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Summary. This paper is a continuation of the formalisation of [9] pp. 108-109.
Order-consistent and upper topologies are defined. The theorem that the Scott and the up-
per topologies are order-consistent is proved. Remark 1.4 and example 1.5(2) are generalized
for proving this theorem.
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The articles([15],[17],[120], [121],[15], 18], [16], [[18], [[1], [[1B], [12],[123], [119],[12],[8],[[14],[[10],
[16], [11], [22], [17], and[[4] provide the notation and terminology for this paper.
Let T be a non empty FR-structure. We say tlias upper if and only if:

(Def. 1) {(Ix)°:xranges over elements ®f} is a prebasis of .

One can check that there exists a top-lattice which is Scott, up-complete, and strict.
Let T be a topological space-like non empty reflexive FR-structure. We sayTtlisirder
consistent if and only if the condition (Def. 2) is satisfied.

(Def. 2) Letxbe an element of. Then

() Ix={x}, and
(i) for every eventually-directed nét in T such that = supN and for every neighbourhood
V of x holdsN is eventually inv.

Let us note that every non empty reflexive topological space-like FR-structure which is trivial is

also upper.
Let us mention that there exists a top-lattice which is upper, trivial, up-complete, and strict.
One can prove the following propositions:

(1) For every upper up-complete non empty top-pdsand for every subsef of T such that
Ais open hold®A is upper.

(2) For every up-complete non empty top-poBeduch thafl is upper holds is order consis-
tent.

(7H For every up-complete non empty reflexive transitive antisymmetric relational stréture
holds there exists a topological augmentatioRaefhich is Scott.

(8) LetRbe an up-complete non empty poset dntde a topological augmentation Bf If T
is Scott, therT is correct.

1 The propositions (3)—(6) have been removed.
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Let Rbe an up-complete non empty reflexive transitive antisymmetric relational structure. Note
that every topological augmentationRfvhich is Scott is also correct.

Let R be an up-complete non empty reflexive transitive antisymmetric relational structure. Ob-
serve that there exists a topological augmentatioR which is Scott and correct.

We now state several propositions:

(9) LetT be a Scott up-complete non empty reflexive transitive antisymmetric FR-structure
andx be an element of . Then{x} = |x.

(10) Every up-complete Scott non empty top-poset is order consistent.

(11) LetR be an inf-complete semilattic& be a net inR, andD be a subset oR. Suppose
D = {[ Jr{Z(k); k ranges over elements &f k > j} : j ranges over elements @f. ThenD
is non empty and directed.

(12) LetRbe aninf-complete semilatticBbe a subset dR, andabe an elementdR. If ac S
then[ |rS< a.

(13) For every inf-complete semilattid® and for every monotone reflexive ndtin R holds
liminf N = supN.

(14) LetR be an inf-complete semilattice ai&ibe a subset oR. ThenS € the topology of
ConvergenceSpaghe Scott convergence &) if and only if Sis inaccessible and upper.

(15) LetRbe an inf-complete up-complete semilattice 8nHe a topological augmentation of
R. If the topology ofT = o(R), thenT is Scott.

Let R be an inf-complete up-complete semilattice. Note that there exists a topological augmen-
tation of R which is strict, Scott, and correct.
The following two propositions are true:

(16) LetSbe an up-complete inf-complete semilattice dnbde a Scott topological augmenta-
tion of S. Theno(S) = the topology ofT .

(17) Every Scott up-complete non empty reflexive transitive antisymmetric FR-structure is a
To-space.

Let Rbe an up-complete non empty reflexive transitive antisymmetric relational structure. Note
that every topological augmentation®Ris up-complete.
One can prove the following propositions:

(18) LetRbe an up-complete non empty reflexive transitive antisymmetric relational structure,
T be a Scott topological augmentationRfx be an element of, andA be an upper subset
of T. If x¢ A, then(|x)® is a neighbourhood 4.

(19) LetRbe an up-complete non empty reflexive transitive antisymmetric FR-strudture,
a Scott topological augmentation Bf andS be an upper subset df. Then there exists a
family F of subsets off such thalS=NF and for every subset of T such thaX € F holds
X is a neighbourhood &.

