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The articles [21], [12], [28], [29], [30], [10], [11], [9], [14], [27], [2], [19], [22], [17], [1], [23], [25],
[24], [3], [4], [31], [13], [20], [32], [5], [18], [26], [6], [16], [8], and [7] provide the notation and
terminology for this paper.

1. INFS-PRESERVING ANDSUPS-PRESERVINGMAPS

Let S, T be complete lattices. Note that there exists a connection betweenSandT which is Galois.
One can prove the following proposition

(1) LetS, T, S′, T ′ be non empty relational structures. Suppose that

(i) the relational structure ofS= the relational structure ofS′, and

(ii) the relational structure ofT = the relational structure ofT ′.

Let c be a connection betweenSandT andc′ be a connection betweenS′ andT ′. If c = c′,
then ifc is Galois, thenc′ is Galois.

Let S, T be lattices and letg be a map fromS into T. Let us assume thatS is complete andT is
complete andg is infs-preserving. The lower adjoint ofg is a map fromT into Sand is defined by:

(Def. 1) 〈〈g, the lower adjoint ofg〉〉 is Galois.

Let S, T be lattices and letd be a map fromT into S. Let us assume thatS is complete andT is
complete andd is sups-preserving. The upper adjoint ofd is a map fromS into T and is defined as
follows:

(Def. 2) 〈〈the upper adjoint ofd, d〉〉 is Galois.

Let S, T be complete lattices and letg be an infs-preserving map fromS into T. Note that the
lower adjoint ofg is lower adjoint.

Let S, T be complete lattices and letd be a sups-preserving map fromT into S. One can verify
that the upper adjoint ofd is upper adjoint.

One can prove the following propositions:

(2) Let S, T be complete lattices,g be an infs-preserving map fromS into T, and t be an
element ofT. Then (the lower adjoint ofg)(t) = inf(g−1(↑t)).
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(3) LetS, T be complete lattices,d be a sups-preserving map fromT into S, andsbe an element
of S. Then (the upper adjoint ofd)(s) = sup(d−1(↓s)).

Let S, T be relational structures and letf be a function from the carrier ofS into the carrier of
T. The functorf op yields a map fromSop into Top and is defined as follows:

(Def. 3) f op = f .

Let S, T be complete lattices and letg be an infs-preserving map fromS into T. Observe that
gop is lower adjoint.

Let S, T be complete lattices and letd be a sups-preserving map fromS into T. Note thatdop is
upper adjoint.

We now state several propositions:

(4) Let S, T be complete lattices andg be an infs-preserving map fromS into T. Then the
lower adjoint ofg = the upper adjoint ofgop.

(5) LetS, T be complete lattices andd be a sups-preserving map fromSinto T. Then the lower
adjoint ofdop = the upper adjoint ofd.

(6) For every non empty relational structureL holds〈〈idL, idL〉〉 is Galois.

(7) For every complete latticeL holds the lower adjoint of idL = idL and the upper adjoint of
idL = idL.

(8) LetL1, L2, L3 be complete lattices,g1 be an infs-preserving map fromL1 into L2, andg2 be
an infs-preserving map fromL2 into L3. Then the lower adjoint ofg2 ·g1 = (the lower adjoint
of g1) · (the lower adjoint ofg2).

(9) LetL1, L2, L3 be complete lattices,d1 be a sups-preserving map fromL1 into L2, andd2 be
a sups-preserving map fromL2 into L3. Then the upper adjoint ofd2 ·d1 = (the upper adjoint
of d1) · (the upper adjoint ofd2).

(10) Let S, T be complete lattices andg be an infs-preserving map fromS into T. Then the
upper adjoint of the lower adjoint ofg = g.

(11) LetS, T be complete lattices andd be a sups-preserving map fromSinto T. Then the lower
adjoint of the upper adjoint ofd = d.

(12) LetC be a non empty category structure anda, b, f be sets. Supposef ∈ (the arrows of
C)(a, b). Then there exist objectso1, o2 of C such thato1 = a ando2 = b and f ∈ 〈o1,o2〉 and
f is a morphism fromo1 to o2.

