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Summary. Notation and facts necessary to start with the formalization of continuous
lattices according ta [8] are introduced. The article contains among other things, the definition
of directed and filtered subsets of a poset (see 1/1in [8, p. 2]), the definition of nets on the poset
(see 1.2in([B, p. 2]), the definition of ideals and filters and the definition of maps preserving
arbitrary and directed sups and arbitrary and filtered infs (1.9 also in [8, p. 4]). The concepts
of semilattices, sup-semiletices and poset lattices (1.8lin [8, p. 4]) are also introduced. A
number of facts concerning the above notion and including remarks 1.4, 1.5, and 1.10 from

[8l pp. 3-5] is presented.
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The articles[[12],[16],[14],[15],[17][116] /171, 14],15],014] 18], 110],01] [12],11B8], and [9] provide
the notation and terminology for this paper.

1. DIRECTED SUBSETS

Let L be arelational structure and Ktbe a subset df. We say thaX is directed if and only if:

(Def. 1) For all elements, y of L such thaix € X andy € X there exists an elemenbf L such that
ze Xandx<zandy<z

We say thak is filtered if and only if:

(Def. 2) For all elementg, y of L such thaik € X andy € X there exists an elemenbdf L such that
ze Xandz< xandz<y.

One can prove the following two propositions:

(1) LetL be a non empty transitive relational structure &nde a subset df. ThenX is non
empty and directed if and only if for every finite sub¥edf X there exists an elemerif L

such thak € X andx >Y.

(2) LetL be a non empty transitive relational structure ahbe a subset df. ThenX is non
empty and filtered if and only if for every finite subs€bf X there exists an elemertof L

such thak € X andx <.

LetL be a relational structure. Observe thatis directed and filtered.

Let L be a relational structure. One can verify that there exists a sub&etbich is directed
and filtered.

We now state three propositions:
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(3) LetLy, L, be relational structures. Suppose the relational structute ef the relational
structure ofL,. Let X; be a subset of; and Xy be a subset of,. If X; = X, andX; is
directed, thenX; is directed.

(4) LetL,, Lo be relational structures. Suppose the relational structutg ef the relational
structure olL,. LetX; be a subset df; andX; be a subset df,. If X; = X; andX; is filtered,
thenXs is filtered.

(5) For every non empty reflexive relational structurand for every elementof L holds{x}
is directed and filtered.

Let L be a non empty reflexive relational structure. One can verify that there exists a subset of
which is directed, filtered, non empty, and finite.

Let L be a relational structure with l.u.b.’s. Observe tatis directed.

LetL be an upper-bounded non empty relational structure. Not&€xhat directed.

LetL be a relational structure with g.l.b.'s. Observe tQatis filtered.

LetL be a lower-bounded non empty relational structure. Note®has filtered.

Let L be a non empty relational structure and3éte a relational substructure of We say that
Sis filtered-infs-inheriting if and only if:

(Def. 3) For every filtered subset of Ssuch thatX # 0 and infX exists inL holds [ ]_X € the
carrier ofS.

We say thaSis directed-sups-inheriting if and only if:

(Def. 4) For every directed subsktof S such thatX = 0 and supX exists inL holds| || X € the
carrier ofS

LetL be a non empty relational structure. Note that every relational substructureluth is
infs-inheriting is also filtered-infs-inheriting and every relational substructuite which is sups-
inheriting is also directed-sups-inheriting.

LetL be a non empty relational structure. Observe that there exists a relational substructure of
L which is infs-inheriting, sups-inheriting, non empty, full, and strict.

Next we state two propositions:

(6) LetL be anonempty transitive relational structusége a filtered-infs-inheriting non empty
full relational substructure df, andX be a filtered subset & Suppos& # 0 and infX exists
in L. Then infX exists inSand[ |sX = [ ].X.

(7) LetL be a non empty transitive relational structuhe a directed-sups-inheriting non
empty full relational substructure &f andX be a directed subset & SupposeX # 0 and
supX exists inL. Then supX exists inSand| X = | |, X.

