that FinSup§) is monotone.

Let L be a non empty relational structure, Jebe an element of, and letN be a non empty
net structure ovek. The functorxN vyields a strict net structure ovérand is defined by the
conditions (Def. 3).

(Def. 3)()) The relational structure af1N = the relational structure df, and

(i) for every element of XM N there exists an elemewtof L such thaty = (the mapping of
N)(i) and (the mapping ofTN)(i) = xy.

Next we state the proposition

(22) LetL be a non empty relational structufé,be a non empty net structure ouerx be an
element oL, andy be a set. Thegis an element oN if and only ify is an element ok N.

LetL be a non empty relational structure, ¥dte an element df, and letN be a non empty net
structure ovet.. Note thatxN is non empty.

LetL be a non empty relational structure, ¥dbe an element df, and letN be a prenet ovdr.
One can check thad 1N is directed.

We now state several propositions:

(23) LetL be a non empty relational structusebe an element df, andF be a non empty net
structure ovet.. Then rng(the mapping of1F) = {x} Mrng (the mapping oF).

(24) LetL be a non empty relational structutkbe a set, and be a function fromJ into the
carrier ofL. If for every setx holds supf°x exists inL, then rngnetmainSup$f),L) C
finsupgrngf).

(25) LetL be a non empty reflexive antisymmetric relational structdree a set, and be a
function fromJ into the carrier oL. Then rngf C rngnetmapFinSups$f),L).
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(26) LetL be a non empty reflexive antisymmetric relational structulehe a set, and
f be a function fromJ into the carrier ofL. Suppose sup rnfy exists inL and sup
rngnetmapFinSups$f),L) exists inL and for every elementof FinJ holds supf °x exists in
L. Then Supf) = sup FinSup§f).

(27) LetL be an antisymmetric transitive relational structure with g.l.bl'be a prenet over,
andx be an element df. If N is eventually-directed, thexiN is eventually-directed.

(28) LetL be an up-complete semilattice. Suppose that for every elexnafrit and for every
non empty directed subsEtof L such thak < supE holdsx < sup{x} ME). LetD be a non
empty directed subset dfandx be an element df. ThenxMsupD = supg{x} MD).

(29) LetL be a poset with l.u.b.'s. Suppose that for every directed subsét and for every
elementx of L holdsxMsupX = sup({x} MX). Let X be a subset df andx be an element of
L. If supX exists inL, thenxmsupX = sup{x} MfinsupgX)).

(30) LetL be an up-complete lattice. Suppose that for every subsét and for every element
x of L holdsxMsupX = sup({x} MfinsupgX)). Let X be a non empty directed subsetlof
andx be an element df. ThenxmsupX = supg({x} MX).

3. ON THE INF AND SUP OPERATION

Let L be a non empty relational structure. The functeryields a map fronf:L, L] into L and is
defined by:

(Def. 4) For all elementg, y of L holdsm ({x, y}) = xMy.

One can prove the following proposition

(31) Forevery non empty relational structlrand for every elementof [:L, L] holdsm(x) =
X1 M Xo.

Let L be a transitive antisymmetric relational structure with g.l.b.'s. Observeth& mono-
tone.
Next we state two propositions:

(32) For every non empty relational struct®and for all subset®1, D2 of Sholds(Ms)°[: D1,
D> Z] =D,1MD».

(33) For every up-complete semilatticeand for every non empty directed subBeof L, L]
holds sup(m.)°D) = supgmu (D) M1R(D)).

LetL be a non empty relational structure. The functryielding a map fronf.L, L] into L is
defined as follows:

(Def. 5) For all elements, y of L holdsU ({X, y)) = xUy.

We now state the proposition

(34) Forevery non empty relational structlrand for every elementof [:L, L] holdsLi_ (x) =
X1 L Xo.

Let L be a transitive antisymmetric relational structure with l.u.b.'s. Notelthhas monotone.
Next we state two propositions:

(35) For every non empty relational struct@and for all subsetB;, D, of Sholds(Ls)°[: D,
D> Z] =D,uDs».

(36) For every complete non empty pokeind for every non empty filtered subgeof L, L]
holds inf((LL)°D) = inf(Ty (D) UTk(D)).
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4. MEET-CONTINUOUS LATTICES

Let Rbe a non empty reflexive relational structure. We say Rhedtisfies MC if and only if:

(Def. 6) For every elementof Rand for every non empty directed subBedf R holdsxmsupD =

sup({x} M D).

Let Rbe a non empty reflexive relational structure. We say®iatmeet-continuous if and only
if:

(Def. 7) Ris up-complete and satisfies MC.

Let us note that every non empty reflexive relational structure which is trivial satisfies also MC.