Let W be a non empty set. Let us assume that there exists an elementw of W such thatw is
non empty. The functorINFW yields a lattice-wise strict category and is defined by the conditions
(Def. 4).

(Def. 4)(i) For every latticex holdsx is an object ofINFW iff x is strict and complete and the carrier
of x∈W, and

(ii) for all objectsa, b of INFW and for every monotone mapf from La into Lb holds f ∈ 〈a,b〉
iff f is infs-preserving.

Let W be a non empty set. Let us assume that there exists an elementw of W such thatw is
non empty. The functorSUPW yielding a lattice-wise strict category is defined by the conditions
(Def. 5).

(Def. 5)(i) For every latticex holdsx is an object ofSUPW iff x is strict and complete and the carrier
of x∈W, and

(ii) for all objectsa, b of SUPW and for every monotone mapf fromLa intoLb holds f ∈ 〈a,b〉
iff f is sups-preserving.
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Let W be a set with a non-empty element. Note thatINFW has complete lattices andSUPW has
complete lattices.

Next we state several propositions:

(13) LetW be a set with a non-empty element andL be a lattice. ThenL is an object ofINFW if
and only ifL is strict and complete and the carrier ofL ∈W.

(14) LetW be a set with a non-empty element,a, b be objects ofINFW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is an infs-preserving map fromLa into Lb.

(15) LetW be a set with a non-empty element andL be a lattice. ThenL is an object ofSUPW

if and only if L is strict and complete and the carrier ofL ∈W.

(16) LetW be a set with a non-empty element,a, b be objects ofSUPW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is a sups-preserving map fromLa into Lb.

(17) For every setW with a non-empty element holds the carrier ofINFW = the carrier ofSUPW.

Let W be a set with a non-empty element. The functor LowerAdjW yields a contravariant strict
functor fromINFW to SUPW and is defined by the conditions (Def. 6).

(Def. 6)(i) For every objecta of INFW holds LowerAdjW(a) = La, and

(ii) for all objectsa, b of INFW such that〈a,b〉 6= /0 and for every morphismf from a to b
holds LowerAdjW( f ) = the lower adjoint of@ f .

The functor UpperAdjW yielding a contravariant strict functor fromSUPW to INFW is defined by
the conditions (Def. 7).

(Def. 7)(i) For every objecta of SUPW holds UpperAdjW(a) = La, and

(ii) for all objectsa, b of SUPW such that〈a,b〉 6= /0 and for every morphismf from a to b
holds UpperAdjW( f ) = the upper adjoint of@ f .

LetW be a set with a non-empty element. Observe that LowerAdjW is bijective and UpperAdjW
is bijective.

The following three propositions are true:

(18) For every setW with a non-empty element holds(LowerAdjW)−1 = UpperAdjW and
(UpperAdjW)−1 = LowerAdjW .

(19) For every setW with a non-empty element holds LowerAdjW ·UpperAdjW = idSUPW and
UpperAdjW ·LowerAdjW = idINFW .

(20) For every setW with a non-empty element holdsINFW, SUPW are anti-isomorphic.

2. SCOTT CONTINUOUS MAPS AND CONTINUOUS LATTICES

Next we state the proposition

(23)1 Let S, T be complete lattices andg be an infs-preserving map fromS into T. Theng is
directed-sups-preserving if and only if for every Scott topological augmentationX of T and
for every Scott topological augmentationY of Sand for every open subsetV of X holds↑((the
lower adjoint ofg)◦V) is an open subset ofY.

Let S, T be non empty reflexive relational structures and letf be a map fromS into T. We say
that f is waybelow-preserving if and only if:

(Def. 8) For all elementsx, y of Ssuch thatx� y holds f (x)� f (y).

We now state two propositions:

1 The propositions (21) and (22) have been removed.
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(24) LetS, T be complete lattices andg be an infs-preserving map fromS into T. Supposeg is
directed-sups-preserving. Then the lower adjoint ofg is waybelow-preserving.

