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Summary. In the paper, we investigate the duality of categories of complete lattices
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The articles[[211],[[12],[128],129]/130] [ 120]/ [11]L19] 1141 127]12] L1291 [22] 12 7] [1]L [23]. [25],
[24], 131, 4, [31], [13], [20], [32], [5], [18], |2€], (6], [1€], [8], and [T] provide the notation and
terminology for this paper.

1. INFS-PRESERVING ANDSUPS-PRESERVINGMAPS

LetS T be complete lattices. Note that there exists a connection bet@aedT which is Galois.
One can prove the following proposition
(1) LetST,S, T be non empty relational structures. Suppose that
(i) the relational structure d8= the relational structure &, and
(i) the relational structure of = the relational structure of’.

Let c be a connection betweehandT andc’ be a connection betweehandT’. If c=C/,
then ifcis Galois, thert’ is Galois.

LetS T be lattices and lgg be a map fronSinto T. Let us assume th&is complete and is
complete andj is infs-preserving. The lower adjoint gfis a map fromr into Sand is defined by:

(Def. 1) (g, the lower adjoint o) is Galois.

LetS T be lattices and led be a map fronT into S. Let us assume th&is complete and is

complete andl is sups-preserving. The upper adjointdois a map fromSinto T and is defined as
follows:

(Def. 2) (the upper adjoint ofl, d) is Galois.

LetS T be complete lattices and Igtbe an infs-preserving map frointo T. Note that the
lower adjoint ofg is lower adjoint.

LetS T be complete lattices and ldtbe a sups-preserving map frohminto S. One can verify
that the upper adjoint af is upper adjoint.
One can prove the following propositions:

(2) LetS T be complete latticegy be an infs-preserving map fro®into T, andt be an
element ofT. Then (the lower adjoint of)(t) = inf(g~*(1t)).
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(3) LetS T be complete lattices| be a sups-preserving map frafinto S, andsbe an element
of S. Then (the upper adjoint af)(s) = supd~1(|s)).

LetS T be relational structures and leétbe a function from the carrier & into the carrier of
T. The functorf°P yields a map fron&°? into T°P and is defined as follows:

(Def.3) foP=f.

Let S T be complete lattices and lgtbe an infs-preserving map frointo T. Observe that
g°P is lower adjoint.

LetS T be complete lattices and ldtbe a sups-preserving map frd®into T. Note thatd®P is
upper adjoint.

We now state several propositions:

(4) LetS T be complete lattices anglbe an infs-preserving map fro@into T. Then the
lower adjoint ofg = the upper adjoint of°®.

(5) LetS T be complete lattices artbe a sups-preserving map fr@mto T. Then the lower
adjoint ofd°P = the upper adjoint ofl.

(6) For every non empty relational structurénolds(idy, id_) is Galois.

(7) For every complete lattice holds the lower adjoint of id= id. and the upper adjoint of
id_ =idL.

(8) LetlLy, Ly, L3 be complete latticegy be an infs-preserving map from into L,, andg, be
an infs-preserving map froiy, into Lz. Then the lower adjoint o - g1 = (the lower adjoint
of g1) - (the lower adjoint ofy).

(9) LetLy, Ly, L3 be complete latticesl; be a sups-preserving map frdminto L, andd; be
a sups-preserving map from into L. Then the upper adjoint af, - d; = (the upper adjoint
of di) - (the upper adjoint oflp).

(10) LetS T be complete lattices anglbe an infs-preserving map fro@into T. Then the
upper adjoint of the lower adjoint af= g.

(11) LetS T be complete lattices ardlbe a sups-preserving map fré@@mto T. Then the lower
adjoint of the upper adjoint af = d.

(12) LetC be a non empty category structure amd, f be sets. Supposke (the arrows of
C)(a, b). Then there exist objects, 0, of C such thab; = aando, =bandf € (01,0,) and
f is a morphism frono; to os.

Let W be a non empty set. Let us assume that there exists an elen@\W such thatw is
non empty. The functaiNFy yields a lattice-wise strict category and is defined by the conditions
(Def. 4).

(Def. 4)(i) For every latticex holdsx is an object ofNFyy iff xis strict and complete and the carrier
of xeW, and

(i) for all objectsa, b of INFy and for every monotone méapfrom L, into Ly, holdsf € (a,b)
iff fisinfs-preserving.

Let W be a non empty set. Let us assume that there exists an elen@/ such thatw is
non empty. The functoBURy yielding a lattice-wise strict category is defined by the conditions
(Def. 5).