2. NETs

LetL,, Lo be non empty 1-sorted structures, febe a map froni; into L, and letx be an element
of L;. Thenf(x) is an element ok..

LetLs, L, be relational structures and letbe a map froni; into L,. We say thaff is antitone
if and only if:

(Def. 5) For all elements, y of L1 such thak <y and for all elements, b of L, such thati= f(X)
andb = f(y) holdsa > b.

Let L be a 1-sorted structure. We consider net structures lowass extensions of relational
structure as systems

( a carrier, an internal relation, a mapping
where the carrier is a set, the internal relation is a binary relation on the carrier, and the mapping is
a function from the carrier into the carrier bf

LetL be a 1-sorted structure, Etbe a non empty set, |€ be a binary relation o, and letF
be a function fronX into the carrier oL. Note that(X,O,F) is non empty.

Let N be a relational structure. We say ti\its directed if and only if:
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(Def. 6) Qy is directed.

LetL be a 1-sorted structure. One can verify that there exists a strict net structutewkiarh
is non empty, reflexive, transitive, antisymmetric, and directed.

LetL be a 1-sorted structure. A prenet oteis a directed non empty net structure oler

LetL be a 1-sorted structure. A netlins a transitive prenet over.

Let L be a non empty 1-sorted structure andNebe a non empty net structure over The
functor netmafN, L) yielding a map fromN into L is defined as follows:

(Def. 7) netmapN,L) = the mapping oN.
Leti be an element di. The functom(i) yielding an element of is defined by:
(Def. 8) N(i) = (the mapping oN)(i).

LetL be a non empty relational structure andNebe a non empty net structure oderWe say
thatN is monotone if and only if:

(Def. 9) netmapN,L) is monotone.
We say thal is antitone if and only if:
(Def. 10) netmafi\,L) is antitone.

LetL be a non empty 1-sorted structure,lebe a non empty net structure oderand letX be
a set. We say tha is eventually inX if and only if:

(Def. 11) There exists an elemenof N such that for every elementof N such thati < j holds
N(j) € X.

We say thai is often inX if and only if:
(Def. 12) For every elemembf N there exists an elemenbf N such thai < j andN(j) € X.

We now state three propositions:

(8) LetL be a non empty 1-sorted structudepe a non empty net structure oderandX, Y
be sets such tha¢ CY. Then

(i) if Nis eventually inX, thenN is eventually inY, and

(i) if Nis ofteninX, thenN is ofteninY.

(9) LetL be anon empty 1-sorted structukebe a non empty net structure ougrandX be a
set. TherN is eventually inX if and only if N is not often in (the carrier df) \ X.

(10) LetL be a non empty 1-sorted structukepe a non empty net structure ovderandX be a
set. TherN is often inX if and only if N is not eventually in (the carrier af) \ X.

LetL be a non empty relational structure andNelbe a non empty net structure oderWe say
thatN is eventually-directed if and only if:

(Def. 13) For every elementof N holdsN is eventually in{N(j); j ranges over elements &f:
N(i) < N(j)}-

We say thal is eventually-filtered if and only if:

(Def. 14) For every elemeritof N holdsN is eventually in{N(j); j ranges over elements o:
N(i) = N(j)}-

The following two propositions are true:
(11) LetL be a non empty relational structure addbe a non empty net structure oderThen

N is eventually-directed if and only if for every elemerdf N there exists an elemeiif N
such that for every elemektof N such thatj < k holdsN(i) < N(k).
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(12) LetL be a non empty relational structure addbe a non empty net structure oderThen
N is eventually-filtered if and only if for every elemeindf N there exists an elementof N
such that for every elemektof N such thatj < k holdsN(i) > N(k).

Let L be a non empty relational structure. One can verify that every prenetLowich is
monotone is also eventually-directed and every prenet lowehich is antitone is also eventually-

filtered.
Let L be a non empty reflexive relational structure. Observe that there exists a prenét over

which is monotone, antitone, and strict.