(25) LetSbe a complete lattice,T be a complete continuous lattice, andg be an infs-preserving
map fromS into T. Suppose the lower adjoint ofg is waybelow-preserving. Theng is
directed-sups-preserving.

Let S, T be topological spaces and letf be a map fromS into T. We say thatf is relatively open
if and only if:

(Def. 9) For every open subsetV of Sholds f ◦V is an open subset ofT� rng f .

We now state three propositions:

(26) Let X, Y be non empty topological spaces andd be a map fromX into Y. Thend is
relatively open if and only ifd◦ is open.

(27) Let S, T be complete lattices,g be an infs-preserving map fromS into T, X be a Scott
topological augmentation ofT, Y be a Scott topological augmentation ofS, andV be an open
subset ofX. Then (the lower adjoint ofg)◦V = rng(the lower adjoint ofg)∩↑((the lower
adjoint ofg)◦V).

(28) Let S, T be complete lattices,g be an infs-preserving map fromS into T, X be a Scott
topological augmentation ofT, andY be a Scott topological augmentation ofS. Suppose that
for every open subsetV of X holds↑((the lower adjoint ofg)◦V) is an open subset ofY. Let
d be a map fromX into Y. If d = the lower adjoint ofg, thend is relatively open.

Let X, Y be complete lattices and letf be a sups-preserving map fromX into Y. Observe that
Im f is complete.

One can prove the following propositions:

(29) Let S, T be complete lattices,g be an infs-preserving map fromS into T, X be a Scott
topological augmentation ofT, Y be a Scott topological augmentation ofS, Z be a Scott
topological augmentation of Im(the lower adjoint ofg), d be a map fromX into Y, andd′ be
a map fromX into Z. Supposed = the lower adjoint ofg andd′ = d. If d is relatively open,
thend′ is open.

(30) LetT1, T2, S1, S2 be topological structures. Suppose that

(i) the topological structure ofT1 = the topological structure ofT2, and

(ii) the topological structure ofS1 = the topological structure ofS2.

If S1 is a subspace ofT1, thenS2 is a subspace ofT2.

(31) For every topological structureT holdsT�ΩT = the topological structure ofT.

(32) Let S, T be complete lattices andg be an infs-preserving map fromS into T. Suppose
g is one-to-one. LetX be a Scott topological augmentation ofT, Y be a Scott topological
augmentation ofS, andd be a map fromX into Y. Supposed = the lower adjoint ofg. Then
g is directed-sups-preserving if and only ifd is open.

Let X be a complete lattice and letf be a projection map fromX into X. Note that Imf is
complete.

Next we state a number of propositions:

(33) LetL be a complete lattice andk be a kernel map fromL into L. Then

(i) k◦ is infs-preserving,

(ii) k◦ is sups-preserving,

(iii) the lower adjoint ofk◦ = k◦, and

(iv) the upper adjoint ofk◦ = k◦.
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(34) LetL be a complete lattice andk be a kernel map fromL into L. Thenk is directed-sups-
preserving if and only ifk◦ is directed-sups-preserving.

(35) LetL be a complete lattice andk be a kernel map fromL into L. Thenk is directed-sups-
preserving if and only if for every Scott topological augmentationX of Imk and for every
Scott topological augmentationY of L and for every subsetV of L such thatV is an open
subset ofX holds↑V is an open subset ofY.

(36) LetL be a complete lattice,Sbe a sups-inheriting non empty full relational substructure of
L, x, y be elements ofL, anda, b be elements ofS. If a = x andb = y, then if x� y, then
a� b.

(37) Let L be a complete lattice andk be a kernel map fromL into L. Supposek is directed-
sups-preserving. Letx, y be elements ofL anda, b be elements of Imk. If a = x andb = y,
thenx� y iff a� b.

(38) LetL be a complete lattice andk be a kernel map fromL into L. Suppose that

(i) Im k is continuous, and

(ii) for all elementsx, y of L and for all elementsa, b of Imk such thata = x andb = y holds
x� y iff a� b.

