Bases of Continuous Lattices¹

Robert Milewski University of Białystok

Summary. The article is a Mizar formalization of [13, 168–169]. We show definition and fundamental theorems from theory of basis of continuous lattices.

MML Identifier: WAYBEL23.

WWW: http://mizar.org/JFM/Vol10/waybel23.html

The articles [19], [21], [16], [22], [8], [9], [10], [12], [2], [3], [1], [17], [20], [18], [4], [5], [14], [23], [6], [11], [7], and [15] provide the notation and terminology for this paper.

1. Preliminaries

The following proposition is true

(1) For every non empty poset *L* and for every element *x* of *L* holds compactbelow(x) = $\$ $x \cap$ the carrier of CompactSublatt(L).

Let *L* be a non empty reflexive transitive relational structure and let *X* be a subset of $\langle \mathrm{Ids}(L), \subseteq \rangle$. Then $\bigcup X$ is a subset of *L*.

Next we state a number of propositions:

- (2) For every non empty relational structure L and for all subsets X, Y of L such that $X \subseteq Y$ holds finsups $(X) \subseteq \text{finsups}(Y)$.
- (3) Let L be a non empty transitive relational structure, S be a sups-inheriting non empty full relational substructure of L, X be a subset of L, and Y be a subset of S. If X = Y, then finsups $(X) \subseteq \text{finsups}(Y)$.
- (4) Let L be a complete transitive antisymmetric non empty relational structure, S be a substinheriting non empty full relational substructure of L, X be a subset of X. If X = Y, then finsups(X) = finsups(X).
- (5) Let L be a complete sup-semilattice and S be a join-inheriting non empty full relational substructure of L. Suppose $\bot_L \in$ the carrier of S. Let X be a subset of L and Y be a subset of S. If X = Y, then finsups(Y) \subseteq finsups(X).
- (6) For every lower-bounded sup-semilattice L and for every subset X of $\langle Ids(L), \subseteq \rangle$ holds $\sup X = \bigcup finsups(\bigcup X)$.
- (7) For every reflexive transitive relational structure L and for every subset X of L holds $\downarrow \downarrow X = \downarrow X$.

1

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (8) For every reflexive transitive relational structure *L* and for every subset *X* of *L* holds $\uparrow \uparrow X = \uparrow X$.
- (9) For every non empty reflexive transitive relational structure L and for every element x of L holds $\downarrow \downarrow x = \downarrow x$.
- (10) For every non empty reflexive transitive relational structure *L* and for every element *x* of *L* holds $\uparrow \uparrow x = \uparrow x$.
- (11) Let *L* be a non empty relational structure, *S* be a non empty relational substructure of *L*, *X* be a subset of *L*, and *Y* be a subset of *S*. If X = Y, then $\downarrow Y \subseteq \downarrow X$.
- (12) Let *L* be a non empty relational structure, *S* be a non empty relational substructure of *L*, *X* be a subset of *L*, and *Y* be a subset of *S*. If X = Y, then $\uparrow Y \subseteq \uparrow X$.
- (13) Let *L* be a non empty relational structure, *S* be a non empty relational substructure of *L*, *x* be an element of *L*, and *y* be an element of *S*. If x = y, then $\downarrow y \subseteq \downarrow x$.
- (14) Let *L* be a non empty relational structure, *S* be a non empty relational substructure of *L*, *x* be an element of *L*, and *y* be an element of *S*. If x = y, then $\uparrow y \subseteq \uparrow x$.

2. RELATIONAL SUBSETS

Let *L* be a non empty relational structure and let *S* be a subset of *L*. We say that *S* is meet-closed if and only if:

(Def. 1) sub(S) is meet-inheriting.

Let *L* be a non empty relational structure and let *S* be a subset of *L*. We say that *S* is join-closed if and only if:

(Def. 2) sub(S) is join-inheriting.

Let L be a non empty relational structure and let S be a subset of L. We say that S is infs-closed if and only if:

(Def. 3) sub(S) is infs-inheriting.

