Function Spaces in the Category of Directed Suprema Preserving Maps¹

Grzegorz Bancerek University of Białystok Adam Naumowicz University of Białystok

Summary. Formalization of [16, pp. 115–117], chapter II, section 2 (2.5 - 2.10).

MML Identifier: WAYBEL27.

WWW: http://mizar.org/JFM/Vol11/waybel27.html

The articles [28], [13], [34], [30], [29], [35], [10], [12], [9], [14], [1], [2], [23], [31], [4], [24], [27], [26], [11], [33], [3], [5], [6], [18], [36], [15], [20], [7], [25], [21], [32], [17], [19], [22], and [8] provide the notation and terminology for this paper.

1. CURRYING, UNCURRYING AND COMMUTING FUNCTIONS

Let F be a function. We say that F is uncurrying if and only if the conditions (Def. 1) are satisfied.

- (Def. 1)(i) For every set x such that $x \in \text{dom } F$ holds x is a function yielding function, and
 - (ii) for every function f such that $f \in \text{dom } F$ holds F(f) = uncurry f.

We say that *F* is currying if and only if the conditions (Def. 2) are satisfied.

- (Def. 2)(i) For every set x such that $x \in \text{dom } F$ holds x is a function and $\pi_1(x)$ is a binary relation, and
 - (ii) for every function f such that $f \in \text{dom } F$ holds F(f) = curry f.

We say that F is commuting if and only if the conditions (Def. 3) are satisfied.

- (Def. 3)(i) For every set x such that $x \in \text{dom } F$ holds x is a function yielding function, and
 - (ii) for every function f such that $f \in \text{dom } F$ holds F(f) = commute(f).

Let us observe that every function which is empty is also uncurrying, currying, and commuting. Let us note that there exists a function which is uncurrying, currying, and commuting. Let F be an uncurrying function and let X be a set. One can check that $F \upharpoonright X$ is uncurrying. Let F be a currying function and let X be a set. Note that $F \upharpoonright X$ is currying. Next we state two propositions:

- (1) Let X, Y, Z, D be sets. Suppose $D \subseteq (Z^Y)^X$. Then there exists a many sorted set F indexed by D such that F is uncurrying and $\operatorname{rng} F \subseteq Z^{[X,Y]}$.
- (2) Let X, Y, Z, D be sets. Suppose $D \subseteq Z^{[X,Y]}$. Then there exists a many sorted set F indexed by D such that F is currying and if if $Y = \emptyset$, then $X = \emptyset$, then $\operatorname{rng} F \subseteq (Z^Y)^X$.

1

¹This work has been supported by KBN Grant 8 T11C 018 12.

Let X, Y, Z be sets. One can verify that there exists a many sorted set indexed by $(Z^Y)^X$ which is uncurrying and there exists a many sorted set indexed by $Z^{[:X,Y:]}$ which is currying. The following propositions are true:

- (3) Let A, B be non empty sets, C be a set, and f, g be commuting functions. If dom $f \subseteq (C^B)^A$ and rng $f \subseteq \text{dom } g$, then $g \cdot f = \text{id}_{\text{dom } f}$.
- (4) Let B be a non empty set, A, C be sets, f be an uncurrying function, and g be a currying function. If dom $f \subseteq (C^B)^A$ and rng $f \subseteq \text{dom } g$, then $g \cdot f = \text{id}_{\text{dom } f}$.
- (5) Let A, B, C be sets, f be a currying function, and g be an uncurrying function. If dom $f \subseteq C^{[A,B]}$ and rng $f \subseteq \text{dom } g$, then $g \cdot f = \text{id}_{\text{dom } f}$.
- (6) For every function yielding function f and for all sets i, A such that $i \in \text{dom commute}(f)$ holds $(\text{commute}(f))(i)^{\circ}A \subseteq \pi_i f^{\circ}A$.
- (7) Let f be a function yielding function and i, A be sets. If for every function g such that $g \in f^{\circ}A$ holds $i \in \text{dom } g$, then $\pi_i f^{\circ}A \subseteq (\text{commute}(f))(i)^{\circ}A$.
- (8) For all sets X, Y and for every function f such that rng $f \subseteq Y^X$ and for all sets i, A such that $i \in X$ holds $(\operatorname{commute}(f))(i)^{\circ}A = \pi_i f^{\circ}A$.
- (9) For every function f and for all sets i, A such that $[:A, \{i\}:] \subseteq \text{dom } f$ holds $\pi_i(\text{curry } f)^{\circ}A = f^{\circ}[:A, \{i\}:]$.

