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Summary. Notation and facts necessary to start with the formalization of continuous
lattices according to [8] are introduced. The article contains among other things, the definition
of directed and filtered subsets of a poset (see 1.1 in [8, p. 2]), the definition of nets on the poset
(see 1.2 in [8, p. 2]), the definition of ideals and filters and the definition of maps preserving
arbitrary and directed sups and arbitrary and filtered infs (1.9 also in [8, p. 4]). The concepts
of semilattices, sup-semiletices and poset lattices (1.8 in [8, p. 4]) are also introduced. A
number of facts concerning the above notion and including remarks 1.4, 1.5, and 1.10 from
[8, pp. 3–5] is presented.
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The articles [12], [6], [14], [15], [17], [16], [7], [4], [5], [11], [3], [10], [1], [2], [13], and [9] provide
the notation and terminology for this paper.

1. DIRECTED SUBSETS

Let L be a relational structure and letX be a subset ofL. We say thatX is directed if and only if:

(Def. 1) For all elementsx, y of L such thatx∈ X andy∈ X there exists an elementzof L such that
z∈ X andx≤ z andy≤ z.

We say thatX is filtered if and only if:

(Def. 2) For all elementsx, y of L such thatx∈ X andy∈ X there exists an elementzof L such that
z∈ X andz≤ x andz≤ y.

One can prove the following two propositions:

(1) Let L be a non empty transitive relational structure andX be a subset ofL. ThenX is non
empty and directed if and only if for every finite subsetY of X there exists an elementx of L
such thatx∈ X andx≥Y.

(2) Let L be a non empty transitive relational structure andX be a subset ofL. ThenX is non
empty and filtered if and only if for every finite subsetY of X there exists an elementx of L
such thatx∈ X andx≤Y.

Let L be a relational structure. Observe that/0L is directed and filtered.
Let L be a relational structure. One can verify that there exists a subset ofL which is directed

and filtered.
We now state three propositions:
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(3) Let L1, L2 be relational structures. Suppose the relational structure ofL1 = the relational
structure ofL2. Let X1 be a subset ofL1 andX2 be a subset ofL2. If X1 = X2 andX1 is
directed, thenX2 is directed.

(4) Let L1, L2 be relational structures. Suppose the relational structure ofL1 = the relational
structure ofL2. LetX1 be a subset ofL1 andX2 be a subset ofL2. If X1 = X2 andX1 is filtered,
thenX2 is filtered.

(5) For every non empty reflexive relational structureL and for every elementx of L holds{x}
is directed and filtered.

Let L be a non empty reflexive relational structure. One can verify that there exists a subset ofL
which is directed, filtered, non empty, and finite.

Let L be a relational structure with l.u.b.’s. Observe thatΩL is directed.
Let L be an upper-bounded non empty relational structure. Note thatΩL is directed.
Let L be a relational structure with g.l.b.’s. Observe thatΩL is filtered.
Let L be a lower-bounded non empty relational structure. Note thatΩL is filtered.
Let L be a non empty relational structure and letSbe a relational substructure ofL. We say that

S is filtered-infs-inheriting if and only if:

(Def. 3) For every filtered subsetX of S such thatX 6= /0 and inf X exists inL holdsd−eLX ∈ the
carrier ofS.

We say thatS is directed-sups-inheriting if and only if:

(Def. 4) For every directed subsetX of S such thatX 6= /0 and supX exists inL holds
⊔

L X ∈ the
carrier ofS.

Let L be a non empty relational structure. Note that every relational substructure ofL which is
infs-inheriting is also filtered-infs-inheriting and every relational substructure ofL which is sups-
inheriting is also directed-sups-inheriting.

Let L be a non empty relational structure. Observe that there exists a relational substructure of
L which is infs-inheriting, sups-inheriting, non empty, full, and strict.

Next we state two propositions:

(6) LetL be a non empty transitive relational structure,Sbe a filtered-infs-inheriting non empty
full relational substructure ofL, andX be a filtered subset ofS. SupposeX 6= /0 and infX exists
in L. Then infX exists inSandd−eSX = d−eLX.

(7) Let L be a non empty transitive relational structure,S be a directed-sups-inheriting non
empty full relational substructure ofL, andX be a directed subset ofS. SupposeX 6= /0 and
supX exists inL. Then supX exists inSand

⊔
SX =

⊔
L X.