(20) LetT be a Scott up-complete non empty reflexive transitive antisymmetric FR-structure
andSbe a subset of . ThenSis open if and only ifSis upper and property(S).

(21) LetRbe an up-complete non empty reflexive transitive antisymmetric FR-stru&beea
non empty directed subset Bf anda be an element dR. If a€ S thena<| |gS

Let T be an up-complete non empty reflexive transitive antisymmetric FR-structure. One can
check that every subset dfwhich is lower is also property(S).
Next we state three propositions:

(22) For every finite up-complete non empty pogdtolds every subset df is inaccessible.
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(23) LetRbe a complete connected lattiGe be a Scott topological augmentationRfandx
be an element of . Then(|x)® is open.

(24) LetRbe a complete connected lattide pe a Scott topological augmentationRfandS
be a subset of . ThenSis open if and only if one of the following conditions is satisfied:

(i) S=the carrier ofT, or
(i)  Se {(Ix)¢:xranges over elements of}.

Let R be an up-complete non empty poset. Note that there exists a correct topological augmen-
tation ofRwhich is order consistent.

Let us mention that there exists a top-lattice which is order consistent and complete.

One can prove the following propositions:

(25) LetRbe anon empty FR-structure aAde a subset dR. Suppose that for every element
xof Rholds|x = {x}. If Ais open, ther is upper.

(26) LetRbe anon empty FR-structure aAde a subset dR. Suppose that for every element
xof Rholds|x = {x}. Let A be a subset dR. If Ais closed, ther is lower.

(27) For every up-complete inf-complete lattiEand for every nell in T and for every element
i of N holds liminf(N[i) = liminf N.

Let Sbe a non empty 1-sorted structure,Rdbe a non empty relational structure, andfidie a
function from the carrier oR into the carrier ofS. The functorRx« f yields a strict non empty net
structure oveSand is defined as follows:

(Def. 3) The relational structure &« f = the relational structure & and the mapping d®« f = f.

Let Sbe a non empty 1-sorted structure,Rdbe a non empty transitive relational structure, and
let f be a function from the carrier & into the carrier ofS. Observe thaRx f is transitive.

Let Sbe a non empty 1-sorted structure, Rebe a non empty directed relational structure, and
let f be a function from the carrier & into the carrier ofS. Note thatRx f is directed.

Let R be a non empty relational structure andNMebe a prenet oveR. The functor infnetN
yielding a strict prenet oveR is defined by:

(Def. 4) There exists a mapfrom N into R such that infnetN = N x f and for every elemeritof
N holds f (i) = [ |r{N(k);k ranges over elements bf k > i}.

Let R be a non empty relational structure andNebe a net inrR. One can check that inietN
is transitive.

Let R be a non empty relational structure and lebe a net inR. Observe that inhetN is
directed.

Let R be an inf-complete non empty reflexive antisymmetric relational structure ahtideta
netinR. One can check that infetN is monotone.

Let R be an inf-complete non empty reflexive antisymmetric relational structure ahtddeta
net inR. Observe that infietN is eventually-directed.

Next we state several propositions:

(28) LetR be a non empty relational structure adde a net inR. Then rng (the mapping of
inf_netN) = {[ Jr{N(i);i ranges over elements b i > j} : j ranges over elements hif}.

(29) For every up-complete inf-complete lattikRend for every nel in Rholds supinfnetN =
liminf N.

(30) For every up-complete inf-complete lattRand for every nell in Rand for every element
i of N holds supinfnetN = liminf(N[i).

(31) LetRbe an inf-complete semilatticl be a net inR, andV be an upper subset & |If
inf_netN is eventually inv, thenN is eventually inv.
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(32) LetRbe an inf-complete semilattichl be a net irR, andV be a lower subset &®. If N is

eventually inV, then infnetN is eventually inv.

(33) LetRbe an order consistent up-complete inf-complete non empty top-Iditibe,a net in

R, andx be an element dR. If x < liminf N, thenx is a cluster point oN.

(34) LetR be an order consistent up-complete inf-complete non empty top-laidee an

eventually-directed net iR, andx be an element dR. Thenx < liminf N if and only if x is a
cluster point ofN.
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