(Def. 5)(i) For every lattice holdsx is an object oSURy, iff xis strict and complete and the carrier
of xe W, and

(i) for all objectsa, b of SURy and for every monotone mapfrom L, into Ly, holdsf € (a,b)
iff f is sups-preserving.
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LetW be a set with a non-empty element. Note tiNfy has complete lattices ai8URy has
complete lattices.
Next we state several propositions:

(13) LetW be a set with a non-empty element dnle a lattice. Theh is an object ofNFyy if
and only ifL is strict and complete and the carrierloE W.

(14) LetW be a set with a non-empty elemeat,b be objects ofNFy, andf be a set. Then
f € (a,b) if and only if f is an infs-preserving map frofio, into L.

(15) LetW be a set with a non-empty element dntle a lattice. Thelh is an object ofSURy
if and only if L is strict and complete and the carrierloE W.

(16) LetW be a set with a non-empty elemeat,b be objects oSURy, and f be a set. Then
f € (a,b) if and only if f is a sups-preserving map fram, into L.

(17) For every satV with a non-empty element holds the carrietldFy = the carrier ofSURy.

LetW be a set with a non-empty element. The functor LowepAdields a contravariant strict
functor fromINFy to SURy and is defined by the conditions (Def. 6).

(Def. 6)(i) For every objeca of INFy holds LowerAdj,(a) = L, and

(i) for all objectsa, b of INFy such that(a,b) # 0 and for every morphisni from a to b
holds LowerAdj, (f) = the lower adjoint of® .

The functor UpperAdg)j, yielding a contravariant strict functor fro®URy to INFy is defined by
the conditions (Def. 7).

(Def. 7)(i) For every objeca of SURy holds UpperAdj,(a) = L, and

(i) for all objectsa, b of SURy such that{a,b) # 0 and for every morphisni fromatob
holds UpperAdj,(f) = the upper adjoint of f.

LetW be a set with a non-empty element. Observe that LowgyAsipijective and UpperAgj
is bijective.
The following three propositions are true:

(18) For every seW with a non-empty element holdd.owerAdj,)~* = UpperAdj, and
(UpperAdj, )~ = LowerAdj,, .

(19) For every setV with a non-empty element holds LowerAgjUpperAdj, = idsug, and
UpperAdj, - LowerAdjy = idinFy, -

(20) For every sétV with a non-empty element holdslFy, SURy are anti-isomorphic.

2. ScOoTT CONTINUOUS MAPS AND CONTINUOUS LATTICES
Next we state the proposition

(ZSE] Let S, T be complete lattices arglbe an infs-preserving map fro®into T. Theng is
directed-sups-preserving if and only if for every Scott topological augmenttiohT and
for every Scott topological augmentatigrof Sand for every open subsétof X holds?((the
lower adjoint ofg)°V) is an open subset &f.

LetS, T be non empty reflexive relational structures andflée a map fronsinto T. We say
that f is waybelow-preserving if and only if:

(Def. 8) For all elements, y of Ssuch tha < y holds f (x) < f(y).

We now state two propositions:

1 The propositions (21) and (22) have been removed.
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(24) LetS T be complete lattices arglbe an infs-preserving map froBinto T. Suppose is
directed-sups-preserving. Then the lower adjoirg of waybelow-preserving.

(25) LetSbhe a complete latticd, be a complete continuous lattice, agde an infs-preserving
map fromSinto T. Suppose the lower adjoint @f is waybelow-preserving. Theg is
directed-sups-preserving.

LetS T be topological spaces and lebe a map fronsinto T. We say thaf is relatively open
if and only if:
(Def. 9) For every open subsétof Sholdsf°V is an open subset df[ rngf.

We now state three propositions:
(26) LetX, Y be non empty topological spaces amicbe a map fromX into Y. Thend is
relatively open if and only ifl° is open.

(27) LetS T be complete latticegy be an infs-preserving map frointo T, X be a Scott
topological augmentation df, Y be a Scott topological augmentation®fandV be an open
subset ofX. Then (the lower adjoint 0§)°V = rng(the lower adjoint ofj) N 7((the lower

adjoint ofg)°V).

(28) LetS T be complete latticegy be an infs-preserving map frointo T, X be a Scott
topological augmentation gf, andY be a Scott topological augmentation®fSuppose that
for every open subsé&t of X holdsT((the lower adjoint 0§)°V) is an open subset &f. Let
d be a map fronX into Y. If d = the lower adjoint ofy, thend is relatively open.