Let *X* be a set and let *Y* be a non empty functional set. Note that every function from *X* into *Y* is function yielding.

Let T be a constituted functions 1-sorted structure. One can verify that the carrier of T is functional.

Let X be a set and let L be a non empty relational structure. Note that L^X is constituted functions. Let us note that there exists a lattice which is constituted functions, complete, and strict and there exists a 1-sorted structure which is constituted functions and non empty.

Let T be a constituted functions non empty relational structure. Note that every non empty relational substructure of T is constituted functions.

We now state four propositions:

- (10) Let S, T be complete lattices, f be an idempotent map from T into T, and h be a map from S into Im f. Then $f \cdot h = h$.
- (11) Let S be a non empty relational structure and T, T_1 be non empty relational structures. Suppose T is a relational substructure of T_1 . Let f be a map from S into T and f_1 be a map from S into T_1 . If f is monotone and $f = f_1$, then f_1 is monotone.
- (12) Let S be a non empty relational structure and T, T_1 be non empty relational structures. Suppose T is a full relational substructure of T_1 . Let f be a map from S into T and f_1 be a map from S into T_1 . If f_1 is monotone and $f = f_1$, then f is monotone.
- (13) For every set X and for every subset V of X holds $(\chi_{V,X})^{-1}(\{1\}) = V$ and $(\chi_{V,X})^{-1}(\{0\}) = X \setminus V$.

2. Maps of Power Posets

Let X be a non empty set, let T be a non empty relational structure, let f be an element of T^X , and let x be an element of X. Then f(x) is an element of T.

Next we state several propositions:

(14) Let X be a non empty set, T be a non empty relational structure, and f, g be elements of T^X . Then $f \le g$ if and only if for every element x of X holds $f(x) \le g(x)$.

- (15) Let X be a set and L, S be non empty relational structures. Suppose the relational structure of L = the relational structure of S. Then $L^X = S^X$.
- (16) Let S_1 , S_2 , T_1 , T_2 be non empty topological spaces. Suppose that
 - (i) the topological structure of S_1 = the topological structure of S_2 , and
- (ii) the topological structure of T_1 = the topological structure of T_2 . Then $[S_1 \to T_1] = [S_2 \to T_2]$.
- (17) Let X be a set. Then there exists a map f from 2_{\subseteq}^X into $(2_{\subseteq}^1)^X$ such that f is isomorphic and for every subset Y of X holds $f(Y) = \chi_{Y,X}$.
- (18) For every set *X* holds 2^X_{\subset} and $(2^1_{\subset})^X$ are isomorphic.
- (19) Let X, Y be non empty sets, T be a non empty poset, S_1 be a full non empty relational substructure of $(T^X)^Y$, S_2 be a full non empty relational substructure of $(T^Y)^X$, and F be a map from S_1 into S_2 . If F is commuting, then F is monotone.
- (20) Let X, Y be non empty sets, T be a non empty poset, S_1 be a full non empty relational substructure of $(T^Y)^X$, S_2 be a full non empty relational substructure of $T^{[X,Y]}$, and F be a map from S_1 into S_2 . If F is uncurrying, then F is monotone.
- (21) Let X, Y be non empty sets, T be a non empty poset, S_1 be a full non empty relational substructure of $(T^Y)^X$, S_2 be a full non empty relational substructure of $T^{[X,Y]}$, and F be a map from S_2 into S_1 . If F is currying, then F is monotone.

