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The articles[[2R],[[11],[[2[7],123],[126], 23]/ 28]/ 1291/ 19]/[10][ 118]. [19]. [16]. [1]. [2]. [20]. [3],
[15], [24], [301, [4], [17], [25], [12], [8], [B], [6], [21], and[7] provide the notation and terminology
for this paper.

Let L be a non empty poset, It be a non empty subset bf and letF be a filter of Z. The
functor liminfF yielding an element of is defined by: N

(Def. 1) liminfF = ||, {infB;B ranges over subsets bf B € F}.

We now state the proposition

(1) LetLy, Lo be complete lattices. Suppose the relational structure; 6f the relational
structure ofL,. Let X; be a non empty subset bf, X, be a non empty subset b, F; be a
filter of 22, andF be a filter of 22. If Fy = F», then liminfFy = liminf F.

LetL be a non empty FR-structure. We say thas lim-inf if and only if:
(Def. 2) The topology of =§(L).

One can verify that every non empty FR-structure which is lim-inf is also topological space-like.
Let us observe that every top-lattice which is trivial is also lim-inf.

One can check that there exists a top-lattice which is lim-inf, continuous, and complete.

Next we state several propositions:

(2) LetLy, Lo be non empty 1-sorted structures. Suppose the carrier efthe carrier ofL,.
Let N; be a net structure ovér. Then there exists a strict net structidgoverL, such that

(i) the relational structure dfl; = the relational structure df,, and

(i) the mapping ofN; = the mapping ofN,.

(3) LetLy, Lo be non empty 1-sorted structures. Suppose the carrier efthe carrier ofL».

Let N; be a net structure ovér. SupposéN; € NetUniv(L1). Then there exists a strict net
N, in Ly such that

i Nye NetUniv(Lz),
(i) the relational structure dfl; = the relational structure df,, and
(i)  the mapping ofN; = the mapping of\,.
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(4) LetLy, Ly be inf-complete up-complete semilattices. Suppose the relational structure of
L; = the relational structure df,. LetN; be a netin_; andN; be a net irL,. Suppose that

(i) the relational structure dfl; = the relational structure dfl,, and
(i)  the mapping ofN; = the mapping ofN,.
Then liminfNy = liminf N,.
(5) LetLy, Ly be non empty 1-sorted structures. Suppose the carrier efthe carrier ofL».
Let N; be a netin_; andNy be a netin_,. Suppose that
(i) the relational structure dfl; = the relational structure dfl,, and
(i) the mapping ofN; = the mapping ofN,.
Let S be a subnet ofl;. Then there exists a strict subrg&tof N, such that
(iii)  the relational structure 0%, = the relational structure &,, and
(iv) the mapping of5; = the mapping of,.
(6) LetLs, Lo be inf-complete up-complete semilattices. Suppose the relational structure of

L; = the relational structure df,. Let N; be a net structure ovér anda be a set. Suppose
(N, @) € the lim inf convergence df;. Then there exists a strict nig in L, such that

()  (Np, a) € the lim inf convergence df,,
(i) the relational structure dfl; = the relational structure df,, and
(i)  the mapping ofN; = the mapping of\L.
(7) LetLy, Lo be non empty 1-sorted structur@g, be a non empty net structure ouer, and
N> be a non empty net structure o\er. Suppose that
(i) the relational structure dfl; = the relational structure dfi;, and
(i)  the mapping ofN; = the mapping of\L.
Let X be a set. IN; is eventually inX, thenN; is eventually inX.
(8) LetLs, Lo be inf-complete up-complete semilattices. Suppose the relational structure of

L, =the relational structure df,. Then ConvergenceSpdgee lim inf convergence df;) =
ConvergenceSpag#e lim inf convergence dfy).

(9) LetLs, Ly be inf-complete up-complete semilattices. Suppose the relational structure of
L, = the relational structure df,. Then&(L1) =&(L2).

LetRbe an inf-complete non empty reflexive relational structure. Observe that every topological
augmentation oR is inf-complete.

Let Rbe a semilattice. Note that every topological augmentatidRiods g.l.b.'s.

Let L be an inf-complete up-complete semilattice. One can verify that there exists a topological
augmentation of. which is strict and lim-inf.

The following proposition is true

(10) LetL be an inf-complete up-complete semilattice ahtle a lim-inf topological augmen-
tation ofL. Then&(L) = the topology ofX.

Let L be an inf-complete up-complete semilattice. The fun&i(r) yields a strict topological
augmentation of and is defined as follows:

(Def. 3) =(L) is lim-inf.

LetL be an inf-complete up-complete semilattice. Note Ht) is lim-inf.
We now state a number of propositions:

(11) For every complete lattice and for every neN in L holds liminfN = ||, {inf(NTi) : i
ranges over elements bif}.
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(12) LetL be a complete lattic; be a proper filter of gL, andf be a subset of. Suppose
f € F. Leti be an element of the net Bf. If i, = f, then inff = inf((the net ofF) [i).

(13) Forevery complete lattideand for every proper filtefF of 2% holds liminfF = liminf(the
net of F).

(14) For every complete lattice and for every proper filteF of 2% holds the net of €
NetUniv(L).

(15) LetL be a complete latticé; be an ultra filter of gL, andp be a greater or equal to id map
from the net ofF into the net of~. Then liminfF > inf((the net ofF) - p).

(16) LetL be a complete latticds be an ultra filter of gL, andM be a subnet of the net &f.
Then liminfF = liminf M.

(17) LetL be a non empty 1-sorted structukébe a netirL, andA be a set. Suppog¢is often
in A. Then there exists a strict submé¢tof N such that rng (the mapping dF) C AandN’ is
a structure of a subnet of.

(18) LetL be a complete lim-inf top-lattice andibe a non empty subset bf ThenA is closed
if and only if for every ultra filtef of ZEL such thatA € F holds liminfF € A.

(19) For every non empty reflexive relational structureoldso(L) C &(L).

(20) LetTy, T> be non empty topological spaces aBdbe a prebasis of;. SupposeB C the
topology of T, and the carrier off; € the topology ofT,. Then the topology off; C the
topology ofT,.

(21) For every complete lattideholdsw(L) C &(L).

(22) LetTy, T, be topological spaces affdbe a non empty topological space. Supp®ss a
topological extension of; and a topological extension @3. Let R be a refinement of; and
To. ThenT is a topological extension ¢,

(23) LetT; be atopological spacé; be a topological extension @i, andA be a subset of;.
Then
(i) if Ais open, therAis an open subset db, and
(i) if Aisclosed, theiis a closed subset d@b.

(24) For every complete lattideholdsA(L) C &(L).

(25) LetL be acomplete latticd, be a lim-inf topological augmentation bf andSbe a Lawson
correct topological augmentation bf ThenT is a topological extension &

(26) For every complete lim-inf top-lattideand for every ultra filteF of 2% holds liminfF is
a convergence point 6f, L.

(27) Every complete lim-inf top-lattice is compact ahd
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