2. NETS

Let L1, L2 be non empty 1-sorted structures, letf be a map fromL1 into L2, and letx be an element
of L1. Then f (x) is an element ofL2.

Let L1, L2 be relational structures and letf be a map fromL1 into L2. We say thatf is antitone
if and only if:

(Def. 5) For all elementsx, y of L1 such thatx≤ y and for all elementsa, b of L2 such thata = f (x)
andb = f (y) holdsa≥ b.

Let L be a 1-sorted structure. We consider net structures overL as extensions of relational
structure as systems

〈 a carrier, an internal relation, a mapping〉,
where the carrier is a set, the internal relation is a binary relation on the carrier, and the mapping is
a function from the carrier into the carrier ofL.

Let L be a 1-sorted structure, letX be a non empty set, letO be a binary relation onX, and letF
be a function fromX into the carrier ofL. Note that〈X,O,F〉 is non empty.

Let N be a relational structure. We say thatN is directed if and only if:
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(Def. 6) ΩN is directed.

Let L be a 1-sorted structure. One can verify that there exists a strict net structure overL which
is non empty, reflexive, transitive, antisymmetric, and directed.

Let L be a 1-sorted structure. A prenet overL is a directed non empty net structure overL.
Let L be a 1-sorted structure. A net inL is a transitive prenet overL.
Let L be a non empty 1-sorted structure and letN be a non empty net structure overL. The

functor netmap(N,L) yielding a map fromN into L is defined as follows:

(Def. 7) netmap(N,L) = the mapping ofN.

Let i be an element ofN. The functorN(i) yielding an element ofL is defined by:

(Def. 8) N(i) = (the mapping ofN)(i).

Let L be a non empty relational structure and letN be a non empty net structure overL. We say
thatN is monotone if and only if:

(Def. 9) netmap(N,L) is monotone.

We say thatN is antitone if and only if:

(Def. 10) netmap(N,L) is antitone.

Let L be a non empty 1-sorted structure, letN be a non empty net structure overL, and letX be
a set. We say thatN is eventually inX if and only if:

(Def. 11) There exists an elementi of N such that for every elementj of N such thati ≤ j holds
N( j) ∈ X.

We say thatN is often inX if and only if:

(Def. 12) For every elementi of N there exists an elementj of N such thati ≤ j andN( j) ∈ X.

We now state three propositions:

(8) Let L be a non empty 1-sorted structure,N be a non empty net structure overL, andX, Y
be sets such thatX ⊆Y. Then

(i) if N is eventually inX, thenN is eventually inY, and

(ii) if N is often inX, thenN is often inY.

(9) LetL be a non empty 1-sorted structure,N be a non empty net structure overL, andX be a
set. ThenN is eventually inX if and only if N is not often in (the carrier ofL)\X.

(10) LetL be a non empty 1-sorted structure,N be a non empty net structure overL, andX be a
set. ThenN is often inX if and only if N is not eventually in (the carrier ofL)\X.

Let L be a non empty relational structure and letN be a non empty net structure overL. We say
thatN is eventually-directed if and only if:

(Def. 13) For every elementi of N holds N is eventually in{N( j); j ranges over elements ofN:
N(i)≤ N( j)}.

We say thatN is eventually-filtered if and only if:

(Def. 14) For every elementi of N holds N is eventually in{N( j); j ranges over elements ofN:
N(i)≥ N( j)}.

The following two propositions are true:

(11) LetL be a non empty relational structure andN be a non empty net structure overL. Then
N is eventually-directed if and only if for every elementi of N there exists an elementj of N
such that for every elementk of N such thatj ≤ k holdsN(i)≤ N(k).
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(12) LetL be a non empty relational structure andN be a non empty net structure overL. Then
N is eventually-filtered if and only if for every elementi of N there exists an elementj of N
such that for every elementk of N such thatj ≤ k holdsN(i)≥ N(k).

Let L be a non empty relational structure. One can verify that every prenet overL which is
monotone is also eventually-directed and every prenet overL which is antitone is also eventually-
filtered.

Let L be a non empty reflexive relational structure. Observe that there exists a prenet overL
which is monotone, antitone, and strict.