3. LOWER AND UPPER SUBSETS

LetL be a relational structure and Métbe a subset df. The functor| X yields a subset df and is
defined by:

(Def. 15) For every elementof L holdsx € | X iff there exists an elememptof L such thay > x and
yeX.

The functor X yielding a subset of is defined by:

(Def. 16) For every elememntof L holdsx € 17X iff there exists an elememtof L such thay < x and
yeX.

One can prove the following propositions:

(13) LetLs, Lo be relational structures. Suppose the relational structuke ef the relational
structure ofL,. Let X be a subset df; andY be a subset df,. If X =Y, then|X = |Y and

X =1Y.

(14) LetL be a non empty relational structure adde a subset df. Then|X = {x;x ranges
over elements of: \/y.gjement of. (XY A Y E X)}.

(15) LetL be a non empty relational structure axide a subset df. ThenX = {x;x ranges
over elements of: \/y.ciement of. (X=>Y A YE X)}.

Let L be a non empty reflexive relational structure andddte a non empty subset bf Note

that | X is non empty andX is non empty.
One can prove the following proposition

(16) For every reflexive relational structukeand for every subseX of L holdsX C | X and
X C1X.
Let L be a non empty relational structure andXdte an element df. The functor|x yielding
a subset of is defined as follows:
(Def. 17) [x= |{x}.

The functor{x yields a subset df and is defined as follows:

(Def. 18) 1x=1{x}.
One can prove the following propositions:
(17) For every non empty relational structlreand for all elements, y of L holdsy € | x iff
y<x
(18) For every non empty relational structurend for all elements, y of L holdsy € 1x iff
x<y.

(19) LetL be a non empty reflexive antisymmetric relational structurexarytbe elements of
L. If [x= ]y, thenx=Yy.
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(20) LetL be a non empty reflexive antisymmetric relational structurexarydoe elements of
L. If Tx= Ty, thenx=Yy.

(21) For every non empty transitive relational structui@nd for all elementg, y of L such that
x <yholds|x C |y.

(22) For every non empty transitive relational structiund for all elements, y of L such that
x<yholdsty C Tx.

Let L be a non empty reflexive relational structure andklbe an element df. One can check
that | x is non empty and directed arje is non empty and filtered.
LetL be a relational structure and Mtbe a subset df. We say thak is lower if and only if:

(Def. 19) For all elements, y of L such thatk € X andy < x holdsy € X.
We say thak is upper if and only if:
(Def. 20) For all elements, y of L such thatk € X andx <y holdsy € X.

LetL be a relational structure. Note that there exists a subdewdfich is lower and upper.
We now state several propositions:

(23) For every relational structuteand for every subséf of L holdsX is lower iff | X C X.
(24) For every relational structuteand for every subséf of L holdsX is upper iff X C X.

(25) LetL1, Lo be relational structures. Suppose the relational structuke ef the relational
structure ofL,. Let X; be a subset df; andXs be a subset df, such thatX; = X5. Then

(i) if Xqis lower, thenX; is lower, and
(i) if Xqis upper, therx; is upper.

(26) LetL be a relational structure arlbe a subset of® camier oL - gyppose that for every
subseiX of L such thaiX € AholdsX is lower. ThenJA s a lower subset df.

(27) LetL be arelational structure anfl Y be subsets df. If X is lower andY is lower, then
XNY is lower andX UY is lower.

(28) LetL be a relational structure arilbe a subset of® camer ol - gypnose that for every
subseiX of L such thaiX € AholdsX is upper. Thert Ais an upper subset &f

(29) LetL be arelational structure an€l Y be subsets df. If X is upper and( is upper, then
XNY is upper andX UY is upper.

Let L be a non empty transitive relational structure andldte a subset df. Note that| X is
lower andTX is upper.

Let L be a non empty transitive relational structure anc le¢ an element df. Note that|x is
lower andTx is upper.

LetL be a non empty relational structure. Observe fhats lower and upper.

Let L be a non empty relational structure. Note that there exists a subsetvbich is non
empty, lower, and upper.