Let X, Y be complete lattices and Iétbe a sups-preserving map frofninto Y. Observe that

Im f is complete.
One can prove the following propositions:

(29) LetS T be complete latticegy be an infs-preserving map fro@into T, X be a Scott
topological augmentation of, Y be a Scott topological augmentation §fZ be a Scott
topological augmentation of Im (the lower adjointg)f d be a map fronX into Y, andd’ be
a map fromX into Z. Supposel = the lower adjoint ofy andd’ = d. If d is relatively open,

thend’ is open.
(30) LetTy, To, S1, S be topological structures. Suppose that
(i) the topological structure oF; = the topological structure df,, and
(i) the topological structure o = the topological structure .
If S is a subspace df, thenS; is a subspace aib.

(81) For every topological structufieholdsT [Qt = the topological structure df.

(32) LetS T be complete lattices anglbe an infs-preserving map fro®into T. Suppose
g is one-to-one. LeK be a Scott topological augmentation ©f Y be a Scott topological
augmentation o8, andd be a map fronX into Y. Supposel = the lower adjoint ofy. Then
g is directed-sups-preserving if and onlydifs open.

Let X be a complete lattice and létbe a projection map fronX into X. Note that Inf is

complete.
Next we state a number of propositions:

(33) LetL be a complete lattice aridbe a kernel map frorh into L. Then
(i) k°isinfs-preserving,
(i) ks is sups-preserving,

(iif)  the lower adjoint ofk® = k,, and

(iv) the upper adjoint ok, = k°.
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(34) LetL be a complete lattice aridbe a kernel map frorh into L. Thenk is directed-sups-
preserving if and only ik° is directed-sups-preserving.

(35) LetL be a complete lattice aridbe a kernel map frorh into L. Thenk is directed-sups-
preserving if and only if for every Scott topological augmentafionf Imk and for every
Scaott topological augmentation of L and for every subsat of L such thatV is an open
subset ofX holds1V is an open subset of.

(36) LetL be a complete lattices be a sups-inheriting non empty full relational substructure of
L, X, y be elements ok, anda, b be elements 08. If a= x andb =Yy, then ifx <y, then
a<hb.

(37) LetL be a complete lattice arkdbe a kernel map fromh into L. Suppose is directed-
sups-preserving. Let y be elements of anda, b be elements of Irk. If a=xandb =,
thenx < yiff a< b.

(88) LetL be a complete lattice arldbe a kernel map frorh into L. Suppose that

(i) Imkis continuous, and

(i) for all elementsx, y of L and for all elements, b of Imk such thata= x andb =y holds
xkyiff akhb.

Thenk is directed-sups-preserving.

(39) LetL be a complete lattice arabe a closure map frominto L. Then
(i) c°issups-preserving,

(i) ¢, isinfs-preserving,

(iif)  the upper adjoint ot° = ¢,, and

(iv) the lower adjoint ofc, = c°.

(40) LetL be a complete lattice antlbe a closure map frorh into L. Then Inc is directed-
sups-inheriting if and only i€, is directed-sups-preserving.

(41) LetL be a complete lattice andbe a closure map frorh into L. Then Imc is directed-
sups-inheriting if and only if for every Scott topological augmentaXaof Imc and for every
Scott topological augmentation of L and for every magf fromY into X such thatf = c
holds f is open.

(42) LetL be a complete lattice andbe a closure map frorh into L. If Im ¢ is directed-sups-
inheriting, thenc® is waybelow-preserving.

(43) LetL be a continuous complete lattice ande a closure map frorh into L. If ¢ is
waybelow-preserving, then lois directed-sups-inheriting.

3. DUALITY OF SUBCATEGORIES OFINF AND SUP

Let W be a non empty set. The functtMF\TN yielding a strict non empty subcategory IbffFyy is
defined by the conditions (Def. 10).

(Def. 10)(i) Every object ofNFy is an object oINF\TN, and

(i) for all objectsa, b of INFy and for all objects, b’ of INF\TN such tha =aandb’ =b
and(a, b) # 0 and for every morphisnfi from ato b holdsf € (&, 1) iff @f is directed-sups-
preserving.

Let W be a set with a non-empty element. The fun(ﬂbﬁF&, yielding a strict non empty
subcategory 08URy is defined by the conditions (Def. 11).
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(Def. 11)(i)  Every object oBURy is an object oSUFR},, and

(i) for all objectsa, b of SURy and for all objects(, b/ of SUR), such that/ = aandb’ =b
and(a, b) # 0 and for every morphisnf fromatob holdsf € (a,b') iff the upper adjoint of
@+ is directed-sups-preserving.

We now state three propositions:

(44) LetSbe a non empty relational structurg,be a non empty reflexive antisymmetric re-
lational structuref be an element of, andX be a non empty subset & ThenS+——t
preserves sup of andS—— t preserves inf oK.