3. LOWER AND UPPER SUBSETS

Let L be a relational structure and letX be a subset ofL. The functor↓X yields a subset ofL and is
defined by:

(Def. 15) For every elementx of L holdsx∈ ↓X iff there exists an elementy of L such thaty≥ x and
y∈ X.

The functor↑X yielding a subset ofL is defined by:

(Def. 16) For every elementx of L holdsx∈ ↑X iff there exists an elementy of L such thaty≤ x and
y∈ X.

One can prove the following propositions:

(13) LetL1, L2 be relational structures. Suppose the relational structure ofL1 = the relational
structure ofL2. Let X be a subset ofL1 andY be a subset ofL2. If X = Y, then↓X = ↓Y and
↑X = ↑Y.

(14) LetL be a non empty relational structure andX be a subset ofL. Then↓X = {x;x ranges
over elements ofL:

∨
y:element ofL (x≤ y ∧ y∈ X)}.

(15) LetL be a non empty relational structure andX be a subset ofL. Then↑X = {x;x ranges
over elements ofL:

∨
y:element ofL (x≥ y ∧ y∈ X)}.

Let L be a non empty reflexive relational structure and letX be a non empty subset ofL. Note
that↓X is non empty and↑X is non empty.

One can prove the following proposition

(16) For every reflexive relational structureL and for every subsetX of L holdsX ⊆ ↓X and
X ⊆ ↑X.

Let L be a non empty relational structure and letx be an element ofL. The functor↓x yielding
a subset ofL is defined as follows:

(Def. 17) ↓x = ↓{x}.

The functor↑x yields a subset ofL and is defined as follows:

(Def. 18) ↑x = ↑{x}.

One can prove the following propositions:

(17) For every non empty relational structureL and for all elementsx, y of L holdsy ∈ ↓x iff
y≤ x.

(18) For every non empty relational structureL and for all elementsx, y of L holdsy ∈ ↑x iff
x≤ y.

(19) LetL be a non empty reflexive antisymmetric relational structure andx, y be elements of
L. If ↓x = ↓y, thenx = y.
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(20) LetL be a non empty reflexive antisymmetric relational structure andx, y be elements of
L. If ↑x = ↑y, thenx = y.

(21) For every non empty transitive relational structureL and for all elementsx, y of L such that
x≤ y holds↓x⊆ ↓y.

(22) For every non empty transitive relational structureL and for all elementsx, y of L such that
x≤ y holds↑y⊆ ↑x.

Let L be a non empty reflexive relational structure and letx be an element ofL. One can check
that↓x is non empty and directed and↑x is non empty and filtered.

Let L be a relational structure and letX be a subset ofL. We say thatX is lower if and only if:

(Def. 19) For all elementsx, y of L such thatx∈ X andy≤ x holdsy∈ X.

We say thatX is upper if and only if:

(Def. 20) For all elementsx, y of L such thatx∈ X andx≤ y holdsy∈ X.

Let L be a relational structure. Note that there exists a subset ofL which is lower and upper.
We now state several propositions:

(23) For every relational structureL and for every subsetX of L holdsX is lower iff ↓X ⊆ X.

(24) For every relational structureL and for every subsetX of L holdsX is upper iff↑X ⊆ X.

(25) LetL1, L2 be relational structures. Suppose the relational structure ofL1 = the relational
structure ofL2. Let X1 be a subset ofL1 andX2 be a subset ofL2 such thatX1 = X2. Then

(i) if X1 is lower, thenX2 is lower, and

(ii) if X1 is upper, thenX2 is upper.

(26) Let L be a relational structure andA be a subset of 2the carrier ofL. Suppose that for every
subsetX of L such thatX ∈ A holdsX is lower. Then

⋃
A is a lower subset ofL.

(27) LetL be a relational structure andX, Y be subsets ofL. If X is lower andY is lower, then
X∩Y is lower andX∪Y is lower.

(28) Let L be a relational structure andA be a subset of 2the carrier ofL. Suppose that for every
subsetX of L such thatX ∈ A holdsX is upper. Then

⋃
A is an upper subset ofL.

(29) LetL be a relational structure andX, Y be subsets ofL. If X is upper andY is upper, then
X∩Y is upper andX∪Y is upper.