Let L be a non empty reflexive transitive relational structure. Observe that there exists a subset
of L which is non empty, lower, and directed and there exists a subdetwbifich is non empty,
upper, and filtered.

LetL be a poset with g.l.b.'s and l.u.b.'s. One can check that there exists a subsehath is
non empty, directed, filtered, lower, and upper.

Next we state the proposition

(30) LetL be a non empty transitive reflexive relational structure ¥k a subset df. Then
X is directed if and only if X is directed.



DIRECTED SETS NETS, IDEALS, FILTERS, AND ... 6

LetL be a non empty transitive reflexive relational structure an le¢ a directed subset bf
One can check thgtX is directed.
The following propositions are true:

(31) LetL be a non empty transitive reflexive relational structi¢dye a subset df, andx be
an element of.. Thenx > X if and only if x> | X.

(32) LetL be a non empty transitive reflexive relational structure ¥rgk a subset df. Then
supX exists inL if and only if sup] X exists inL.

(833) LetL be a non empty transitive reflexive relational structure drmk a subset df. If sup
X exists inL, then suX = sup| X.

(34) For every non empty posktand for every element of L holds sup]x exists inL and
Suplx=X.

(35) LetL be a non empty transitive reflexive relational structure ¥drzk a subset df. Then
X is filtered if and only if{ X is filtered.

Let L be a non empty transitive reflexive relational structure ani lbé a filtered subset df.
One can verify that X is filtered.
We now state four propositions:

(36) LetL be a non empty transitive reflexive relational structi¢dge a subset df, andx be
an element of.. Thenx < X if and only ifx < TX.

(37) LetL be a non empty transitive reflexive relational structure ¥k a subset df. Then
inf X exists inL if and only if inf 7X exists inL.

(38) LetL be a non empty transitive reflexive relational structure ¥rzk a subset df. If inf
X exists inL, then infX = infX.

(39) For every non empty posktand for every element of L holds inf Tx exists inL and
infTx=x.

4. |IDEALS AND FILTERS

Let L be a non empty reflexive transitive relational structure. An idedl isfa directed lower non
empty subset of. A filter of L is a filtered upper non empty subsetlof
One can prove the following propositions:

(40) LetL be an antisymmetric relational structure with l.u.b.s ahtle a lower subset df.
ThenX is directed if and only if for all elements y of L such thatx € X andy € X holds
xuy e X.

(41) LetL be an antisymmetric relational structure with g.l.b.’s &hte an upper subset &f
ThenX is filtered if and only if for all elementg, y of L such thatx € X andy € X holds
xny e X.

(42) LetL be a poset with l.u.b.’s and be a non empty lower subsetlof ThenX is directed if
and only if for every finite subsét of X such thaly # 0 holds| |, Y € X.

(43) LetL be a poset with g.l.b.’s and be a non empty upper subsetlofThenX is filtered if
and only if for every finite subsét of X such thaly = 0 holds[ LY € X.

(44) LetL be a non empty antisymmetric relational structure. Suppdsss l.u.b.’s and g.l.b.’s.
Let X, Y be subsets df. SupposeX is lower and directed and is lower and directed. Then
XNY is directed.
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(45) LetL be a non empty antisymmetric relational structure. Suppdsss |.u.b.'s and g.l.b.’s.
Let X, Y be subsets of. SupposeX is upper and filtered and is upper and filtered. Then
XNY is filtered.

(46) LetL be a relational structure ambe a subset of®® carier ol gynpose that
(i) for every subseK of L such thaiX € A holdsX is directed, and

(i) for all subsetsX, Y of L such thatX € A andY € A there exists a subs&tof L such that
ZecAandXUY C Z.

Let X be a subset df. If X =JA, thenX is directed.

(47) LetL be a relational structure amdbe a subset oft® camer oL - gyppose that
(i) for every subseK of L such thaiX € A holdsX is filtered, and

(i) for all subsetsX, Y of L such thatX € A andY € A there exists a subsg&tof L such that
ZeAandXUyY C Z

Let X be a subset df. If X =JA, thenX is filtered.

