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The articles [28], [13], [34], [30], [29], [35], [10], [12], [9], [14], [1], [2], [23], [31], [4], [24], [27],
[26], [11], [33], [3], [5], [6], [18], [36], [15], [20], [7], [25], [21], [32], [17], [19], [22], and [8]
provide the notation and terminology for this paper.

1. CURRYING, UNCURRYING AND COMMUTING FUNCTIONS

Let F be a function. We say thatF is uncurrying if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For every setx such thatx∈ domF holdsx is a function yielding function, and

(ii) for every function f such thatf ∈ domF holdsF( f ) = uncurryf .

We say thatF is currying if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) For every setx such thatx∈ domF holdsx is a function andπ1(x) is a binary relation,
and

(ii) for every function f such thatf ∈ domF holdsF( f ) = curry f .

We say thatF is commuting if and only if the conditions (Def. 3) are satisfied.

(Def. 3)(i) For every setx such thatx∈ domF holdsx is a function yielding function, and

(ii) for every function f such thatf ∈ domF holdsF( f ) = commute( f ).

Let us observe that every function which is empty is also uncurrying, currying, and commuting.
Let us note that there exists a function which is uncurrying, currying, and commuting.
Let F be an uncurrying function and letX be a set. One can check thatF�X is uncurrying.
Let F be a currying function and letX be a set. Note thatF�X is currying.
Next we state two propositions:

(1) LetX, Y, Z, D be sets. SupposeD⊆ (ZY)X. Then there exists a many sorted setF indexed
by D such thatF is uncurrying and rngF ⊆ Z[:X,Y :].

(2) LetX, Y, Z, D be sets. SupposeD⊆ Z[:X,Y :]. Then there exists a many sorted setF indexed
by D such thatF is currying and if ifY = /0, thenX = /0, then rngF ⊆ (ZY)X.
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Let X, Y, Z be sets. One can verify that there exists a many sorted set indexed by(ZY)X which
is uncurrying and there exists a many sorted set indexed byZ[:X,Y :] which is currying.

The following propositions are true:

(3) LetA, B be non empty sets,C be a set, andf , g be commuting functions. If domf ⊆ (CB)A

and rngf ⊆ domg, theng· f = iddom f .

(4) Let B be a non empty set,A, C be sets,f be an uncurrying function, andg be a currying
function. If domf ⊆ (CB)A and rngf ⊆ domg, theng· f = iddom f .

(5) Let A, B, C be sets,f be a currying function, andg be an uncurrying function. If domf ⊆
C[:A,B:] and rngf ⊆ domg, theng· f = iddom f .

(6) For every function yielding functionf and for all setsi, A such thati ∈ domcommute( f )
holds(commute( f ))(i)◦A⊆ πi f ◦A.

(7) Let f be a function yielding function andi, A be sets. If for every functiong such that
g∈ f ◦A holdsi ∈ domg, thenπi f ◦A⊆ (commute( f ))(i)◦A.

(8) For all setsX, Y and for every functionf such that rngf ⊆YX and for all setsi, A such that
i ∈ X holds(commute( f ))(i)◦A = πi f ◦A.

(9) For every functionf and for all setsi, A such that[:A, {i} :]⊆ dom f holdsπi(curry f )◦A =
f ◦[:A, {i} :].

Let X be a set and letY be a non empty functional set. Note that every function fromX into Y
is function yielding.

Let T be a constituted functions 1-sorted structure. One can verify that the carrier ofT is
functional.

Let X be a set and letL be a non empty relational structure. Note thatLX is constituted functions.
Let us note that there exists a lattice which is constituted functions, complete, and strict and

there exists a 1-sorted structure which is constituted functions and non empty.
Let T be a constituted functions non empty relational structure. Note that every non empty

relational substructure ofT is constituted functions.
We now state four propositions:

(10) LetS, T be complete lattices,f be an idempotent map fromT into T, andh be a map from
S into Im f . Then f ·h = h.

(11) Let S be a non empty relational structure andT, T1 be non empty relational structures.
SupposeT is a relational substructure ofT1. Let f be a map fromS into T and f1 be a map
from S into T1. If f is monotone andf = f1, then f1 is monotone.

