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The articles([28],[[13],[34],.[30],.129],135]/110]/ [12][19] [14][11]12] 123][131] [4][124] L 127],
[26], (111, [33], (31, [B], [6], [18], [36], [15], [20], (7], [25], [21], [32], [11], [19], [22], and([B]
provide the notation and terminology for this paper.

1. CURRYING, UNCURRYING AND COMMUTING FUNCTIONS

Let F be a function. We say th&t is uncurrying if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For every sex such thax € domF holdsx is a function yielding function, and
(i) for every functionf such thatf € domF holdsF(f) = uncurryf.

We say thaf is currying if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) For every sex such thatx € domF holdsx is a function andt (x) is a binary relation,

and
(i) for every functionf such thatf € domF holdsF(f) = curryf.

We say that is commuting if and only if the conditions (Def. 3) are satisfied.

(Def. 3)()) For every sex such thak € domF holdsx is a function yielding function, and
(i) for every functionf such thatf € domF holdsF (f) = commutéf).

Let us observe that every function which is empty is also uncurrying, currying, and commuting.
Let us note that there exists a function which is uncurrying, currying, and commuting.

Let F be an uncurrying function and 12t be a set. One can check thatX is uncurrying.

Let F be a currying function and léf be a set. Note tha&t [ X is currying.

Next we state two propositions:
(1) LetX,Y,Z, D be sets. Suppos2 C (Z¥)X. Then there exists a many sorted Eehdexed
by D such thaf is uncurrying and rng C zZF%Y 1.

(2) LetX,Y,Z, D be sets. Suppos2C XY, Then there exists a many sorted Béhdexed
by D such thaf is currying and if ifY = 0, thenX = 0, then rngF C (Z")*.
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Let X, Y, Z be sets. One can verify that there exists a many sorted set index& Fywhich
is uncurrying and there exists a many sorted set indexétf by ! which is currying.
The following propositions are true:

(3) LetA, B be non empty set§; be a set, and, g be commuting functions. If dorhC (CB)A
and rngf C domg, theng- f = idgoms-

(4) LetB be a non empty se#\, C be sets,f be an uncurrying function, argibe a currying
function. If domf C (CB)A and rngf C domg, theng- f = idgomf-

(5) LetA, B, C be setsf be a currying function, and be an uncurrying function. If dorhC
CtABI and rngf C domg, theng- f = idgomf.

(6) For every function yielding functiof and for all sets, A such thai € domcommutéf)
holds(commuté f))(i)°A C 15 f°A.

(7) Letf be a function yielding function and A be sets. If for every functiog such that
g € f°Aholdsi € domg, thent f°A C (commutéf))(i)°A.

(8) For all setX, Y and for every functiorf such that rnd C Y* and for all sets, A such that
i € X holds(commutéf))(i)°A=T5f°A.

(9) For every functiorf and for all sets, Asuch thaf A, {i}] C domf holdst(curryf)°A=
foLA {i}].

Let X be a set and let be a non empty functional set. Note that every function fdinto Y
is function yielding.

Let T be a constituted functions 1-sorted structure. One can verify that the carrierisof
functional.

Let X be a set and ldt be a non empty relational structure. Note th&is constituted functions.

Let us note that there exists a lattice which is constituted functions, complete, and strict and
there exists a 1-sorted structure which is constituted functions and non empty.

Let T be a constituted functions non empty relational structure. Note that every non empty
relational substructure df is constituted functions.

We now state four propositions:

(10) LetS T be complete latticed, be an idempotent map frominto T, andh be a map from
Sinto Imf. Thenf-h=h.

(11) LetSbe a non empty relational structure and T, be non empty relational structures.
Suppose€T is a relational substructure @f. Let f be a map fron8into T and f; be a map
from Sinto T;. If f is monotone and = f;, thenf; is monotone.

(12) LetShe a non empty relational structure andT; be non empty relational structures.
SupposeT is a full relational substructure @;. Let f be a map fronSinto T and f; be a
map fromSinto Ty. If f; is monotone and = f1, thenf is monotone.

(13) For every seX and for every subs&t of X holds(Xv.x)~1({1}) =V and(Xv.x)"1({0}) =
X\V.

2. MAPS OFPOWER POSETS

Let X be a non empty set, 1t be a non empty relational structure, febe an element of X, and
letx be an element oX. Thenf(x) is an element of .
Next we state several propositions:

(14) LetX be a non empty sel, be a non empty relational structure, ahdy be elements of
TX. Thenf < gif and only if for every element of X holds f (x) < g(x).
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(15) LetX be a set antl, She non empty relational structures. Suppose the relational structure
of L = the relational structure & ThenL* = S¥.

(16) LetS, S, T1, T2 be non empty topological spaces. Suppose that
(i) the topological structure d¥ = the topological structure &, and
(i) the topological structure of; = the topological structure .
Then[S; — Th] =[S — T2l

(17) LetX be a set. Then there exists a miaftom 2¥ into (2% ) such thatf is isomorphic and
for every subseY of X holdsf(Y) = Xy x.

(18) For every seX holds 2 and(2%)* are isomorphic.

(19) LetX, Y be non empty sets be a non empty posef be a full non empty relational
substructure of TX)Y, S be a full non empty relational substructure(@)*, andF be a
map from$; into S. If F is commuting, theifr is monotone.

(20) LetX,Y be non empty sets[ be a non empty pose§ be a full non empty relational
substructure of TY)X, S be a full non empty relational substructure™*:Y?, andF be a
map from$, into $. If F is uncurrying, ther is monotone.

(21) LetX,Y be non empty sets be a non empty pose§ be a full non empty relational
substructure of TY)X, S be a full non empty relational substructure™®-Y, andF be a
map fromS; into S;. If F is currying, therf is monotone.