Let L be a non empty reflexive transitive relational structure and ket an ideal ot.. We say
thatl is principal if and only if:

(Def. 21) There exists an elementf L such thak € | andx > I.

Let L be a non empty reflexive transitive relational structure ané Ibe a filter ofL. We say
thatF is principal if and only if:

(Def. 22) There exists an elemendf L such thatk € F andx < F.

We now state two propositions:

(48) LetL be a non empty reflexive transitive relational structure labd an ideal of.. Thenl
is principal if and only if there exists an elememf L such that = |x.

(49) LetL be a non empty reflexive transitive relational structure g a filter ofL. ThenF
is principal if and only if there exists an elemeqtf L such thaF = Tx.

Let L be a non empty reflexive transitive relational structure. The functdt )Jdgelding a set
is defined as follows:

(Def. 23) Id4L) = {X: X ranges over ideals af}.
The functor Fil{L) yields a set and is defined by:
(Def. 24) Fil(L) = {X : X ranges over filters df}.

Let L be a non empty reflexive transitive relational structure. The functeflldsields a set
and is defined by:

(Def. 25) Idg(L) = lds(L) U{0}.
The functor Filp(L) yielding a set is defined by:
(Def. 26) Filp(L) = Filt(L) U {0}.

Let L be a non empty relational structure andXebe a subset of. The functor finsupsX)
yields a subset df and is defined by:

(Def. 27) finsup&X) = {I_Y;Y ranges over finite subsets ¥f supY exists inL}.
The functor fininf¢X) yielding a subset of is defined by:
(Def. 28) fininfgX) = {[|LY;Y ranges over finite subsets Xf inf Y exists inL}.
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LetL be a non empty antisymmetric lower-bounded relational structure aXddeta subset of
L. Note that finsup&) is non empty.

Let L be a non empty antisymmetric upper-bounded relational structure akdket subset of
L. One can verify that fininfs<) is non empty.

Let L be a non empty reflexive antisymmetric relational structure an& lbeé a non empty
subset oL. Observe that finsugX) is non empty and fininfX) is non empty.

One can prove the following propositions:

(50) For every non empty reflexive antisymmetric relational strudtueiad for every subset
of L holdsX C finsupgX) andX C fininfs(X).
(51) LetL be a non empty transitive relational structure ¥ndr be subsets df. Suppose that
(i) for every finite subseY of X such thalY # 0 holds supy exists inL,

(ii) for every elemenk of L such thai € F there exists a finite subsgtof X such that supy
exists inL andx =], Y, and

(iii)  for every finite subseY of X such thaly # 0 holds| |, Y € F.
ThenF is directed.

LetL be a poset with l.u.b.'s and I&t be a subset df. Note that finsup&) is directed.
One can prove the following propositions:

(52) LetL be a non empty transitive reflexive relational structure Xnd be subsets of.
Suppose that

(i) for every finite subseY of X such thaty # 0 holds supY exists inL,

(i) for every elemenk of L such thak € F there exists a finite subs¥étof X such that supy
exists inL andx=], Y, and

(iiiy  for every finite subseY of X such thaly £ 0 holds| | Y € F.
Letx be an element df. Thenx> X if and only ifx > F.
(53) LetL be a non empty transitive reflexive relational structure And~ be subsets of.
Suppose that
(i) for every finite subseY of X such thalY # 0 holds supy exists inL,

(i) for every elemenk of L such thai € F there exists a finite subsgtof X such that supy
exists inL andx=], Y, and

(iiiy  for every finite subseY of X such thaly # 0 holds| |, Y € F.
Then supX exists inL if and only if supF exists inL.
(54) LetL be a non empty transitive reflexive relational structure Xnd- be subsets oE.
Suppose that
(i) for every finite subseY of X such thaly # 0 holds supY exists inL,

(i) for every elemenk of L such thai € F there exists a finite subsgtof X such that supy
exists inL andx =[], Y,

(iii)  for every finite subseY of X such thaly £ 0 holds| |, Y € F, and
(iv) supX exists inL.
Then supg- = supX.