Thenk is directed-sups-preserving.

(39) LetL be a complete lattice andc be a closure map fromL into L. Then

(i) c◦ is sups-preserving,

(ii) c◦ is infs-preserving,

(iii) the upper adjoint ofc◦ = c◦, and

(iv) the lower adjoint ofc◦ = c◦.

(40) LetL be a complete lattice andc be a closure map fromL into L. Then Imc is directed-
sups-inheriting if and only ifc◦ is directed-sups-preserving.

(41) LetL be a complete lattice andc be a closure map fromL into L. Then Imc is directed-
sups-inheriting if and only if for every Scott topological augmentationX of Imc and for every
Scott topological augmentationY of L and for every mapf from Y into X such thatf = c
holds f is open.

(42) LetL be a complete lattice andc be a closure map fromL into L. If Im c is directed-sups-
inheriting, thenc◦ is waybelow-preserving.

(43) Let L be a continuous complete lattice andc be a closure map fromL into L. If c◦ is
waybelow-preserving, then Imc is directed-sups-inheriting.

3. DUALITY OF SUBCATEGORIES OFINF AND SUP

Let W be a non empty set. The functorINF↑W yielding a strict non empty subcategory ofINFW is
defined by the conditions (Def. 10).

(Def. 10)(i) Every object ofINFW is an object ofINF↑W, and

(ii) for all objectsa, b of INFW and for all objectsa′, b′ of INF↑W such thata′ = a andb′ = b
and〈a,b〉 6= /0 and for every morphismf from a to b holds f ∈ 〈a′,b′〉 iff @ f is directed-sups-
preserving.

Let W be a set with a non-empty element. The functorSUP0
W yielding a strict non empty

subcategory ofSUPW is defined by the conditions (Def. 11).
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(Def. 11)(i) Every object ofSUPW is an object ofSUP0
W, and

(ii) for all objectsa, b of SUPW and for all objectsa′, b′ of SUP0
W such thata′ = a andb′ = b

and〈a,b〉 6= /0 and for every morphismf from a to b holds f ∈ 〈a′,b′〉 iff the upper adjoint of
@ f is directed-sups-preserving.

We now state three propositions:

(44) Let S be a non empty relational structure,T be a non empty reflexive antisymmetric re-
lational structure,t be an element ofT, andX be a non empty subset ofS. ThenS 7−→ t
preserves sup ofX andS 7−→ t preserves inf ofX.

(45) LetS be a non empty relational structure andT be a lower-bounded non empty reflexive
antisymmetric relational structure. ThenS 7−→ ⊥T is sups-preserving.

(46) LetSbe a non empty relational structure andT be an upper-bounded non empty reflexive
antisymmetric relational structure. ThenS 7−→ >T is infs-preserving.

Let S be a non empty relational structure and letT be an upper-bounded non empty reflexive
antisymmetric relational structure. Observe thatS 7−→ >T is directed-sups-preserving and infs-
preserving.

Let Sbe a non empty relational structure and letT be a lower-bounded non empty reflexive an-
tisymmetric relational structure. Note thatS 7−→⊥T is filtered-infs-preserving and sups-preserving.

Let S be a non empty relational structure and letT be an upper-bounded non empty reflexive
antisymmetric relational structure. One can verify that there exists a map fromS into T which is
directed-sups-preserving and infs-preserving.

Let S be a non empty relational structure and letT be a lower-bounded non empty reflexive
antisymmetric relational structure. One can verify that there exists a map fromS into T which is
filtered-infs-preserving and sups-preserving.

The following propositions are true:

(47) LetW be a set with a non-empty element andL be a lattice. ThenL is an object ofINF↑W if
and only ifL is strict and complete and the carrier ofL ∈W.

(48) LetW be a set with a non-empty element,a, b be objects ofINF↑W, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is a directed-sups-preserving infs-preserving map fromLa into Lb.

(49) LetW be a set with a non-empty element andL be a lattice. ThenL is an object ofSUP0
W

if and only if L is strict and complete and the carrier ofL ∈W.