Let *L* be a non empty relational structure and let *S* be a subset of *L*. We say that *S* is sups-closed if and only if:

(Def. 4) sub(S) is sups-inheriting.

Let L be a non empty relational structure. One can verify that every subset of L which is infsclosed is also meet-closed and every subset of L which is sups-closed is also join-closed.

Let L be a non empty relational structure. Observe that there exists a subset of L which is infs-closed, sups-closed, and non empty.

We now state a number of propositions:

- (15) Let L be a non empty relational structure and S be a subset of L. Then S is meet-closed if and only if for all elements x, y of L such that $x \in S$ and $y \in S$ and inf $\{x,y\}$ exists in L holds inf $\{x,y\} \in S$.
- (16) Let L be a non empty relational structure and S be a subset of L. Then S is join-closed if and only if for all elements x, y of L such that $x \in S$ and $y \in S$ and sup $\{x,y\}$ exists in L holds $\sup\{x,y\} \in S$.
- (17) Let L be an antisymmetric relational structure with g.l.b.'s and S be a subset of L. Then S is meet-closed if and only if for all elements x, y of L such that $x \in S$ and $y \in S$ holds $\inf\{x,y\} \in S$.

- (18) Let *L* be an antisymmetric relational structure with l.u.b.'s and *S* be a subset of *L*. Then *S* is join-closed if and only if for all elements x, y of L such that $x \in S$ and $y \in S$ holds $\sup\{x, y\} \in S$.
- (19) Let L be a non empty relational structure and S be a subset of L. Then S is infs-closed if and only if for every subset X of S such that inf X exists in L holds $\bigcap_L X \in S$.
- (20) Let L be a non empty relational structure and S be a subset of L. Then S is sups-closed if and only if for every subset X of S such that sup X exists in L holds $\bigsqcup_L X \in S$.
- (21) Let *L* be a non empty transitive relational structure, *S* be an infs-closed non empty subset of *L*, and *X* be a subset of *S*. If inf *X* exists in *L*, then inf *X* exists in sub(*S*) and $\bigcap_{\text{sub}(S)} X = \bigcap_{L} X$.
- (22) Let L be a non empty transitive relational structure, S be a sups-closed non empty subset of L, and X be a subset of S. If sup X exists in L, then sup X exists in sub(S) and $\bigsqcup_{\text{sub}(S)} X = \bigsqcup_{L} X$.
- (23) Let *L* be a non empty transitive relational structure, *S* be a meet-closed non empty subset of *L*, and *x*, *y* be elements of *S*. Suppose inf $\{x,y\}$ exists in *L*. Then inf $\{x,y\}$ exists in sub(*S*) and $\bigcap_{\text{sub}(S)} \{x,y\} = \bigcap_{L} \{x,y\}$.
- (24) Let *L* be a non empty transitive relational structure, *S* be a join-closed non empty subset of *L*, and *x*, *y* be elements of *S*. Suppose sup $\{x,y\}$ exists in *L*. Then sup $\{x,y\}$ exists in sub(*S*) and $\bigsqcup_{\text{sub}(S)} \{x,y\} = \bigsqcup_{L} \{x,y\}$.
- (25) Let L be an antisymmetric transitive relational structure with g.l.b.'s and S be a non empty meet-closed subset of L. Then sub(S) has g.l.b.'s.
- (26) Let L be an antisymmetric transitive relational structure with l.u.b.'s and S be a non empty join-closed subset of L. Then sub(S) has l.u.b.'s.

Let L be an antisymmetric transitive relational structure with g.l.b.'s and let S be a non empty meet-closed subset of L. One can verify that sub(S) has g.l.b.'s.

Let L be an antisymmetric transitive relational structure with l.u.b.'s and let S be a non empty join-closed subset of L. Observe that sub(S) has l.u.b.'s.