Let L be a non empty transitive relational structure and letX be a subset ofL. Note that↓X is
lower and↑X is upper.

Let L be a non empty transitive relational structure and letx be an element ofL. Note that↓x is
lower and↑x is upper.

Let L be a non empty relational structure. Observe thatΩL is lower and upper.
Let L be a non empty relational structure. Note that there exists a subset ofL which is non

empty, lower, and upper.
Let L be a non empty reflexive transitive relational structure. Observe that there exists a subset

of L which is non empty, lower, and directed and there exists a subset ofL which is non empty,
upper, and filtered.

Let L be a poset with g.l.b.’s and l.u.b.’s. One can check that there exists a subset ofL which is
non empty, directed, filtered, lower, and upper.

Next we state the proposition

(30) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. Then
X is directed if and only if↓X is directed.
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Let L be a non empty transitive reflexive relational structure and letX be a directed subset ofL.
One can check that↓X is directed.

The following propositions are true:

(31) LetL be a non empty transitive reflexive relational structure,X be a subset ofL, andx be
an element ofL. Thenx≥ X if and only if x≥ ↓X.

(32) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. Then
supX exists inL if and only if sup↓X exists inL.

(33) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. If sup
X exists inL, then supX = sup↓X.

(34) For every non empty posetL and for every elementx of L holds sup↓x exists inL and
sup↓x = x.

(35) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. Then
X is filtered if and only if↑X is filtered.

Let L be a non empty transitive reflexive relational structure and letX be a filtered subset ofL.
One can verify that↑X is filtered.

We now state four propositions:

(36) LetL be a non empty transitive reflexive relational structure,X be a subset ofL, andx be
an element ofL. Thenx≤ X if and only if x≤ ↑X.

(37) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. Then
inf X exists inL if and only if inf ↑X exists inL.

(38) LetL be a non empty transitive reflexive relational structure andX be a subset ofL. If inf
X exists inL, then infX = inf↑X.

(39) For every non empty posetL and for every elementx of L holds inf ↑x exists inL and
inf↑x = x.

4. IDEALS AND FILTERS

Let L be a non empty reflexive transitive relational structure. An ideal ofL is a directed lower non
empty subset ofL. A filter of L is a filtered upper non empty subset ofL.

One can prove the following propositions:

(40) Let L be an antisymmetric relational structure with l.u.b.’s andX be a lower subset ofL.
ThenX is directed if and only if for all elementsx, y of L such thatx ∈ X andy∈ X holds
xty∈ X.

(41) LetL be an antisymmetric relational structure with g.l.b.’s andX be an upper subset ofL.
ThenX is filtered if and only if for all elementsx, y of L such thatx ∈ X andy ∈ X holds
xuy∈ X.

(42) LetL be a poset with l.u.b.’s andX be a non empty lower subset ofL. ThenX is directed if
and only if for every finite subsetY of X such thatY 6= /0 holds

⊔
LY ∈ X.

(43) LetL be a poset with g.l.b.’s andX be a non empty upper subset ofL. ThenX is filtered if
and only if for every finite subsetY of X such thatY 6= /0 holdsd−eLY ∈ X.

(44) LetL be a non empty antisymmetric relational structure. SupposeL has l.u.b.’s and g.l.b.’s.
Let X, Y be subsets ofL. SupposeX is lower and directed andY is lower and directed. Then
X∩Y is directed.
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(45) LetL be a non empty antisymmetric relational structure. SupposeL has l.u.b.’s and g.l.b.’s.
Let X, Y be subsets ofL. SupposeX is upper and filtered andY is upper and filtered. Then
X∩Y is filtered.

(46) LetL be a relational structure andA be a subset of 2the carrier ofL. Suppose that

(i) for every subsetX of L such thatX ∈ A holdsX is directed, and

(ii) for all subsetsX, Y of L such thatX ∈ A andY ∈ A there exists a subsetZ of L such that
Z ∈ A andX∪Y ⊆ Z.

Let X be a subset ofL. If X =
⋃

A, thenX is directed.

(47) LetL be a relational structure andA be a subset of 2the carrier ofL. Suppose that

(i) for every subsetX of L such thatX ∈ A holdsX is filtered, and

(ii) for all subsetsX, Y of L such thatX ∈ A andY ∈ A there exists a subsetZ of L such that
Z ∈ A andX∪Y ⊆ Z.