3. Posets of Directed Suprema Preserving Maps

Let S be a non empty relational structure and let T be a non empty reflexive antisymmetric relational structure. The functor UPS(S,T) yields a strict relational structure and is defined by the conditions (Def. 4).

- (Def. 4)(i) UPS(S,T) is a full relational substructure of $T^{\text{the carrier of } S}$, and
 - (ii) for every set x holds $x \in$ the carrier of UPS(S,T) iff x is a directed-sups-preserving map from S into T.

Let S be a non empty relational structure and let T be a non empty reflexive antisymmetric relational structure. One can check that UPS(S,T) is non empty, reflexive, antisymmetric, and constituted functions.

Let S be a non empty relational structure and let T be a non empty poset. Note that UPS(S,T) is transitive.

We now state the proposition

(22) Let S be a non empty relational structure and T be a non empty reflexive antisymmetric relational structure. Then the carrier of $UPS(S,T) \subseteq (\text{the carrier of } T)^{\text{the carrier of } S}$.

Let S be a non empty relational structure, let T be a non empty reflexive antisymmetric relational structure, let f be an element of UPS(S,T), and let s be an element of S. Then f(s) is an element of T

One can prove the following propositions:

- (23) Let S be a non empty relational structure, T be a non empty reflexive antisymmetric relational structure, and f, g be elements of UPS(S,T). Then $f \le g$ if and only if for every element s of S holds $f(s) \le g(s)$.
- (24) For all complete Scott top-lattices S, T holds UPS(S,T) = SCMaps(S,T).

- (25) Let S, S' be non empty relational structures and T, T' be non empty reflexive antisymmetric relational structures. Suppose that
 - (i) the relational structure of S = the relational structure of S', and
- (ii) the relational structure of T = the relational structure of T'. Then UPS(S,T) = UPS(S',T').
- Let S, T be complete lattices. Note that UPS(S,T) is complete. One can prove the following two propositions:
- (26) Let S, T be complete lattices. Then UPS(S,T) is a sups-inheriting relational substructure of T^{the carrier of S}.
- (27) For all complete lattices S, T and for every subset A of UPS(S,T) holds sup $A = \bigsqcup_{(T)$ the carrier of $S \setminus A$.
- Let S_1 , S_2 , T_1 , T_2 be non empty reflexive antisymmetric relational structures and let f be a map from S_1 into S_2 . Let us assume that f is directed-sups-preserving. Let g be a map from T_1 into T_2 . Let us assume that g is directed-sups-preserving. The functor UPS(f,g) yields a map from $UPS(S_2,T_1)$ into $UPS(S_1,T_2)$ and is defined by:
- (Def. 5) For every directed-sups-preserving map h from S_2 into T_1 holds $(\text{UPS}(f,g))(h) = g \cdot h \cdot f$. One can prove the following propositions:
 - (28) Let S_1 , S_2 , S_3 , T_1 , T_2 , T_3 be non empty posets, f_1 be a directed-sups-preserving map from S_2 into S_3 , f_2 be a directed-sups-preserving map from S_1 into S_2 , S_1 be a directed-sups-preserving map from S_2 into S_3 , S_4 be a directed-sups-preserving map from S_4 into S_4 into S_5 into S_5 into S_6 into S_7 into S
 - (29) For all non empty reflexive antisymmetric relational structures S, T holds UPS(id_S , id_T) = $id_{UPS(S,T)}$.
 - (30) Let S_1 , S_2 , T_1 , T_2 be complete lattices, f be a directed-sups-preserving map from S_1 into S_2 , and g be a directed-sups-preserving map from T_1 into T_2 . Then UPS(f,g) is directed-sups-preserving.
 - (31) Ω (the Sierpiński space) is Scott.
 - (32) For every complete Scott top-lattice S holds $[S \to \text{the Sierpiński space}] = \text{UPS}(S, 2^1_{\subset})$.
 - (33) Let S be a complete lattice. Then there exists a map F from UPS $(S, 2^1_{\subseteq})$ into $\langle \sigma(S), \subseteq \rangle$ such that F is isomorphic and for every directed-sups-preserving map f from S into 2^1_{\subseteq} holds $F(f) = f^{-1}(\{1\})$.
 - (34) For every complete lattice *S* holds UPS($S, 2_{\subset}^1$) and $\langle \sigma(S), \subseteq \rangle$ are isomorphic.
 - (35) Let S_1 , S_2 , T_1 , T_2 be complete lattices, f be a map from S_1 into S_2 , and g be a map from T_1 into T_2 . If f is isomorphic and g is isomorphic, then UPS(f,g) is isomorphic.
 - (36) Let S_1 , S_2 , T_1 , T_2 be complete lattices. Suppose S_1 and S_2 are isomorphic and T_1 and T_2 are isomorphic. Then UPS (S_2, T_1) and UPS (S_1, T_2) are isomorphic.
 - (37) Let S, T be complete lattices and f be a directed-sups-preserving projection map from T into T. Then $\text{Im UPS}(\text{id}_S, f) = \text{UPS}(S, \text{Im } f)$.
 - (38) Let X be a non empty set, S, T be non empty posets, f be a directed-sups-preserving map from S into T^X , and i be an element of X. Then $(\operatorname{commute}(f))(i)$ is a directed-sups-preserving map from S into T.
 - (39) Let X be a non empty set, S, T be non empty posets, and f be a directed-sups-preserving map from S into T^X . Then commute(f) is a function from X into the carrier of UPS(S, T).