One can prove the following four propositions:

- (27) Let *L* be a complete transitive antisymmetric non empty relational structure, *S* be an infsclosed non empty subset of *L*, and *X* be a subset of *S*. Then $\bigcap_{\text{sub}(S)} X = \bigcap_{L} X$.
- (28) Let L be a complete transitive antisymmetric non empty relational structure, S be a supsclosed non empty subset of L, and X be a subset of S. Then $\bigsqcup_{\text{sub}(S)} X = \bigsqcup_{L} X$.
- (29) For every semilattice L holds every meet-closed subset of L is filtered.
- (30) For every sup-semilattice L holds every join-closed subset of L is directed.

Let L be a semilattice. One can check that every subset of L which is meet-closed is also filtered. Let L be a sup-semilattice. Note that every subset of L which is join-closed is also directed. We now state several propositions:

- (31) Let L be a semilattice and S be an upper non empty subset of L. Then S is a filter of L if and only if S is meet-closed.
- (32) Let *L* be a sup-semilattice and *S* be a lower non empty subset of *L*. Then *S* is an ideal of *L* if and only if *S* is join-closed.
- (33) For every non empty relational structure L and for all join-closed subsets S_1 , S_2 of L holds $S_1 \cap S_2$ is join-closed.
- (34) For every non empty relational structure L and for all meet-closed subsets S_1 , S_2 of L holds $S_1 \cap S_2$ is meet-closed.

- (35) For every sup-semilattice L and for every element x of L holds $\downarrow x$ is join-closed.
- (36) For every semilattice L and for every element x of L holds $\downarrow x$ is meet-closed.
- (37) For every sup-semilattice L and for every element x of L holds $\uparrow x$ is join-closed.
- (38) For every semilattice *L* and for every element *x* of *L* holds $\uparrow x$ is meet-closed.

Let *L* be a sup-semilattice and let *x* be an element of *L*. One can verify that $\downarrow x$ is join-closed and $\uparrow x$ is join-closed.

Let *L* be a semilattice and let *x* be an element of *L*. Observe that $\downarrow x$ is meet-closed and $\uparrow x$ is meet-closed.

We now state three propositions:

- (39) For every sup-semilattice L and for every element x of L holds $\downarrow x$ is join-closed.
- (40) For every semilattice L and for every element x of L holds $\downarrow x$ is meet-closed.
- (41) For every sup-semilattice L and for every element x of L holds $\uparrow x$ is join-closed.

Let *L* be a sup-semilattice and let *x* be an element of *L*. Observe that $\downarrow x$ is join-closed and $\uparrow x$ is join-closed.

Let L be a semilattice and let x be an element of L. One can check that $\downarrow x$ is meet-closed.

3. ABOUT BASES OF CONTINUOUS LATTICES

Let T be a topological structure. The functor weight T yielding a cardinal number is defined as follows:

(Def. 5) weight $T = \bigcap \{\overline{\overline{B}} : B \text{ ranges over bases of } T \}$.

Let T be a topological structure. We say that T is second-countable if and only if:

(Def. 6) weight $T \subseteq \omega$.

Let L be a continuous sup-semilattice. A subset of L is called a CLbasis of L if:

(Def. 7) It is join-closed and for every element x of L holds $x = \sup(\ x \cap it)$.

Let *L* be a non empty relational structure and let *S* be a subset of *L*. We say that *S* has bottom if and only if:

(Def. 8) $\perp_L \in S$.

Let *L* be a non empty relational structure and let *S* be a subset of *L*. We say that *S* has top if and only if:

(Def. 9) $\top_L \in S$.

Let L be a non empty relational structure. One can verify that every subset of L which has bottom is also non empty.

Let L be a non empty relational structure. Observe that every subset of L which has top is also non empty.

Let L be a non empty relational structure. One can verify that there exists a subset of L which has bottom and there exists a subset of L which has top.

Let L be a continuous sup-semilattice. Observe that there exists a CLbasis of L which has bottom and there exists a CLbasis of L which has top.