(55) LetL be a poset with l.u.b.'s and be a subset df. If sup X exists inL or L is complete,
then supX = supfinsupéX).
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(56) LetL be a non empty transitive relational structure ahdF be subsets df. Suppose that
(i) for every finite subseY of X such thaty # 0 holds infY exists inL,

(i) for every elemenk of L such thak € F there exists a finite subs€tof X such that infy
exists inL andx= [].Y, and

(i)  for every finite subseY of X such thalY £ 0 holds[ LY € F.
ThenF is filtered.

LetL be a poset with g.l.b.’s and I&t be a subset df. Observe that fininfx) is filtered.
One can prove the following propositions:

(57) LetL be a non empty transitive reflexive relational structure Xnd~ be subsets of.
Suppose that
(i) for every finite subseY of X such thaly # 0 holds infY exists inL,

(ii) for every elemenk of L such thaix € F there exists a finite subsgtof X such that infy
exists inL andx= [ ].Y, and

(i)  for every finite subseY of X such thalY # 0 holds[ |LY € F.
Letx be an element df. Thenx < X ifand only ifx <F.
(58) LetL be a non empty transitive reflexive relational structure And~ be subsets of.
Suppose that
(i) for every finite subseY of X such thaly # 0 holds infY exists inL,

(i) for every elemenk of L such thaix € F there exists a finite subsgtof X such that infy
exists inL andx= [ ].Y, and

(i)  for every finite subseY of X such thalY £ 0 holds[ LY € F.
Then infX exists inL if and only if inf F exists inL.
(59) LetL be a non empty transitive reflexive relational structure Znd~ be subsets of.
Suppose that
(i) for every finite subseY of X such thaty # 0 holds infY exists inL,

(i) for every elemenk of L such tha € F there exists a finite subs€étof X such that infy
exists inL andx = [].Y,

(i) ~ for every finite subseY of X such thaty - 0 holds[ .Y € F, and
(iv) inf X exists inL.
Then infF =infX.

(60) LetL be a poset with g.l.b.'s and be a subset df. If inf X exists inL or L is complete,
then infX = inffininfs(X).

(61) LetL be a poset with l.u.b.’s and be a subset df. ThenX C |finsupgX) and for every
ideall of L such thaiX C | holds|finsupgX) C 1.

(62) LetL be a poset with g.l.b.'s and be a subset df. ThenX C 7fininfs(X) and for every
filter F of L such thatX C F holds1fininfs(X) C F.

5. CHAINS

LetL be a non empty relational structure. We say that connected if and only if:
(Def. 29) For all elements, y of L holdsx <yory < x.

Let us observe that every non empty reflexive relational structure which is trivial is also con-
nected.

Let us note that there exists a non empty poset which is connected.

A chain is a connected non empty poset.

LetL be a chain. Note thdt~ is connected.
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6. SEMILATTICES

A semilattice is a poset with g.l.b.'s. A sup-semilattice is a poset with L.u.b.s. A lattice is a poset
with g.l.b’s and l.u.b.’s.
The following propositions are true:

(63) LetL be a semilattice and be an upper non empty subsetlof ThenX is a filter ofL if
and only if sul§X) is meet-inheriting.

(64) LetL be a sup-semilattice aXibe a lower non empty subsetlof ThenX is an ideal ofL
if and only if sul{X) is join-inheriting.

7. MAPS

LetS T be non empty relational structures, febe a map fronSinto T, and letX be a subset db.
We say thatf preserves inf oK if and only if:

(Def. 30) Ifinf X exists inS, then inff°X exists inT and inf f°X) = f(inf X).
We say thatf preserves sup of if and only if:
(Def. 31) If supX exists inS, then supf°X exists inT and sugf°X) = f(supX).
We now state the proposition
(65) LetS, S, Ty, To be non empty relational structures. Suppose that
(i) the relational structure d§; = the relational structure af;, and

(i)  the relational structure df, = the relational structure df.

