Compactness of Lim-inf Topology

Grzegorz Bancerek University of Białystok Noboru Endou Shinshu University Nagano

Summary. Formalization of [14], chapter III, section 3 (3.4–3.6).

MML Identifier: WAYBEL33.

WWW: http://mizar.org/JFM/Vol13/waybel33.html

The articles [22], [11], [27], [23], [26], [13], [28], [29], [9], [10], [18], [19], [16], [1], [2], [20], [3], [15], [24], [30], [4], [17], [25], [12], [8], [5], [6], [21], and [7] provide the notation and terminology for this paper.

Let *L* be a non empty poset, let *X* be a non empty subset of *L*, and let *F* be a filter of 2^X_{\subseteq} . The functor $\liminf F$ yielding an element of *L* is defined by:

(Def. 1) $\liminf F = \bigsqcup_{L} \{\inf B; B \text{ ranges over subsets of } L: B \in F \}.$

We now state the proposition

(1) Let L_1 , L_2 be complete lattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Let X_1 be a non empty subset of L_1 , X_2 be a non empty subset of L_2 , F_1 be a filter of $2^{X_1}_{\subseteq}$, and F_2 be a filter of $2^{X_2}_{\subseteq}$. If $F_1 = F_2$, then $\liminf F_1 = \liminf F_2$.

Let L be a non empty FR-structure. We say that L is lim-inf if and only if:

(Def. 2) The topology of $L = \xi(L)$.

One can verify that every non empty FR-structure which is lim-inf is also topological space-like. Let us observe that every top-lattice which is trivial is also lim-inf.

One can check that there exists a top-lattice which is lim-inf, continuous, and complete. Next we state several propositions:

- (2) Let L_1 , L_2 be non empty 1-sorted structures. Suppose the carrier of L_1 = the carrier of L_2 . Let N_1 be a net structure over L_1 . Then there exists a strict net structure N_2 over L_2 such that
- (i) the relational structure of N_1 = the relational structure of N_2 , and
- (ii) the mapping of N_1 = the mapping of N_2 .
- (3) Let L_1 , L_2 be non empty 1-sorted structures. Suppose the carrier of L_1 = the carrier of L_2 . Let N_1 be a net structure over L_1 . Suppose $N_1 \in \text{NetUniv}(L_1)$. Then there exists a strict net N_2 in L_2 such that
- (i) $N_2 \in \text{NetUniv}(L_2)$,
- (ii) the relational structure of N_1 = the relational structure of N_2 , and
- (iii) the mapping of N_1 = the mapping of N_2 .

- (4) Let L_1 , L_2 be inf-complete up-complete semilattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Let N_1 be a net in L_1 and N_2 be a net in L_2 . Suppose that
- (i) the relational structure of N_1 = the relational structure of N_2 , and
- (ii) the mapping of N_1 = the mapping of N_2 . Then $\liminf N_1 = \liminf N_2$.
- (5) Let L_1 , L_2 be non empty 1-sorted structures. Suppose the carrier of L_1 = the carrier of L_2 . Let N_1 be a net in L_1 and N_2 be a net in L_2 . Suppose that
- (i) the relational structure of N_1 = the relational structure of N_2 , and
- (ii) the mapping of N_1 = the mapping of N_2 .

Let S_1 be a subnet of N_1 . Then there exists a strict subnet S_2 of N_2 such that

- (iii) the relational structure of S_1 = the relational structure of S_2 , and
- (iv) the mapping of S_1 = the mapping of S_2 .
- (6) Let L_1 , L_2 be inf-complete up-complete semilattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Let N_1 be a net structure over L_1 and a be a set. Suppose $\langle N_1, a \rangle$ \in the lim inf convergence of L_1 . Then there exists a strict net N_2 in L_2 such that
- (i) $\langle N_2, a \rangle \in \text{the lim inf convergence of } L_2,$
- (ii) the relational structure of N_1 = the relational structure of N_2 , and
- (iii) the mapping of N_1 = the mapping of N_2 .
- (7) Let L_1 , L_2 be non empty 1-sorted structures, N_1 be a non empty net structure over L_1 , and N_2 be a non empty net structure over L_2 . Suppose that
- (i) the relational structure of N_1 = the relational structure of N_2 , and
- (ii) the mapping of N_1 = the mapping of N_2 .

Let X be a set. If N_1 is eventually in X, then N_2 is eventually in X.

- (8) Let L_1 , L_2 be inf-complete up-complete semilattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Then ConvergenceSpace(the lim inf convergence of L_1) = ConvergenceSpace(the lim inf convergence of L_2).
- (9) Let L_1 , L_2 be inf-complete up-complete semilattices. Suppose the relational structure of L_1 = the relational structure of L_2 . Then $\xi(L_1) = \xi(L_2)$.

Let *R* be an inf-complete non empty reflexive relational structure. Observe that every topological augmentation of *R* is inf-complete.