3. POSETS OFDIRECTED SUPREMA PRESERVINGMAPS

Let Sbe a non empty relational structure andTidie a non empty reflexive antisymmetric relational

structure. The functor URS, T) yields a strict relational structure and is defined by the conditions
(Def. 4).

(Def. 4)(iy UPSST) is a full relational substructure gfthe camer ofS gnd

(i) for every setx holdsx € the carrier of UPES T) iff x is a directed-sups-preserving map
fromSinto T.

Let Sbe a non empty relational structure and Tebe a non empty reflexive antisymmetric
relational structure. One can check that UBS) is non empty, reflexive, antisymmetric, and
constituted functions.

Let Sbe a non empty relational structure andTebe a non empty poset. Note that UBS)
is transitive.

We now state the proposition

(22) LetSbe a non empty relational structure aficbe a non empty reflexive antisymmetric
relational structure. Then the carrier of URST) C (the carrier ofT )the carier ofS,

Let Sbe a non empty relational structure, Tebe a non empty reflexive antisymmetric relational

structure, letf be an element of URS, T), and letsbe an element d& Thenf(s) is an element of
T.

One can prove the following propositions:

(23) LetSbe a non empty relational structurg,be a non empty reflexive antisymmetric re-
lational structure, and, g be elements of URS, T). Thenf < g if and only if for every
elements of Sholdsf(s) < g(s).

(24) For all complete Scott top-lattic€&T holds UP$S T) = SCMap$S,T).
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(25) LetS, S be non empty relational structures ahdl’ be non empty reflexive antisymmetric
relational structures. Suppose that

(i) the relational structure dd= the relational structure &, and
(i) the relational structure of = the relational structure &f’.
Then UP$S T) =UPSS,T).

LetS T be complete lattices. Note that UREST ) is complete.
One can prove the following two propositions:

(26) LetS T be complete lattices. Then UPST) is a sups-inheriting relational substructure
of Tthe carrier ofS_

(27) For all complete latticesS T and for every subsef of UPSST) holds sup =
|_|(Tthe carrier 0fS> A

Let S, S, Ti, T2 be non empty reflexive antisymmetric relational structures anfl et a map
from S into S. Let us assume thdt is directed-sups-preserving. Lgtbe a map fromrl; into
T,. Let us assume thaf is directed-sups-preserving. The functor UPS) yields a map from
UPS$;,Ty) into UPS S, To) and is defined by:

(Def. 5) For every directed-sups-preserving mhdpom S into T; holds(UPS(f,g))(h) =g-h- f.
One can prove the following propositions:

(28) LetS, S, S, T, T2, T3 be non empty posetd; be a directed-sups-preserving map from
S into S5, fz be a directed-sups-preserving map fr@ninto S, g1 be a directed-sups-
preserving map fronT; into T,, andg, be a directed-sups-preserving map fréginto Ts.
Then UP$f2,02) - UPS(f1,01) = UPS(f1- f2,02-01).

(29) For all non empty reflexive antisymmetric relational struct&es holds UPSids,idt) =
idupssT)-

(30) LetS, S, T1, T2 be complete latticed, be a directed-sups-preserving map fréninto S,
andg be a directed-sups-preserving map frdminto T,. Then UP%f,g) is directed-sups-
preserving.

(31) Q(the Sierphski space) is Scott.
(32) For every complete Scott top-lattiSéolds[S— the Sierpaski space= UPSS Zlg).

(33) LetSbe a complete lattice. Then there exists a rraffom UPSS, 2&) into (a(S), <)
such thaf is isomorphic and for every directed-sups-preserving fapm Sinto 21g holds

F(f)=f71({1}).
(34) For every complete latticBholds UP$S, 2&) and(a(S), C) are isomorphic.

(35) LetS, S, Ty, T2 be complete latticed, be a map frong, into S, andg be a map fronT;
into To. If f is isomorphic andy is isomorphic, then URS, g) is isomorphic.

(36) LetS, S, T1, T2 be complete lattices. SuppoSgandS, are isomorphic and; andT; are
isomorphic. Then UP&, T1) and UP$S;, T,) are isomorphic.

(37) LetS T be complete lattices anflbe a directed-sups-preserving projection map fiom
intoT. Then IMUPSids, f) = UPSSImf).

(38) LetX be anon empty se§ T be non empty posetd, be a directed-sups-preserving map
from Sinto TX, andi be an element of. Then(commutéf))(i) is a directed-sups-preserving
map fromSinto T.

(39) LetX be a non empty se§, T be non empty posets, arfdbe a directed-sups-preserving
map fromSinto TX. Then commutgf ) is a function fromX into the carrier of UPSS T).
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(40) LetX be a non empty se§, T be non empty posets, arfdbe a function fromX into the

carrier of UP$S T). Then commutgf) is a directed-sups-preserving map fr&imto TX.

(41) For every non empty s&tand for all non empty pose& T holds there exists a map from

UPSS TX) into UPSS, T)X which is commuting and isomorphic.

(42) For every non empty sé and for all non empty posetS, T holds UP$S T*) and

(UPSS T))X are isomorphic.

(43) For all continuous complete lattic8sT holds UP$S T) is continuous.

(44) For all algebraic complete lattic&sT holds UP$S T) is algebraic.

(45) LetR, S T be complete lattices anfl be a directed-sups-preserving map fréhinto

UPSS T). Then uncurny is a directed-sups-preserving map froR S]into T.

(46) LetR, S T be complete lattices antlbe a directed-sups-preserving map frpRy S into

T. Then curryf is a directed-sups-preserving map fréhmto UPSS T).

(47) For all complete latticeR, S T holds there exists a map from UFSUPSS T)) into
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UPS[R, S],T) which is uncurrying and isomorphic.
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