(50) LetW be a set with a non-empty element,a, b be objects ofSUP0
W, and f be a set. Then

f ∈ 〈a,b〉 if and only if there exists a sups-preserving mapg from La into Lb such thatg = f
and the upper adjoint ofg is directed-sups-preserving.

(51) For every setW with a non-empty element holdsINF↑W = Intersect(INFW,UPSW).

Let W be a set with a non-empty element. The functorCLW yields a strict full non empty
subcategory ofINF↑W and is defined by:

(Def. 12) For every objecta of INF↑W holdsa is an object ofCLW iff La is continuous.

Let W be a set with a non-empty element. Observe thatCLW has complete lattices.
Next we state two propositions:

(52) LetW be a set with a non-empty element andL be a lattice. Suppose the carrier ofL ∈W.
ThenL is an object ofCLW if and only if L is strict, complete, and continuous.

(53) LetW be a set with a non-empty element,a, b be objects ofCLW, and f be a set. Then
f ∈ 〈a,b〉 if and only if f is an infs-preserving directed-sups-preserving map fromLa into Lb.
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Let W be a set with a non-empty element. The functorCLop
W yields a strict full non empty

subcategory ofSUP0
W and is defined by:

(Def. 13) For every objecta of SUP0
W holdsa is an object ofCLop

W iff La is continuous.

Next we state several propositions:

(54) LetW be a set with a non-empty element andL be a lattice. Suppose the carrier ofL ∈W.
ThenL is an object ofCLop

W if and only if L is strict, complete, and continuous.

(55) LetW be a set with a non-empty element,a, b be objects ofCLop
W , and f be a set. Then

f ∈ 〈a,b〉 if and only if there exists a sups-preserving mapg from La into Lb such thatg = f
and the upper adjoint ofg is directed-sups-preserving.

(56) For every setW with a non-empty element holdsINF↑W andSUP0
W are anti-isomorphic

under LowerAdjW.

(57) For every setW with a non-empty element holdsSUP0
W and INF↑W are anti-isomorphic

under UpperAdjW.

(58) For every setW with a non-empty element holdsCLW andCLop
W are anti-isomorphic under

LowerAdjW.

(59) For every setW with a non-empty element holdsCLop
W andCLW are anti-isomorphic under

UpperAdjW.

4. COMPACT PRESERVINGMAPS AND SUP-SEMILATTICES MORPHISMS

Let S, T be non empty reflexive relational structures and letf be a map fromS into T. We say that
f is compact-preserving if and only if:

(Def. 14) For every elements of Ssuch thats is compact holdsf (s) is compact.

The following propositions are true:

(60) Let S, T be complete lattices andd be a sups-preserving map fromT into S. If d is
waybelow-preserving, thend is compact-preserving.

(61) LetS, T be complete lattices andd be a sups-preserving map fromT into S. SupposeT is
algebraic andd is compact-preserving. Thend is waybelow-preserving.

(62) LetR, S, T be non empty relational structures,X be a subset ofR, f be a map fromR into
S, andg be a map fromS into T. Supposef preserves sup ofX andg preserves sup off ◦X.
Theng· f preserves sup ofX.

Let S, T be non empty relational structures and letf be a map fromS into T. We say thatf is
finite-sups-preserving if and only if:

(Def. 15) For every finite subsetX of Sholds f preserves sup ofX.

We say thatf is bottom-preserving if and only if:

(Def. 16) f preserves sup of/0S.

Next we state the proposition

(63) LetR, S, T be non empty relational structures,f be a map fromR into S, andg be a map
from S into T. Supposef is finite-sups-preserving andg is finite-sups-preserving. Theng · f
is finite-sups-preserving.

Let S, T be non empty antisymmetric lower-bounded relational structures and letf be a map
from S into T. Let us observe thatf is bottom-preserving if and only if:
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(Def. 17) f (⊥S) =⊥T .