Let f be a map fron§, into S, andg be a map fronT; into T,. Supposef = g. Let X be a
subset ofS; andY be a subset of; such thatX =Y. Then

(i) if f preserves sup of, theng preserves sup of, and
(iv) if f preserves inf oK, theng preserves inf o¥.

LetLs, Lo be non empty relational structures andfidie a map froni; into Lp. We say thaff
is infs-preserving if and only if:

(Def. 32) For every subset of L; holds f preserves inf oK.
We say thaff is sups-preserving if and only if:
(Def. 33) For every subset of L1 holds f preserves sup of.
We say thaff is meet-preserving if and only if:
(Def. 34) For all elements, y of L3 holds f preserves inf ofx,y}.
We say thaff is join-preserving if and only if:
(Def. 35) For all elements, y of L3 holds f preserves sup dfx,y}.
We say thatff is filtered-infs-preserving if and only if:
(Def. 36) For every subset of L; such thaiX is non empty and filtered holdspreserves inf oK.
We say thaff is directed-sups-preserving if and only if:
(Def. 37) For every subsét of L; such thaiX is non empty and directed holdspreserves sup of.

LetL, Lo be non empty relational structures. Observe that every maplffamto L, which is
infs-preserving is also filtered-infs-preserving and meet-preserving and every mapfioto L,
which is sups-preserving is also directed-sups-preserving and join-preserving.

LetS T be relational structures and létbe a map fronSinto T. We say thaff is isomorphic
if and only if:
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(Def. 38)(i) f is one-to-one and monotone and there exists agfepm T into Ssuch thag = f~1
andg is monotone ifSis non empty and is non empty,

(i) Sis empty andr is empty, otherwise.
Next we state the proposition

(66) LetS T be non empty relational structures ahde a map fronSinto T. Thenf is
isomorphic if and only if the following conditions are satisfied:

(i) fisone-to-one,
(i) rngf =the carrier ofT, and
(iiiy  for all elementsx, y of Sholdsx < yiff f(x) < f(y).
Let S T be non empty relational structures. Observe that every map &aro T which is

isomorphic is also one-to-one and monotone.
The following propositions are true:

(67) LetS T be non empty relational structures ahdbe a map fronSinto T. Supposef is
isomorphic. Therf ~1 is a map fron into Sand rng f 1) = the carrier ofS.

(68) LetS T be non empty relational structures ahdbe a map fronSinto T. Supposef is
isomorphic. Leig be a map fronT into S If g= f~1, theng is isomorphic.

(69) LetS T be non empty posets arfdbe a map fronSinto T. Suppose that for every filter
X of Sholds f preserves inf oK. Thenf is monotone.

(70) LetS T be non empty posets arfdbe a map fronSinto T. Suppose that for every filter
X of Sholds f preserves inf oK. Thenf is filtered-infs-preserving.
(71) LetSbe a semilatticelT be a non empty poset, aridoe a map fronsinto T. Suppose that
(i) for every finite subseX of Sholdsf preserves inf oK, and
(i) for every non empty filtered subsitof Sholdsf preserves inf oK.
Thenf is infs-preserving.

(72) LetS T be non empty posets arfdbe a map fron8into T. Suppose that for every ideal
X of Sholds f preserves sup of. Thenf is monotone.

(73) LetS T be non empty posets arfdbe a map fronBinto T. Suppose that for every ideal
X of Sholds f preserves sup of. Thenf is directed-sups-preserving.

(74) LetSbe a sup-semilatticd, be a non empty poset, ariche a map fronginto T. Suppose
that
(i) for every finite subseX of Sholdsf preserves sup of, and
(i) for every non empty directed subs¢tof Sholds f preserves sup of.
Thenf is sups-preserving.

8. COMPLETENESS WRT DIRECTED SETS

Let L be a non empty reflexive relational structure. We say lthatup-complete if and only if the
condition (Def. 39) is satisfied.

(Def. 39) LetX be a non empty directed subsetlof Then there exists an elemenof L such that
x> X and for every elementof L such thaty > X holdsx <.