(12) Let S be a non empty relational structure andT, T1 be non empty relational structures.
SupposeT is a full relational substructure ofT1. Let f be a map fromS into T and f1 be a
map fromS into T1. If f1 is monotone andf = f1, then f is monotone.

(13) For every setX and for every subsetV of X holds(χV,X)−1({1}) =V and(χV,X)−1({0}) =
X \V.

2. MAPS OFPOWER POSETS

Let X be a non empty set, letT be a non empty relational structure, letf be an element ofTX, and
let x be an element ofX. Then f (x) is an element ofT.

Next we state several propositions:

(14) LetX be a non empty set,T be a non empty relational structure, andf , g be elements of
TX. Then f ≤ g if and only if for every elementx of X holds f (x)≤ g(x).
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(15) LetX be a set andL, Sbe non empty relational structures. Suppose the relational structure
of L = the relational structure ofS. ThenLX = SX.

(16) LetS1, S2, T1, T2 be non empty topological spaces. Suppose that

(i) the topological structure ofS1 = the topological structure ofS2, and

(ii) the topological structure ofT1 = the topological structure ofT2.

Then[S1 → T1] = [S2 → T2].

(17) LetX be a set. Then there exists a mapf from 2X
⊆ into (21

⊆)X such thatf is isomorphic and
for every subsetY of X holds f (Y) = χY,X.

(18) For every setX holds 2X⊆ and(21
⊆)X are isomorphic.

(19) Let X, Y be non empty sets,T be a non empty poset,S1 be a full non empty relational
substructure of(TX)Y, S2 be a full non empty relational substructure of(TY)X, andF be a
map fromS1 into S2. If F is commuting, thenF is monotone.

(20) Let X, Y be non empty sets,T be a non empty poset,S1 be a full non empty relational
substructure of(TY)X, S2 be a full non empty relational substructure ofT [:X,Y :], andF be a
map fromS1 into S2. If F is uncurrying, thenF is monotone.

(21) Let X, Y be non empty sets,T be a non empty poset,S1 be a full non empty relational
substructure of(TY)X, S2 be a full non empty relational substructure ofT [:X,Y :], andF be a
map fromS2 into S1. If F is currying, thenF is monotone.

3. POSETS OFDIRECTED SUPREMA PRESERVINGMAPS

Let Sbe a non empty relational structure and letT be a non empty reflexive antisymmetric relational
structure. The functor UPS(S,T) yields a strict relational structure and is defined by the conditions
(Def. 4).

(Def. 4)(i) UPS(S,T) is a full relational substructure ofT the carrier ofS, and

(ii) for every setx holdsx∈ the carrier of UPS(S,T) iff x is a directed-sups-preserving map
from S into T.

Let S be a non empty relational structure and letT be a non empty reflexive antisymmetric
relational structure. One can check that UPS(S,T) is non empty, reflexive, antisymmetric, and
constituted functions.

Let Sbe a non empty relational structure and letT be a non empty poset. Note that UPS(S,T)
is transitive.

We now state the proposition

(22) Let S be a non empty relational structure andT be a non empty reflexive antisymmetric
relational structure. Then the carrier of UPS(S,T)⊆ (the carrier ofT)the carrier ofS.

Let Sbe a non empty relational structure, letT be a non empty reflexive antisymmetric relational
structure, letf be an element of UPS(S,T), and letsbe an element ofS. Then f (s) is an element of
T.

One can prove the following propositions:

(23) Let S be a non empty relational structure,T be a non empty reflexive antisymmetric re-
lational structure, andf , g be elements of UPS(S,T). Then f ≤ g if and only if for every
elements of Sholds f (s)≤ g(s).

(24) For all complete Scott top-latticesS, T holds UPS(S,T) = SCMaps(S,T).
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(25) LetS, S′ be non empty relational structures andT, T ′ be non empty reflexive antisymmetric
relational structures. Suppose that

(i) the relational structure ofS= the relational structure ofS′, and

(ii) the relational structure ofT = the relational structure ofT ′.

Then UPS(S,T) = UPS(S′,T ′).

Let S, T be complete lattices. Note that UPS(S,T) is complete.
One can prove the following two propositions:

(26) LetS, T be complete lattices. Then UPS(S,T) is a sups-inheriting relational substructure
of T the carrier ofS.