Let *R* be a semilattice. Note that every topological augmentation of *R* has g.l.b.'s.

Let *L* be an inf-complete up-complete semilattice. One can verify that there exists a topological augmentation of *L* which is strict and lim-inf.

The following proposition is true

(10) Let L be an inf-complete up-complete semilattice and X be a lim-inf topological augmentation of L. Then $\xi(L)$ = the topology of X.

Let L be an inf-complete up-complete semilattice. The functor $\Xi(L)$ yields a strict topological augmentation of L and is defined as follows:

(Def. 3) $\Xi(L)$ is lim-inf.

Let L be an inf-complete up-complete semilattice. Note that $\Xi(L)$ is lim-inf. We now state a number of propositions:

(11) For every complete lattice L and for every net N in L holds $\liminf N = \bigsqcup_L \{\inf(N \restriction i) : i \text{ ranges over elements of } N\}$.

- (12) Let L be a complete lattice, F be a proper filter of $2^{\Omega_L}_{\subseteq}$, and f be a subset of L. Suppose $f \in F$. Let i be an element of the net of F. If $i_2 = f$, then $\inf f = \inf((\text{the net of } F) \upharpoonright i)$.
- (13) For every complete lattice L and for every proper filter F of $2^{\Omega_L}_{\subseteq}$ holds $\liminf F = \liminf$ (the net of F).
- (14) For every complete lattice L and for every proper filter F of $2^{\Omega_L}_{\subseteq}$ holds the net of $F \in \text{NetUniv}(L)$.
- (15) Let L be a complete lattice, F be an ultra filter of $2^{\Omega_L}_{\subseteq}$, and p be a greater or equal to id map from the net of F into the net of F. Then $\liminf F \ge \inf((\text{the net of } F) \cdot p)$.
- (16) Let L be a complete lattice, F be an ultra filter of $2^{\Omega_L}_{\subseteq}$, and M be a subnet of the net of F. Then $\liminf F = \liminf M$.
- (17) Let *L* be a non empty 1-sorted structure, *N* be a net in *L*, and *A* be a set. Suppose *N* is often in *A*. Then there exists a strict subnet N' of *N* such that rng (the mapping of N') $\subseteq A$ and N' is a structure of a subnet of *N*.
- (18) Let L be a complete lim-inf top-lattice and A be a non empty subset of L. Then A is closed if and only if for every ultra filter F of $2^{\Omega_L}_{\subset}$ such that $A \in F$ holds $\liminf F \in A$.
- (19) For every non empty reflexive relational structure *L* holds $\sigma(L) \subseteq \xi(L)$.
- (20) Let T_1 , T_2 be non empty topological spaces and B be a prebasis of T_1 . Suppose $B \subseteq$ the topology of T_2 and the carrier of $T_1 \in$ the topology of T_2 . Then the topology of $T_1 \subseteq$ the topology of T_2 .
- (21) For every complete lattice *L* holds $\omega(L) \subseteq \xi(L)$.
- (22) Let T_1 , T_2 be topological spaces and T be a non empty topological space. Suppose T is a topological extension of T_1 and a topological extension of T_2 . Let R be a refinement of T_1 and T_2 . Then T is a topological extension of R.
- (23) Let T_1 be a topological space, T_2 be a topological extension of T_1 , and A be a subset of T_1 . Then
 - (i) if A is open, then A is an open subset of T_2 , and
- (ii) if A is closed, then A is a closed subset of T_2 .
- (24) For every complete lattice *L* holds $\lambda(L) \subseteq \xi(L)$.
- (25) Let L be a complete lattice, T be a lim-inf topological augmentation of L, and S be a Lawson correct topological augmentation of L. Then T is a topological extension of S.
- (26) For every complete lim-inf top-lattice L and for every ultra filter F of $2^{\Omega_L}_{\subseteq}$ holds $\liminf F$ is a convergence point of F, L.
- (27) Every complete lim-inf top-lattice is compact and T_1 .

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [4] Grzegorz Bancerek. Prime ideals and filters. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_7. html.
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.

- [6] Grzegorz Bancerek. The Lawson topology. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel19.
- [7] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. *Journal of Formalized Mathematics*, 13, 2001. http://mizar.org/JFM/Vol13/yellow19.html.
- [8] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T₄ topological spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/urysohn1.html.
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct 1.html.
- [10] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [11] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_1.html.
- [12] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [13] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [14] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [15] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [16] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/tex_2.html.
- [17] Artur Komiłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [18] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [19] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [20] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [21] Bartłomiej Skorulski. Lim-inf convergence. Journal of Formalized Mathematics, 12, 2000. http://mizar.org/JFM/Vol12/waybe128.html.
- [22] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [23] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/meart_1.html.
- [24] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [25] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybelll.html.
- [26] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders_1.html.
- [27] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [28] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [29] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [30] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received July 29, 2001

Published January 2, 2004