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Summary. This work continues the formalization 6fi[8]. Theorems from Chapter I,
Section 3, pp. 158-159 are proved.
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The articles([18],[[7],[[1/7],[18],[1101,16],[[6],[[11] [[12],[16] /1], 12], 13],[[4],[[14],[[10],[115], and
[9] provide the notation and terminology for this paper.
One can prove the following propositions:

(1) For every complete lattide and for every nel in L holds infN < liminf N.

(2) LetL be a complete latticé\ be a net inL, andx be an element of. Suppose that for
every subneM of N holdsx = liminf M. Thenx = liminf N and for every subne¥l of N
holdsx > infM.

(3) LetL be a complete latticd\ be a net inL, andx be an element of. SupposeN €
NetUniv(L). Suppose that for every subnigt of N such thatM € NetUniv(L) holdsx =
liminf M. Thenx = liminf N and for every subne¥l of N such thatM € NetUniv(L) holds
X > inf M.

Let N be a non empty relational structure and idbe a map fromN into N. We say thaff is
greater or equal to id if and only if:

(Def. 1) For every elemerjtof N holdsj < f(j).
The following three propositions are true:
(4) For every reflexive non empty relational structdr@olds idy is greater or equal to id.

(5) LetN be a directed non empty relational structure ang be elements oN. Then there
exists an elemer#tof N such thak < zandy < z

(6) For every directed non empty relational structrkolds there exists a map frolinto N
which is greater or equal to id.

Let N be a directed non empty relational structure. One can verify that there exists a map from
N into N which is greater or equal to id.
Let N be a reflexive non empty relational structure. Observe that there exists a ma fram
N which is greater or equal to id.
LetL be a non empty 1-sorted structure,Nebe a non empty net structure overand letf be
a map fromN into N. The functorN - f yields a strict non empty net structure oteand is defined
by the conditions (Def. 2).
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(Def. 2)(i) The relational structure ®f - f = the relational structure df, and
(i) the mapping oN - f = (the mapping oN) - f.

We now state three propositions:

(7) LetL be a non empty 1-sorted structuképe a non empty net structure odgrandf be a
map fromN into N. Then the carrier oN - f = the carrier ofN.

(8) LetL be a non empty 1-sorted structuhébe a non empty net structure ougrandf be a
map fromN into N. ThenN - f = (the carrier ofN, the internal relation oN, (the mapping
of N) - f).

(9) LetL be a non empty 1-sorted structuieé,be a transitive directed non empty relational
structure, and be a function from the carrier & into the carrier oL. Then(the carrier of
N, the internal relation o, f) is a netinL.

Let L be a non empty 1-sorted structure, Mtbe a transitive directed non empty relational
structure, and lef be a function from the carrier & into the carrier oL.. Observe thafthe carrier
of N, the internal relation o, f) is transitive, directed, and non empty.

One can prove the following proposition

(10) LetL be a non empty 1-sorted structuhe pe a net inL, andp be a map fromN into N.
ThenN- pisanetinL.

LetL be a non empty 1-sorted structure,éebe a net irL, and letp be a map fronN into N.
Observe thaN - p is transitive and directed.
The following two propositions are true:

(11) LetL be a non empty 1-sorted structuhépe a netirL, andp be a map fronN into N. If
N € NetUniv(L), thenN - p € NetUniv(L).

(12) LetL be a non empty 1-sorted structure &dM be nets inL. Suppose the net structure
of N = the net structure d¥. ThenM is a subnet oN.

LetL be a non empty 1-sorted structure andNdbe a net irL. Note that there exists a subnet
of N which is strict.
The following proposition is true

(13) LetL be a non empty 1-sorted structuMepe a net inL, andp be a greater or equal to id
map fromN into N. ThenN - pis a subnet oN.

LetL be a non empty 1-sorted structure,ebe a net irL, and letp be a greater or equal to id
map fromN into N. ThenN - pis a strict subnet o.
We now state two propositions:

(14) LetL be a complete latticd\ be a net inL, andx be an element oE. SupposeN €
NetUniv(L). Supposex = liminf N and for every subné¥l of N such thatM € NetUniv(L)
holdsx > inf M. Thenx = liminf N and for every greater or equal to id mpgrom N into N
holdsx > inf(N - p).

(15) LetL be a complete latticéy be a netirL, andx be an element df. Suppose = liminf N
and for every greater or equal to id madrom N into N holdsx > inf(N - p). Let M be a
subnet ofN. Thenx = liminf M.

Let L be a non empty relational structure. The lim inf convergendeisfa convergence class
of L and is defined by the condition (Def. 3).

(Def. 3) LetN be anetirL. SupposéN € NetUniv(L). Letx be an element df. Then(N, x) € the
lim inf convergence ot if and only if for every subneM of N holdsx = liminf M.
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One can prove the following two propositions:

(16) LetL be a complete latticeN be a net inL, andx be an element oE. SupposeN €
NetUniv(L). Then{N, x) € the lim inf convergence df if and only if for every subneM of
N such thatM € NetUniv(L) holdsx = liminf M.

(17) LetL be a non empty relational structuié pe a constant net ib, andM be a subnet df.
ThenM is constant and the value bf= the value ofM.

Let L be a non empty relational structure. The fun&(r) yielding a family of subsets df is

defined as follows:

(Def. 4) &(L) = the topology of ConvergenceSpétte lim inf convergence df).

One can prove the following propositions:

(18) For every complete lattide holds the lim inf convergence &fhas (CONSTANTS) prop-
erty.

(19) For every non empty relational structdrénolds the lim inf convergence df has (SUB-
NETS) property.

(20) For every continuous complete latticeholds the lim inf convergence af has (DIVER-
GENCE) property.

(21) LetL be a non empty relational structure aldx be sets. If{N, x) € the lim inf conver-
gence ofL, thenN € NetUniv(L).

(22) LetL be a non empty 1-sorted structure &3dC, be convergence classesloflf C; C Cy,
then the topology of ConvergenceSp@gg C the topology of ConvergenceSpéCe).

(23) LetL be a non empty reflexive relational structure. Then the lim inf convergeric€dhe
Scott convergence df.

(24) For all sets(, Y such thaiX C Y holdsX € the universe o¥.

(25) LetL be a non empty transitive reflexive relational structure @i a directed non empty
subset oL. Then NetStfD) € NetUniv(L).

(26) For every complete lattideand for every directed non empty subBetf L and for every
subnetM of NetSt(D) holds liminfM = supD.

(27) LetL be a non empty complete lattice abdbe a directed non empty subsetlof Then
(NetSt(D), supD) € the lim inf convergence df.

(28) For every complete lattide and for every subséi; of L such thatJ; € &(L) holdsU; is
property(S).

(29) For every non empty reflexive relational structurand for every subsek of L such that
Aco(L) holdsA e &(L).

(30) For every complete lattice and for every subseA of L such thatA is upper holds if
Aei(L),thenAec a(L).

(31) LetL be a complete lattice andlbe a subset df. Suppose is lower. ThenA® € E(L) if
and only ifAis closed under directed sups.
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