(45) LetSbe a non empty relational structure aficbe a lower-bounded non empty reflexive
antisymmetric relational structure. Th8r— Lt is sups-preserving.

(46) LetSbe a non empty relational structure ahdbe an upper-bounded non empty reflexive
antisymmetric relational structure. Th&a— T is infs-preserving.

Let Sbe a non empty relational structure andTebe an upper-bounded non empty reflexive
antisymmetric relational structure. Observe tBat— Tt is directed-sups-preserving and infs-
preserving.

Let Sbe a non empty relational structure andTetbe a lower-bounded non empty reflexive an-
tisymmetric relational structure. Note tiat— | 7 is filtered-infs-preserving and sups-preserving.

Let Sbe a non empty relational structure andTebe an upper-bounded non empty reflexive
antisymmetric relational structure. One can verify that there exists a mapSiato T which is
directed-sups-preserving and infs-preserving.

Let Sbe a non empty relational structure and Tebe a lower-bounded non empty reflexive
antisymmetric relational structure. One can verify that there exists a mapSiato T which is
filtered-infs-preserving and sups-preserving.

The following propositions are true:

(47) LetW be a set with a non-empty element dnble a lattice. Theh is an object oiNFJ\, if
and only ifL is strict and complete and the carrierloE W.

(48) LetW be a set with a non-empty elemeat,b be objects ofNF),,, and f be a set. Then
f € (a,b) if and only if f is a directed-sups-preserving infs-preserving map ftgrmto L.

(49) LetW be a set with a non-empty element dnbtle a lattice. Thekh is an object oSUP\}V
if and only if L is strict and complete and the carrierloE W.

(50) LetW be a set with a non-empty elemeat,b be objects oBUR), and f be a set. Then
f € (a,b) if and only if there exists a sups-preserving nggpom L, into L, such thag = f
and the upper adjoint af is directed-sups-preserving.

(51) For every séiV with a non-empty element hoIcHNF\TN = IntersectINFw, UPSy).

Let W be a set with a non-empty element. The fundBiky yields a strict full non empty
subcategory oINF\TN and is defined by:

(Def. 12) For every objed of INF\}, holdsa is an object ofCLyy iff 1L, is continuous.

LetW be a set with a hon-empty element. Observe @iay has complete lattices.
Next we state two propositions:

(52) LetW be a set with a non-empty element dnlle a lattice. Suppose the carrierlof W.
ThenL is an object ofCLyy if and only if L is strict, complete, and continuous.

(53) LetW be a set with a non-empty elemeat,b be objects ofCLy, andf be a set. Then
f € (a,b) ifand only if f is an infs-preserving directed-sups-preserving map figrimto Ly,
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Let W be a set with a non-empty element. The fundmﬁ\f' yields a strict full non empty
subcategory OSUF\‘,’V and is defined by:

(Def. 13)  For every objea of SUR, holdsa is an object ofCLy, iff L, is continuous.
Next we state several propositions:

(54) LetW be a set with a non-empty element dnle a lattice. Suppose the carrierloE W.
ThenL is an object oCL\‘,’\? if and only if L is strict, complete, and continuous.

(55) LetW be a set with a non-empty elemeat,b be objects oCL\%’, andf be a set. Then
f € (a,b) if and only if there exists a sups-preserving nggipom L, into Ly such thag = f
and the upper adjoint af is directed-sups-preserving.

(56) For every seWW with a non-empty element hoIdBJF\TN and SUFf,’\, are anti-isomorphic
under LowerAdj,.

(57) For every se¥W with a non-empty element hoIcSUF\’}, and INF\TN are anti-isomorphic
under UpperAdj,.

(58) For every sétV with a non-empty element hold3.yy andCL\%’ are anti-isomorphic under
LowerAdjy.

(59) For every sétV with a non-empty element hoIdSLf,’&’ andCLy are anti-isomorphic under
UpperAdiy.

4. COMPACT PRESERVINGMAPS AND SUP-SEMILATTICES MORPHISMS

LetS T be non empty reflexive relational structures andflee a map fronsinto T. We say that
f is compact-preserving if and only if:

(Def. 14) For every elememstof Ssuch thasis compact holdd (s) is compact.

The following propositions are true:

(60) LetS T be complete lattices and be a sups-preserving map frominto S. If d is
waybelow-preserving, thethis compact-preserving.

(61) LetS T be complete lattices artibe a sups-preserving map frofmnto S. Supposd is
algebraic andl is compact-preserving. Thehis waybelow-preserving.

(62) LetR, S T be non empty relational structureé pe a subset dR, f be a map fronR into
S, andg be a map fronBinto T. Supposef preserves sup of andg preserves sup of°X.
Theng- f preserves sup of.