Let X be a subset ofL. If X =
⋃

A, thenX is filtered.

Let L be a non empty reflexive transitive relational structure and letI be an ideal ofL. We say
thatI is principal if and only if:

(Def. 21) There exists an elementx of L such thatx∈ I andx≥ I .

Let L be a non empty reflexive transitive relational structure and letF be a filter ofL. We say
thatF is principal if and only if:

(Def. 22) There exists an elementx of L such thatx∈ F andx≤ F.

We now state two propositions:

(48) LetL be a non empty reflexive transitive relational structure andI be an ideal ofL. ThenI
is principal if and only if there exists an elementx of L such thatI = ↓x.

(49) LetL be a non empty reflexive transitive relational structure andF be a filter ofL. ThenF
is principal if and only if there exists an elementx of L such thatF = ↑x.

Let L be a non empty reflexive transitive relational structure. The functor Ids(L) yielding a set
is defined as follows:

(Def. 23) Ids(L) = {X : X ranges over ideals ofL}.

The functor Filt(L) yields a set and is defined by:

(Def. 24) Filt(L) = {X : X ranges over filters ofL}.

Let L be a non empty reflexive transitive relational structure. The functor Ids0(L) yields a set
and is defined by:

(Def. 25) Ids0(L) = Ids(L)∪{ /0}.

The functor Filt0(L) yielding a set is defined by:

(Def. 26) Filt0(L) = Filt(L)∪{ /0}.

Let L be a non empty relational structure and letX be a subset ofL. The functor finsups(X)
yields a subset ofL and is defined by:

(Def. 27) finsups(X) = {
⊔

LY;Y ranges over finite subsets ofX: supY exists inL}.

The functor fininfs(X) yielding a subset ofL is defined by:

(Def. 28) fininfs(X) = {d−eLY;Y ranges over finite subsets ofX: inf Y exists inL}.
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Let L be a non empty antisymmetric lower-bounded relational structure and letX be a subset of
L. Note that finsups(X) is non empty.

Let L be a non empty antisymmetric upper-bounded relational structure and letX be a subset of
L. One can verify that fininfs(X) is non empty.

Let L be a non empty reflexive antisymmetric relational structure and letX be a non empty
subset ofL. Observe that finsups(X) is non empty and fininfs(X) is non empty.

One can prove the following propositions:

(50) For every non empty reflexive antisymmetric relational structureL and for every subsetX
of L holdsX ⊆ finsups(X) andX ⊆ fininfs(X).

(51) LetL be a non empty transitive relational structure andX, F be subsets ofL. Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds supY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that supY
exists inL andx =

⊔
LY, and

(iii) for every finite subsetY of X such thatY 6= /0 holds
⊔

LY ∈ F.

ThenF is directed.

Let L be a poset with l.u.b.’s and letX be a subset ofL. Note that finsups(X) is directed.
One can prove the following propositions:

(52) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds supY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that supY
exists inL andx =

⊔
LY, and

(iii) for every finite subsetY of X such thatY 6= /0 holds
⊔

LY ∈ F.

Let x be an element ofL. Thenx≥ X if and only if x≥ F.

(53) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds supY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that supY
exists inL andx =

⊔
LY, and

(iii) for every finite subsetY of X such thatY 6= /0 holds
⊔

LY ∈ F.

Then supX exists inL if and only if supF exists inL.

(54) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds supY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that supY
exists inL andx =

⊔
LY,

(iii) for every finite subsetY of X such thatY 6= /0 holds
⊔

LY ∈ F, and

(iv) supX exists inL.

Then supF = supX.

(55) LetL be a poset with l.u.b.’s andX be a subset ofL. If supX exists inL or L is complete,
then supX = supfinsups(X).
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(56) LetL be a non empty transitive relational structure andX, F be subsets ofL. Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds infY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that infY
exists inL andx = d−eLY, and

(iii) for every finite subsetY of X such thatY 6= /0 holdsd−eLY ∈ F.

ThenF is filtered.

Let L be a poset with g.l.b.’s and letX be a subset ofL. Observe that fininfs(X) is filtered.
One can prove the following propositions:

(57) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds infY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that infY
exists inL andx = d−eLY, and

(iii) for every finite subsetY of X such thatY 6= /0 holdsd−eLY ∈ F.

