Weights of Continuous Lattices¹

Robert Milewski University of Białystok

Summary. This work is a continuation of formalization of [16]. Theorems from Chapter III, Section 4, pp. 170–171 are proved.

MML Identifier: WAYBEL31.

WWW: http://mizar.org/JFM/Vol12/waybel31.html

The articles [24], [12], [28], [21], [15], [30], [27], [29], [10], [11], [9], [13], [2], [1], [22], [23], [26], [3], [4], [17], [31], [7], [5], [14], [6], [19], [18], [25], [8], and [20] provide the notation and terminology for this paper.

In this article we present several logical schemes. The scheme *UparrowUnion* deals with a relational structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every family *S* of subsets of \mathcal{A} such that $S = \{X; X \text{ ranges over subsets of } \mathcal{A} :$

 $\mathcal{P}[X]$ holds $\uparrow \bigcup S = \bigcup \{\uparrow X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X] \}$

for all values of the parameters.

The scheme *DownarrowUnion* deals with a relational structure \mathcal{A} and a unary predicate \mathcal{P} , and states that:

For every family *S* of subsets of \mathcal{A} such that $S = \{X; X \text{ ranges over subsets of } \mathcal{A} :$

 $\mathcal{P}[X]$ holds $\bigcup S = \bigcup \{ \bigcup X; X \text{ ranges over subsets of } \mathcal{A} : \mathcal{P}[X] \}$

for all values of the parameters.

Let L_1 be a lower-bounded continuous sup-semilattice and let B_1 be a CL basis of L_1 with bottom. Observe that $(\text{Ids}(\text{sub}(B_1)), \subseteq)$ is algebraic.

Let L_1 be a continuous sup-semilattice. The functor CLweight L_1 yields a cardinal number and is defined as follows:

(Def. 1) CLweight $L_1 = \bigcap \{\overline{\overline{B_1}} : B_1 \text{ ranges over CL basis of } L_1 \text{ with bottom} \}.$

One can prove the following propositions:

- (1) For every topological structure T and for every basis b of T holds weight $T \subseteq \overline{\overline{b}}$.
- (2) For every topological structure T there exists a basis b of T such that $\overline{\overline{b}}$ = weight T.
- (3) For every continuous sup-semilattice L_1 and for every CLbasis B_1 of L_1 with bottom holds CLweight $L_1 \subseteq \overline{\overline{B_1}}$.
- (4) For every continuous sup-semilattice L_1 there exists a CL basis B_1 of L_1 with bottom such that $\overline{\overline{B_1}} = \text{CL weight } L_1$.
- (5) For every algebraic lower-bounded lattice L_1 holds CLweight $L_1 = \overline{\text{the carrier of CompactSublatt}(L_1)}$.

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (6) Let T be a non empty topological space and L₁ be a continuous sup-semilattice. If (the topology of T, ⊆) = L₁, then every CLbasis of L₁ with bottom is a basis of T.
- (7) Let *T* be a non empty topological space and L_1 be a continuous lower-bounded lattice. Suppose \langle the topology of *T*, $\subseteq \rangle = L_1$. Let B_1 be a basis of *T* and B_2 be a subset of L_1 . If $B_1 = B_2$, then finsups (B_2) is a CL basis of L_1 with bottom.
- (8) Let *T* be a T_0 non empty topological space and L_1 be a continuous lower-bounded supsemilattice. If $\langle \text{the topology of } T, \subseteq \rangle = L_1$, then if *T* is infinite, then weight $T = \text{CLweight } L_1$.
- (9) Let *T* be a T_0 non empty topological space and L_1 be a continuous sup-semilattice. Suppose \langle the topology of $T, \subseteq \rangle = L_1$. Then the carrier of $T \subseteq \overline{}$ the carrier of L_1 .
- (10) For every T_0 non empty topological space T such that T is finite holds weight $T = \overline{T}$ the carrier of T.
- (11) Let *T* be a topological structure and L_1 be a continuous lower-bounded lattice. Suppose $\langle \text{the topology of } T, \subseteq \rangle = L_1$ and *T* is finite. Then CLweight $L_1 = \overline{\text{the carrier of } L_1}$.
- (12) Let L_1 be a continuous lower-bounded sup-semilattice, T_1 be a Scott topological augmentation of L_1 , T_2 be a Lawson correct topological augmentation of L_1 , and B_2 be a basis of T_2 . Then $\{\uparrow V; V \text{ ranges over subsets of } T_2: V \in B_2\}$ is a basis of T_1 .
- $(14)^1$ For every up-complete non empty poset L_1 such that L_1 is finite and for every element x of L_1 holds $x \in \text{compactbelow}(x)$.
- (15) Every finite lattice is arithmetic.

One can verify that every lattice which is finite is also arithmetic.

Let us observe that there exists a relational structure which is trivial, reflexive, transitive, antisymmetric, lower-bounded, non empty, finite, and strict and has l.u.b.'s and g.l.b.'s.