Next we state the proposition

(42) Let L be a lower-bounded antisymmetric non empty relational structure and S be a subset of L with bottom. Then sub(S) is lower-bounded.

Let L be a lower-bounded antisymmetric non empty relational structure and let S be a subset of L with bottom. Observe that sub(S) is lower-bounded.

Let L be a continuous sup-semilattice. Note that every CLbasis of L is join-closed.

One can verify that there exists a continuous lattice which is bounded and non trivial.

Let L be a lower-bounded non trivial continuous sup-semilattice. Note that every CL basis of L is non empty.

One can prove the following propositions:

- (43) For every sup-semilattice L holds the carrier of CompactSublatt(L) is a join-closed subset of L.
- (44) For every algebraic lower-bounded lattice L holds the carrier of CompactSublatt(L) is a CLbasis of L with bottom.
- (45) Let L be a continuous lower-bounded sup-semilattice. If the carrier of CompactSublatt(L) is a CLbasis of L, then L is algebraic.
- (46) Let *L* be a continuous lower-bounded lattice and *B* be a join-closed subset of *L*. Then *B* is a CLbasis of *L* if and only if for all elements x, y of *L* such that $y \not \le x$ there exists an element b of *L* such that $b \in B$ and $b \not \le x$ and $b \ll y$.
- (47) Let L be a continuous lower-bounded lattice and B be a join-closed subset of L. Suppose $\bot_L \in B$. Then B is a CLbasis of L if and only if for all elements x, y of L such that $x \ll y$ there exists an element b of L such that $b \in B$ and $x \le b$ and $b \ll y$.
- (48) Let L be a continuous lower-bounded lattice and B be a join-closed subset of L. Suppose $\bot_L \in B$. Then B is a CLbasis of L if and only if the following conditions are satisfied:
 - (i) the carrier of CompactSublatt(L) $\subseteq B$, and
- (ii) for all elements x, y of L such that $y \not \le x$ there exists an element b of L such that $b \in B$ and $b \not \le x$ and $b \le y$.
- (49) Let *L* be a continuous lower-bounded lattice and *B* be a join-closed subset of *L*. Suppose $\bot_L \in B$. Then *B* is a CLbasis of *L* if and only if for all elements *x*, *y* of *L* such that $y \not \le x$ there exists an element *b* of *L* such that $b \in B$ and $b \le x$ and $b \le y$.
- (50) Let L be a lower-bounded sup-semilattice and S be a non empty full relational substructure of L. Suppose $\bot_L \in$ the carrier of S and the carrier of S is a join-closed subset of L. Let X be an element of L. Then $\mbox{}\downarrow x \cap$ the carrier of S is an ideal of S.
- Let L be a non empty reflexive transitive relational structure and let S be a non empty full relational substructure of L. The functor supMapS yielding a map from $\langle \mathrm{Ids}(S), \subseteq \rangle$ into L is defined by:
- (Def. 10) For every ideal I of S holds (supMap S)(I) = $\bigsqcup_{I} I$.
 - Let L be a non empty reflexive transitive relational structure and let S be a non empty full relational substructure of L. The functor idsMap S yields a map from $\langle \mathrm{Ids}(S), \subseteq \rangle$ into $\langle \mathrm{Ids}(L), \subseteq \rangle$ and is defined as follows:
- (Def. 11) For every ideal I of S there exists a subset J of L such that I = J and $(idsMap S)(I) = \downarrow J$.
 - Let L be a reflexive relational structure and let B be a subset of L. Note that sub(B) is reflexive.
 - Let L be a transitive relational structure and let B be a subset of L. Note that sub(B) is transitive.
 - Let L be an antisymmetric relational structure and let B be a subset of L. Observe that sub(B) is antisymmetric.
 - Let *L* be a lower-bounded continuous sup-semilattice and let *B* be a CLbasis of *L* with bottom. The functor baseMap *B* yields a map from *L* into $\langle Ids(sub(B)), \subseteq \rangle$ and is defined as follows:
- (Def. 12) For every element x of L holds $(baseMap B)(x) = \downarrow x \cap B$.