Let x be an element ofL. Thenx≤ X if and only if x≤ F.

(58) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds infY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that infY
exists inL andx = d−eLY, and

(iii) for every finite subsetY of X such thatY 6= /0 holdsd−eLY ∈ F.

Then infX exists inL if and only if inf F exists inL.

(59) Let L be a non empty transitive reflexive relational structure andX, F be subsets ofL.
Suppose that

(i) for every finite subsetY of X such thatY 6= /0 holds infY exists inL,

(ii) for every elementx of L such thatx∈ F there exists a finite subsetY of X such that infY
exists inL andx = d−eLY,

(iii) for every finite subsetY of X such thatY 6= /0 holdsd−eLY ∈ F, and

(iv) inf X exists inL.

Then infF = inf X.

(60) LetL be a poset with g.l.b.’s andX be a subset ofL. If inf X exists inL or L is complete,
then infX = inffininfs(X).

(61) LetL be a poset with l.u.b.’s andX be a subset ofL. ThenX ⊆ ↓finsups(X) and for every
idealI of L such thatX ⊆ I holds↓finsups(X)⊆ I .

(62) LetL be a poset with g.l.b.’s andX be a subset ofL. ThenX ⊆ ↑fininfs(X) and for every
filter F of L such thatX ⊆ F holds↑fininfs(X)⊆ F.

5. CHAINS

Let L be a non empty relational structure. We say thatL is connected if and only if:

(Def. 29) For all elementsx, y of L holdsx≤ y or y≤ x.

Let us observe that every non empty reflexive relational structure which is trivial is also con-
nected.

Let us note that there exists a non empty poset which is connected.
A chain is a connected non empty poset.
Let L be a chain. Note thatL` is connected.
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6. SEMILATTICES

A semilattice is a poset with g.l.b.’s. A sup-semilattice is a poset with l.u.b.’s. A lattice is a poset
with g.l.b.’s and l.u.b.’s.

The following propositions are true:

(63) LetL be a semilattice andX be an upper non empty subset ofL. ThenX is a filter ofL if
and only if sub(X) is meet-inheriting.

(64) LetL be a sup-semilattice andX be a lower non empty subset ofL. ThenX is an ideal ofL
if and only if sub(X) is join-inheriting.

7. MAPS

Let S, T be non empty relational structures, letf be a map fromS into T, and letX be a subset ofS.
We say thatf preserves inf ofX if and only if:

(Def. 30) If inf X exists inS, then inf f ◦X exists inT and inf( f ◦X) = f (inf X).

We say thatf preserves sup ofX if and only if:

(Def. 31) If supX exists inS, then supf ◦X exists inT and sup( f ◦X) = f (supX).

We now state the proposition

(65) LetS1, S2, T1, T2 be non empty relational structures. Suppose that

(i) the relational structure ofS1 = the relational structure ofT1, and

(ii) the relational structure ofS2 = the relational structure ofT2.

Let f be a map fromS1 into S2 andg be a map fromT1 into T2. Supposef = g. Let X be a
subset ofS1 andY be a subset ofT1 such thatX = Y. Then

(iii) if f preserves sup ofX, theng preserves sup ofY, and

(iv) if f preserves inf ofX, theng preserves inf ofY.

Let L1, L2 be non empty relational structures and letf be a map fromL1 into L2. We say thatf
is infs-preserving if and only if:

(Def. 32) For every subsetX of L1 holds f preserves inf ofX.

We say thatf is sups-preserving if and only if:

(Def. 33) For every subsetX of L1 holds f preserves sup ofX.

We say thatf is meet-preserving if and only if:

(Def. 34) For all elementsx, y of L1 holds f preserves inf of{x,y}.

We say thatf is join-preserving if and only if:

(Def. 35) For all elementsx, y of L1 holds f preserves sup of{x,y}.

We say thatf is filtered-infs-preserving if and only if:

(Def. 36) For every subsetX of L1 such thatX is non empty and filtered holdsf preserves inf ofX.

We say thatf is directed-sups-preserving if and only if:

(Def. 37) For every subsetX of L1 such thatX is non empty and directed holdsf preserves sup ofX.