(27) For all complete latticesS, T and for every subsetA of UPS(S,T) holds supA =⊔
(T the carrier ofS) A.

Let S1, S2, T1, T2 be non empty reflexive antisymmetric relational structures and letf be a map
from S1 into S2. Let us assume thatf is directed-sups-preserving. Letg be a map fromT1 into
T2. Let us assume thatg is directed-sups-preserving. The functor UPS( f ,g) yields a map from
UPS(S2,T1) into UPS(S1,T2) and is defined by:

(Def. 5) For every directed-sups-preserving maph from S2 into T1 holds(UPS( f ,g))(h) = g·h· f .

One can prove the following propositions:

(28) LetS1, S2, S3, T1, T2, T3 be non empty posets,f1 be a directed-sups-preserving map from
S2 into S3, f2 be a directed-sups-preserving map fromS1 into S2, g1 be a directed-sups-
preserving map fromT1 into T2, andg2 be a directed-sups-preserving map fromT2 into T3.
Then UPS( f2,g2) ·UPS( f1,g1) = UPS( f1 · f2,g2 ·g1).

(29) For all non empty reflexive antisymmetric relational structuresS, T holds UPS(idS, idT) =
idUPS(S,T).

(30) LetS1, S2, T1, T2 be complete lattices,f be a directed-sups-preserving map fromS1 into S2,
andg be a directed-sups-preserving map fromT1 into T2. Then UPS( f ,g) is directed-sups-
preserving.

(31) Ω(the Sierpínski space) is Scott.

(32) For every complete Scott top-latticeSholds[S→ the Sierpínski space] = UPS(S,21
⊆).

(33) Let S be a complete lattice. Then there exists a mapF from UPS(S,21
⊆) into 〈σ(S),⊆〉

such thatF is isomorphic and for every directed-sups-preserving mapf from S into 21
⊆ holds

F( f ) = f−1({1}).

(34) For every complete latticeSholds UPS(S,21
⊆) and〈σ(S),⊆〉 are isomorphic.

(35) LetS1, S2, T1, T2 be complete lattices,f be a map fromS1 into S2, andg be a map fromT1

into T2. If f is isomorphic andg is isomorphic, then UPS( f ,g) is isomorphic.

(36) LetS1, S2, T1, T2 be complete lattices. SupposeS1 andS2 are isomorphic andT1 andT2 are
isomorphic. Then UPS(S2,T1) and UPS(S1,T2) are isomorphic.

(37) LetS, T be complete lattices andf be a directed-sups-preserving projection map fromT
into T. Then ImUPS(idS, f ) = UPS(S, Im f ).

(38) LetX be a non empty set,S, T be non empty posets,f be a directed-sups-preserving map
from Sinto TX, andi be an element ofX. Then(commute( f ))(i) is a directed-sups-preserving
map fromS into T.

(39) LetX be a non empty set,S, T be non empty posets, andf be a directed-sups-preserving
map fromS into TX. Then commute( f ) is a function fromX into the carrier of UPS(S,T).
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(40) LetX be a non empty set,S, T be non empty posets, andf be a function fromX into the
carrier of UPS(S,T). Then commute( f ) is a directed-sups-preserving map fromS into TX.

(41) For every non empty setX and for all non empty posetsS, T holds there exists a map from
UPS(S,TX) into UPS(S,T)X which is commuting and isomorphic.

(42) For every non empty setX and for all non empty posetsS, T holds UPS(S,TX) and
(UPS(S,T))X are isomorphic.

(43) For all continuous complete latticesS, T holds UPS(S,T) is continuous.

(44) For all algebraic complete latticesS, T holds UPS(S,T) is algebraic.

(45) Let R, S, T be complete lattices andf be a directed-sups-preserving map fromR into
UPS(S,T). Then uncurryf is a directed-sups-preserving map from[:R, S:] into T.

(46) LetR, S, T be complete lattices andf be a directed-sups-preserving map from[:R, S:] into
T. Then curryf is a directed-sups-preserving map fromR into UPS(S,T).

(47) For all complete latticesR, S, T holds there exists a map from UPS(R,UPS(S,T)) into
UPS([:R, S:],T) which is uncurrying and isomorphic.
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