Let L be a non empty relational structure and letSbe a relational substructure ofL. We say that
S is finite-sups-inheriting if and only if:

(Def. 18) For every finite subsetX of Ssuch that supX exists inL holds
⊔

L X ∈ the carrier ofS.

We say thatS is bottom-inheriting if and only if:

(Def. 19) ⊥L ∈ the carrier ofS.

Let S, T be non empty relational structures. One can check that every map fromS into T which
is sups-preserving is also bottom-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure. Observe that every rela-
tional substructure ofL which is finite-sups-inheriting is also bottom-inheriting and join-inheriting.

Let L be a non empty relational structure. Observe that every relational substructure ofL which
is sups-inheriting is also finite-sups-inheriting.

Let S, T be lower-bounded non empty posets. Observe that there exists a map fromS into T
which is sups-preserving.

Let L be a lower-bounded antisymmetric non empty relational structure. Note that every full
relational substructure ofL which is bottom-inheriting is also non empty and lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure. Observe that there ex-
ists a relational substructure ofL which is non empty, sups-inheriting, finite-sups-inheriting, bottom-
inheriting, and full.

One can prove the following proposition

(64) Let L be a lower-bounded antisymmetric non empty relational structure andS be a non
empty bottom-inheriting full relational substructure ofL. Then⊥S =⊥L.

Let L be a lower-bounded non empty poset with l.u.b.’s. Observe that every full relational
substructure ofL which is bottom-inheriting and join-inheriting is also finite-sups-inheriting.

The following propositions are true:

(65) LetS, T be non empty relational structures andf be a map fromS into T. Supposef is
finite-sups-preserving. Thenf is join-preserving and bottom-preserving.

(66) LetS, T be lower-bounded posets with l.u.b.’s andf be a map fromS into T. Supposef is
join-preserving and bottom-preserving. Thenf is finite-sups-preserving.

Let S, T be non empty relational structures. One can verify that every map fromS into T which
is sups-preserving is also finite-sups-preserving and every map fromS into T which is finite-sups-
preserving is also join-preserving and bottom-preserving.

Let S be a non empty relational structure and letT be a lower-bounded non empty reflexive
antisymmetric relational structure. Observe that there exists a map fromS into T which is sups-
preserving and finite-sups-preserving.

Let L be a lower-bounded non empty poset. Observe that CompactSublatt(L) is lower-bounded.
Next we state three propositions:

(67) Let S be a relational structure,T be a non empty relational structure,f be a map fromS
into T, S′ be a relational substructure ofS, andT ′ be a relational substructure ofT. Suppose
f ◦(the carrier ofS′)⊆ the carrier ofT ′. Then f �the carrier ofS′ is a map fromS′ into T ′.

(68) Let S, T be lattices,f be a join-preserving map fromS into T, S′ be a non empty join-
inheriting full relational substructure ofS, T ′ be a non empty join-inheriting full relational
substructure ofT, andg be a map fromS′ into T ′. If g = f �the carrier ofS′, theng is join-
preserving.

(69) LetS, T be lower-bounded lattices,f be a finite-sups-preserving map fromS into T, S′ be
a non empty finite-sups-inheriting full relational substructure ofS, T ′ be a non empty finite-
sups-inheriting full relational substructure ofT, andg be a map fromS′ into T ′. If g = f �the
carrier ofS′, theng is finite-sups-preserving.
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Let L be a complete lattice. Note that CompactSublatt(L) is finite-sups-inheriting.
The following propositions are true:

(70) Let S, T be complete lattices andd be a sups-preserving map fromT into S. Thend
is compact-preserving if and only ifd�the carrier of CompactSublatt(T) is a finite-sups-
preserving map from CompactSublatt(T) into CompactSublatt(S).

(71) Let S, T be complete lattices. SupposeT is algebraic. Letg be an infs-preserving map
from S into T. Theng is directed-sups-preserving if and only if (the lower adjoint ofg)�the
carrier of CompactSublatt(T) is a finite-sups-preserving map from CompactSublatt(T) into
CompactSublatt(S).
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