We now state the proposition

(16) Let L_1 be a finite lattice and B_1 be a CLbasis of L_1 with bottom. Then $\overline{\overline{B_1}} = \text{CLweight } L_1$ if and only if B_1 = the carrier of CompactSublatt(L_1).

Let L_1 be a non empty reflexive relational structure, let A be a subset of L_1 , and let a be an element of L_1 . The functor Way_Up(a,A) yields a subset of L_1 and is defined as follows:

(Def. 2) Way_Up $(a,A) = \uparrow a \setminus \uparrow A$.

One can prove the following propositions:

- (17) For every non empty reflexive relational structure L_1 and for every element a of L_1 holds Way_Up $(a, \emptyset_{(L_1)}) = \uparrow a$.
- (18) For every non empty poset L_1 and for every subset A of L_1 and for every element a of L_1 such that $a \in \uparrow A$ holds Way_Up $(a, A) = \emptyset$.
- (19) For every non empty finite reflexive transitive relational structure L_1 holds $Ids(L_1)$ is finite.
- (20) For every continuous lower-bounded sup-semilattice L_1 such that L_1 is infinite holds every CLbasis of L_1 with bottom is infinite.
- (23)² For every complete non empty poset L_1 and for every element x of L_1 such that x is compact holds $x = \inf \uparrow x$.
- (24) Let L_1 be a continuous lower-bounded sup-semilattice. Suppose L_1 is infinite. Let B_1 be a CLbasis of L_1 with bottom. Then $\overline{\{Way_Up(a,A); a \text{ ranges over elements of } L_1, A \text{ ranges over finite subsets of } L_1: a \in \overline{\overline{B_1}}$.

¹ The proposition (13) has been removed.

² The propositions (21) and (22) have been removed.

- (25) For every Lawson complete top-lattice T and for every finite subset X of T holds $(\uparrow X)^c$ is open and $(\downarrow X)^c$ is open.
- (26) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Lawson correct topological augmentation of L_1 , and B_1 be a CL basis of L_1 with bottom. Then {Way_Up(a,A); a ranges over elements of L_1 , A ranges over finite subsets of L_1 : $a \in B_1 \land A \subseteq B_1$ } is a basis of T.
- (27) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Scott topological augmentation of L_1 , and b be a basis of T. Then $\{\uparrow \inf u; u \text{ ranges over subsets of } T: u \in b\}$ is a basis of T.
- (28) Let L_1 be a continuous lower-bounded sup-semilattice, T be a Scott topological augmentation of L_1 , and B_1 be a basis of T. If B_1 is infinite, then {inf u; u ranges over subsets of T: $u \in B_1$ } is infinite.
- (29) Let L_1 be a continuous lower-bounded sup-semilattice and T be a Scott topological augmentation of L_1 . Then CLweight L_1 = weight T.
- (30) Let L_1 be a continuous lower-bounded sup-semilattice and T be a Lawson correct topological augmentation of L_1 . Then CLweight L_1 = weight T.
- (31) Let L_1 , L_2 be non empty relational structures. Suppose L_1 and L_2 are isomorphic. Then the carrier of $L_1 =$ the carrier of L_2 .
- (32) Let L_1 be a continuous lower-bounded sup-semilattice and B_1 be a CLbasis of L_1 with bottom. If $\overline{\overline{B_1}} = \text{CLweight}L_1$, then $\text{CLweight}L_1 = \text{CLweight}(\text{Ids}(\text{sub}(B_1)), \subseteq)$.

Let L_1 be a continuous lower-bounded sup-semilattice. Observe that $\langle \sigma(L_1), \subseteq \rangle$ is continuous and has l.u.b.'s.

Next we state two propositions:

- (33) For every continuous lower-bounded sup-semilattice L_1 holds CLweight $L_1 \subseteq$ CLweight $\langle \sigma(L_1), \subseteq \rangle$.
- (34) For every continuous lower-bounded sup-semilattice L_1 such that L_1 is infinite holds CLweight $L_1 = \text{CLweight}\langle \sigma(L_1), \subseteq \rangle$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/card_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal1. html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [6] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [7] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.
- [8] Grzegorz Bancerek. The Lawson topology. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel19. html.
- [9] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finseq_1.html.
- [10] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [11] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.

- [12] Czesław Byliński. Some basic properties of sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/ zfmisc_1.html.
- [13] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/finseq_2.html.
- [14] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [15] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [16] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [17] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [18] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http: //mizar.org/JFM/Vol8/waybel_9.html.
- [19] Robert Milewski. Algebraic lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_8.html.
- [20] Robert Milewski. Bases of continuous lattices. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/ waybel23.html.
- [21] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/setfam_1.html.
- [22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/pre_topc.html.
- [23] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [24] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [25] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybell1.html.
- [26] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/orders_ 1.html.
- [27] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [28] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [29] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.
- [30] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ relset_1.html.
- [31] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received January 6, 2000

Published January 2, 2004