Let L1, L2 be non empty relational structures. Observe that every map fromL1 into L2 which is
infs-preserving is also filtered-infs-preserving and meet-preserving and every map fromL1 into L2

which is sups-preserving is also directed-sups-preserving and join-preserving.
Let S, T be relational structures and letf be a map fromS into T. We say thatf is isomorphic

if and only if:
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(Def. 38)(i) f is one-to-one and monotone and there exists a mapg from T into Ssuch thatg = f−1

andg is monotone ifS is non empty andT is non empty,

(ii) S is empty andT is empty, otherwise.

Next we state the proposition

(66) Let S, T be non empty relational structures andf be a map fromS into T. Then f is
isomorphic if and only if the following conditions are satisfied:

(i) f is one-to-one,

(ii) rng f = the carrier ofT, and

(iii) for all elementsx, y of Sholdsx≤ y iff f (x)≤ f (y).

Let S, T be non empty relational structures. Observe that every map fromS into T which is
isomorphic is also one-to-one and monotone.

The following propositions are true:

(67) LetS, T be non empty relational structures andf be a map fromS into T. Supposef is
isomorphic. Thenf−1 is a map fromT into Sand rng( f−1) = the carrier ofS.

(68) LetS, T be non empty relational structures andf be a map fromS into T. Supposef is
isomorphic. Letg be a map fromT into S. If g = f−1, theng is isomorphic.

(69) LetS, T be non empty posets andf be a map fromS into T. Suppose that for every filter
X of Sholds f preserves inf ofX. Then f is monotone.

(70) LetS, T be non empty posets andf be a map fromS into T. Suppose that for every filter
X of Sholds f preserves inf ofX. Then f is filtered-infs-preserving.

(71) LetSbe a semilattice,T be a non empty poset, andf be a map fromS into T. Suppose that

(i) for every finite subsetX of Sholds f preserves inf ofX, and

(ii) for every non empty filtered subsetX of Sholds f preserves inf ofX.

Then f is infs-preserving.

(72) LetS, T be non empty posets andf be a map fromS into T. Suppose that for every ideal
X of Sholds f preserves sup ofX. Then f is monotone.

(73) LetS, T be non empty posets andf be a map fromS into T. Suppose that for every ideal
X of Sholds f preserves sup ofX. Then f is directed-sups-preserving.

(74) LetSbe a sup-semilattice,T be a non empty poset, andf be a map fromS into T. Suppose
that

(i) for every finite subsetX of Sholds f preserves sup ofX, and

(ii) for every non empty directed subsetX of Sholds f preserves sup ofX.

Then f is sups-preserving.

8. COMPLETENESS WRT DIRECTED SETS

Let L be a non empty reflexive relational structure. We say thatL is up-complete if and only if the
condition (Def. 39) is satisfied.

(Def. 39) LetX be a non empty directed subset ofL. Then there exists an elementx of L such that
x≥ X and for every elementy of L such thaty≥ X holdsx≤ y.

Let us mention that every reflexive relational structure with l.u.b.’s which is up-complete is also
upper-bounded.

One can prove the following proposition
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(75) LetL be a non empty reflexive antisymmetric relational structure. ThenL is up-complete
if and only if for every non empty directed subsetX of L holds supX exists inL.

Let L be a non empty reflexive relational structure. We say thatL is inf-complete if and only if
the condition (Def. 40) is satisfied.

(Def. 40) LetX be a non empty subset ofL. Then there exists an elementx of L such thatx≤ X and
for every elementy of L such thaty≤ X holdsx≥ y.

Next we state the proposition

(76) LetL be a non empty reflexive antisymmetric relational structure. ThenL is inf-complete
if and only if for every non empty subsetX of L holds infX exists inL.

One can check the following observations:

∗ every non empty reflexive relational structure which is complete is also up-complete and
inf-complete,

∗ every non empty reflexive relational structure which is inf-complete is also lower-bounded,
and

∗ every non empty poset which is up-complete and lower-bounded and has l.u.b.’s is also
complete.

One can verify that every non empty reflexive antisymmetric relational structure which is inf-
complete has also g.l.b.’s.

One can verify that every non empty reflexive antisymmetric upper-bounded relational structure
which is inf-complete has also l.u.b.’s.

Let us note that there exists a lattice which is complete and strict.
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