Let us mention that every reflexive relational structure with l.u.b.'s which is up-complete is also
upper-bounded.
One can prove the following proposition
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(75) LetL be a non empty reflexive antisymmetric relational structure. Thisnup-complete

if and only if for every non empty directed sub3ébf L holds supX exists inL.

Let L be a non empty reflexive relational structure. We say lthiatinf-complete if and only if

the condition (Def. 40) is satisfied.

(Def. 40) LetX be a non empty subset bf Then there exists an elemendf L such thak < X and

for every elemeny of L such thaty < X holdsx > .

Next we state the proposition

(76) LetL be a non empty reflexive antisymmetric relational structure. Thisninf-complete

if and only if for every non empty subsgtof L holds infX exists inL.

One can check the following observations:

x every non empty reflexive relational structure which is complete is also up-complete and
inf-complete,

x every hon empty reflexive relational structure which is inf-complete is also lower-bounded,
and

x every non empty poset which is up-complete and lower-bounded and has l.u.b.'s is also
complete.

One can verify that every non empty reflexive antisymmetric relational structure which is inf-

complete has also g.l.b.’s.

One can verify that every non empty reflexive antisymmetric upper-bounded relational structure

which is inf-complete has also l.u.b.’s.

(1
(2]

(3]

(4]

(5]

6]

(7]
8l

[0

[10]

[11]

[12]

[13]

[14]

Let us note that there exists a lattice which is complete and strict.

REFERENCES

Grzegorz Bancerek. Complete latticdsurnal of Formalized Mathematic4, 1992 http://mizar.org/JFM/Vold/lattice3.htmll

Grzegorz Bancerek. Bounds in posets and relational substructimeshal of Formalized Mathematic8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.htmll

Jozef Biatas. Group and field definitiongournal of Formalized Mathematic4, 1989.http://mizar.org/JFM/Voll/realsetl.
html.

Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematics, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

Czestaw Bylhski. Functions from a set to a sdburnal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/funct_
2. htmll

Czestaw Bylhski. Some basic properties of setournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1l.html,

Agata Darmochwat. Finite setSournal of Formalized Mathematic, 1989.http://mizar.org/JFM/Voll/finset_1.htmll

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scdt€ompendium of Continuous Lattic&pringer-Verlag,
Berlin, Heidelberg, New York, 1980.

Adam Grabowski. On the category of posedsurnal of Formalized Mathematic8, 1996.http://mizar.org/JFM/Vol8/orders_.
3.htmll

Beata Padlewska and Agata Darmochwat. Topological spaces and continuous funidiomsl of Formalized Mathematicg, 1989.
http://mizar.org/JFM/Voll/pre_topc.html,

Andrzej Trybulec. Binary operations applied to functiorgurnal of Formalized Mathematic4, 1989.http://mizar.org/JFM/
Voll/funcop_l.html,

Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicéxiomatics, 1989 http://mizar.org/JFM/
Axiomatics/tarski.htmll

Wojciech A. Trybulec. Partially ordered set¥ournal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/orders_|
1. htmll

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http: //mizar.org/JFM/Voll/subset_1.htmll


http://mizar.org/JFM/Vol4/lattice3.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol1/realset1.html
http://mizar.org/JFM/Vol1/realset1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol8/orders_3.html
http://mizar.org/JFM/Vol8/orders_3.html
http://mizar.org/JFM/Vol1/pre_topc.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Vol1/funcop_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/subset_1.html

DIRECTED SETS NETS, IDEALS, FILTERS, AND ... 13

[15] Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JrFM/
Voll/relat_1.html}

[16] Edmund Woronowicz. Relations defined on setkurnal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
relset_1.html.

[17] Edmund Woronowicz and Anna Zalewska. Properties of binary relatlmsnal of Formalized Mathematic, 1989/http://mizar.
org/JFM/Voll/relat_2.html.

Received September 12, 1996

Published January 2, 2004


http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relset_1.html
http://mizar.org/JFM/Vol1/relat_2.html
http://mizar.org/JFM/Vol1/relat_2.html

	directed sets, nets, ideals, filters, and … By grzegorz bancerek