- (40) Let X be a non empty set, S, T be non empty posets, and f be a function from X into the carrier of UPS(S,T). Then commute(f) is a directed-sups-preserving map from S into T^X .
- (41) For every non empty set X and for all non empty posets S, T holds there exists a map from UPS (S, T^X) into UPS $(S, T)^X$ which is commuting and isomorphic.
- (42) For every non empty set X and for all non empty posets S, T holds $UPS(S,T^X)$ and $(UPS(S,T))^X$ are isomorphic.
- (43) For all continuous complete lattices S, T holds UPS(S, T) is continuous.
- (44) For all algebraic complete lattices S, T holds UPS(S,T) is algebraic.
- (45) Let R, S, T be complete lattices and f be a directed-sups-preserving map from R into UPS(S,T). Then uncurry f is a directed-sups-preserving map from [:R,S:] into T.
- (46) Let R, S, T be complete lattices and f be a directed-sups-preserving map from [:R,S:] into T. Then curry f is a directed-sups-preserving map from R into UPS(S,T).
- (47) For all complete lattices R, S, T holds there exists a map from UPS(R, UPS(S, T)) into UPS([:R, S:], T) which is uncurrying and isomorphic.

REFERENCES

- Grzegorz Bancerek. Curried and uncurried functions. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/funct_5.html.
- [2] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Quantales. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/quantal1.html.
- [5] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [7] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [8] Grzegorz Bancerek. Continuous lattices of maps between T₀ spaces. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/JFM/Voll1/waybel26.html.
- [9] Czesław Byliński. Basic functions and operations on functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/funct_3.html.
- [10] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [11] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html.
- [12] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [13] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc 1.html.
- [14] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/funct_4.html.
- [15] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [16] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [17] Adam Grabowski. Scott-continuous functions. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel17.html.
- [18] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [19] Jarosław Gryko. Injective spaces. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel18.html.

- [20] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [21] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [22] Artur Korniłowicz and Jarosław Gryko. Injective spaces. Part II. Journal of Formalized Mathematics, 11, 1999. http://mizar.org/ JFM/Vol11/waybe125.html.
- [23] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vo15/pralq_1.html.
- [24] Beata Madras. Products of many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/pralg_ 2.html.
- [25] Robert Milewski. Algebraic lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_8.html.
- [26] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1. html
- [27] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [28] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [29] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/mcart 1.html.
- [30] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.
- [31] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [32] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybel11.html.
- [33] Wojciech A. Trybulec. Partially ordered sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/orders_
- [34] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [35] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [36] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received November 26, 1999

Published January 2, 2004