LetS, T be non empty relational structures andfigte a map fronSinto T. We say thaff is
finite-sups-preserving if and only if:

(Def. 15) For every finite subset of Sholds f preserves sup of.
We say thaff is bottom-preserving if and only if:
(Def. 16) f preserves sup dfs.

Next we state the proposition

(63) LetR, S, T be non empty relational structurelspe a map fronR into S, andg be a map
from Sinto T. Supposef is finite-sups-preserving arglis finite-sups-preserving. Then f
is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures arfddeta map
from Sinto T. Let us observe thdt is bottom-preserving if and only if:
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(Def. 17) f(Ls) =17.

Let L be a non empty relational structure and3éde a relational substructure of We say that
Sis finite-sups-inheriting if and only if:

(Def. 18) For every finite subsét of Ssuch that suiX exists inL holds| |, X € the carrier ofS
We say thaSis bottom-inheriting if and only if:
(Def. 19) 1. € the carrier ofS.

LetS T be non empty relational structures. One can check that every magfimtm T which
is sups-preserving is also bottom-preserving.

LetL be a lower-bounded antisymmetric non empty relational structure. Observe that every rela-
tional substructure df which is finite-sups-inheriting is also bottom-inheriting and join-inheriting.

LetL be a non empty relational structure. Observe that every relational substructuwehath
is sups-inheriting is also finite-sups-inheriting.

Let S T be lower-bounded non empty posets. Observe that there exists a maf inbonT
which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure. Note that every full
relational substructure &f which is bottom-inheriting is also non empty and lower-bounded.

LetL be a lower-bounded antisymmetric non empty relational structure. Observe that there ex-
ists a relational substructurelofvhich is non empty, sups-inheriting, finite-sups-inheriting, bottom-
inheriting, and full.

One can prove the following proposition

(64) LetL be a lower-bounded antisymmetric non empty relational structureSdrela non
empty bottom-inheriting full relational substructurelofThen Ls= 1.

Let L be a lower-bounded non empty poset with l.u.b.’s. Observe that every full relational
substructure of which is bottom-inheriting and join-inheriting is also finite-sups-inheriting.
The following propositions are true:

(65) LetS T be non empty relational structures ahdbe a map fronSinto T. Supposef is
finite-sups-preserving. Thehis join-preserving and bottom-preserving.

(66) LetS T be lower-bounded posets with l.u.b.'s ahtbe a map fron8into T. Supposef is
join-preserving and bottom-preserving. Thers finite-sups-preserving.

LetS T be non empty relational structures. One can verify that every map$ioto T which
is sups-preserving is also finite-sups-preserving and every mapSiota T which is finite-sups-
preserving is also join-preserving and bottom-preserving.

Let Sbe a non empty relational structure and Tebe a lower-bounded non empty reflexive
antisymmetric relational structure. Observe that there exists a mapSrioto T which is sups-
preserving and finite-sups-preserving.

LetL be a lower-bounded non empty poset. Observe that Compact$ublattower-bounded.

Next we state three propositions:

(67) LetShbe a relational structurd, be a non empty relational structurepe a map frons
into T, S be a relational substructure 8fandT’ be a relational substructure of Suppose
f°(the carrier ofS) C the carrier ofT’. Thenf [the carrier ofS is a map fronSS into T'.

(68) LetS T be lattices,f be a join-preserving map froi8into T, S be a non empty join-
inheriting full relational substructure & T’ be a non empty join-inheriting full relational
substructure off, andg be a map fronS into T'. If g = f|the carrier ofS, theng is join-
preserving.

(69) LetS T be lower-bounded latticed, be a finite-sups-preserving map fr@into T, S be
a non empty finite-sups-inheriting full relational substructur&af’ be a non empty finite-
sups-inheriting full relational substructure Bf andg be a map fron8 into T'. If g = f [the
carrier ofS, theng is finite-sups-preserving.
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LetL be a complete lattice. Note that CompactSublatts finite-sups-inheriting.
The following propositions are true:

(70) LetS T be complete lattices andl be a sups-preserving map frominto S. Thend
is compact-preserving if and only d|the carrier of CompactSubléft) is a finite-sups-
preserving map from CompactSub(dtj into CompactSublats).

(71) LetS T be complete lattices. Suppo3eis algebraic. Leg be an infs-preserving map
from Sinto T. Theng is directed-sups-preserving if and only if (the lower adjoingpfthe
carrier of CompactSubl4dff) is a finite-sups-preserving map from CompactSuplatinto
CompactSublatb).
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