Let us observe that every non empty reflexive relational structure which is meet-continuous
is also up-complete and satisfies MC and every non empty reflexive relational structure which is
up-complete satisfies MC is also meet-continuous.

Let us observe that there exists a lattice which is strict, non empty, and trivial.

One can prove the following two propositions:

(37) LetSbe a non empty reflexive relational structure such that for every sibsedand for
every elemenx of SholdsxMsupX = | |g{XMy;y ranges over elements 8f y € X}. ThenS
satisfies MC.

(38) LetL be an up-complete semilattice. If SupMapis meet-preserving, then for all ideals
I1, 12 of L holds sups Msuply = sup(l1M12).

LetL be an up-complete sup-semilattice. One can check that SupMegjoin-preserving.
One can prove the following propositions:

(39) LetL be an up-complete semilattice. If for all ideais I of L holds sups M suply =
sup(l1M12), then SupMafl) is meet-preserving.

(40) LetL be an up-complete semilattice. Suppose that for all idgals of L holds sup; M
suplz = sup(l1M12). Let D1, D2 be directed non empty subsetslofThen suD; MsupDy =
SUKD]_I_I Dz).

(41) LetL be a non empty reflexive relational structure. Supposatisfies MC. Lek be an
element oL andN be a non empty prenet over If N is eventually-directed, thexmisupN =

sup({x} MrngnetmapN,L)).

(42) LetL be a non empty reflexive relational structure such that for every elexrat and
for every prenelN over L such thatN is eventually-directed holdsm supN = sup({x} M
rngnetmapN,L)). ThenL satisfies MC.

(43) LetL be an up-complete antisymmetric non empty reflexive relational structure. Suppose
M is directed-sups-preserving. LB{, D, be non empty directed subsetdofThen sufD4 M
supD, = supD1MDy).

(44) LetL be a non empty reflexive antisymmetric relational structure such that for all non
empty directed subsef3;, D, of L holds suf MsupD, = supD1MDy). ThenL satisfies
MC.

(45) LetL be an antisymmetric non empty reflexive relational structure with g.l.b.'s and satisfy-
ing MC, x be an element df, andD be a hon empty directed subsetloflf x < supD, then
X = sup({x} D).

(46) LetL be an up-complete semilattice. Suppose that for every elexnafrit and for every
non empty directed subsgt of L such thatx < supE holdsx < sug{x} ME). Thenm is
directed-sups-preserving.
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(47) LetL be a complete antisymmetric non empty reflexive relational structure. Suppose that
for every elemenk of L and for every prenell overL such thatN is eventually-directed
holdsxmsupN = sup({x} MrngnetmapN,L)). Letx be an element df, J be a set, and be
a function fromJ into the carrier oL.. ThenxMSup f) = supxMFinSupsgf)).

(48) LetL be a complete semilattice. Suppose that for every elemehL and for every sei
and for every functiorf from J into the carrier oL holdsxnSup(f) = supxMFinSupg$f)).
Letx be an element df andN be a prenet ovdr. If N is eventually-directed, ther1supN =
sup({x} MrngnetmapN,L)).

(49) For every up-complete lattice holds L is meet-continuous iff SupMdh) is meet-
preserving and join-preserving.

Let L be a meet-continuous lattice. One can verify that SupMafs meet-preserving and
join-preserving.
We now state four propositions:

(50) LetL be an up-complete lattice. Thénis meet-continuous if and only if for all ideals,
I of L holds sups Msuply = sup(l1M12).

(51) LetL be an up-complete lattice. Théris meet-continuous if and only if for all non empty
directed subsetS1, D, of L holds su; M supD2 = supD1MDy).

(52) LetL be an up-complete lattice. Théns meet-continuous if and only if for every element
x of L and for every non empty directed subBetf L such thak < supD holdsx = sup({x} M
D).

(53) For every up-complete semilattiteholdsL is meet-continuous iff1_ is directed-sups-
preserving.

Let L be a meet-continuous semilattice. Note thats directed-sups-preserving.
One can prove the following propositions:

(54) LetL be an up-complete semilattice. Thens meet-continuous if and only if for every
elementx of L and for every non empty prenit over L such thatN is eventually-directed
holdsxmsupN = sup({x} rrngnetmapN, L)).

(55) LetL be a complete semilattice. Thens meet-continuous if and only if for every element
x of L and for every sefl and for every functionf from J into the carrier ofL holdsxnm
Supf) = supxMFinSupgf)).

Let L be a meet-continuous semilattice andddte an element df. One can verify thaxmd
is directed-sups-preserving.
The following proposition is true

(56) For every complete non empty posetoldsH is Heyting iff H is meet-continuous and
distributive.

Let us observe that every non empty poset which is complete and Heyting is also meet-continuous
and distributive and every non empty poset which is complete, meet-continuous, and distributive is
also Heyting.
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