One can prove the following propositions:

- (51) Let L be a non empty reflexive transitive relational structure and S be a non empty full relational substructure of L. Then dom supMap S = Ids(S) and rng supMap S is a subset of L.
- (52) Let L be a non empty reflexive transitive relational structure, S be a non empty full relational substructure of L, and x be a set. Then $x \in \text{dom supMap } S$ if and only if x is an ideal of S.
- (53) Let L be a non empty reflexive transitive relational structure and S be a non empty full relational substructure of L. Then domidsMap S = Ids(S) and rngidsMap S is a subset of Ids(L).
- (54) Let L be a non empty reflexive transitive relational structure, S be a non empty full relational substructure of L, and x be a set. Then $x \in \text{domidsMap } S$ if and only if x is an ideal of S.
- (55) Let L be a non empty reflexive transitive relational structure, S be a non empty full relational substructure of L, and x be a set. If $x \in \text{rngidsMap } S$, then x is an ideal of L.
- (56) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then dom baseMap B = the carrier of L and rng baseMap B is a subset of Ids(sub(B)).
- (57) Let L be a lower-bounded continuous sup-semilattice, B be a CLbasis of L with bottom, and x be a set. If $x \in \text{rng baseMap } B$, then x is an ideal of sub(B).
- (58) For every up-complete non empty poset L and for every non empty full relational substructure S of L holds supMap S is monotone.
- (59) Let L be a non empty reflexive transitive relational structure and S be a non empty full relational substructure of L. Then idsMap S is monotone.
- (60) For every lower-bounded continuous sup-semilattice L and for every CLbasis B of L with bottom holds baseMap B is monotone.

Let L be an up-complete non empty poset and let S be a non empty full relational substructure of L. One can verify that supMap S is monotone.

Let L be a non empty reflexive transitive relational structure and let S be a non empty full relational substructure of L. Note that idsMap S is monotone.

Let L be a lower-bounded continuous sup-semilattice and let B be a CL basis of L with bottom. One can check that baseMap B is monotone.

Next we state several propositions:

- (61) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then idsMapsub(B) is sups-preserving.
- (62) For every up-complete non empty poset L and for every non empty full relational substructure S of L holds supMap $S = \text{SupMap}(L) \cdot \text{idsMap } S$.
- (63) For every lower-bounded continuous sup-semilattice L and for every CLbasis B of L with bottom holds $\langle \sup Map \sup(B), \operatorname{baseMap} B \rangle$ is Galois.
- (64) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then supMap sub(B) is upper adjoint and baseMap B is lower adjoint.
- (65) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then rng supMap sub(B) = the carrier of L.
- (66) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then supMap sub(B) is infs-preserving and sups-preserving.
- (67) Let L be a lower-bounded continuous sup-semilattice and B be a CL basis of L with bottom. Then baseMap B is sups-preserving.

Let L be a lower-bounded continuous sup-semilattice and let B be a CLbasis of L with bottom. Note that supMap sub(B) is infs-preserving and sups-preserving and baseMap B is sups-preserving. The following propositions are true:

- (69)¹ Let *L* be a lower-bounded continuous sup-semilattice and *B* be a CLbasis of *L* with bottom. Then the carrier of CompactSublatt($\langle Ids(sub(B)), \subseteq \rangle$) = {\(\psi b : b \) ranges over elements of sub(*B*)}.
- (70) Let *L* be a lower-bounded continuous sup-semilattice and *B* be a CL basis of *L* with bottom. Then CompactSublatt($\langle Ids(sub(B)), \subseteq \rangle$) and sub(B) are isomorphic.
- (71) Let L be a continuous lower-bounded lattice and B be a CLbasis of L with bottom. Suppose that for every CLbasis B_1 of L with bottom holds $B \subseteq B_1$. Let J be an element of $\langle \operatorname{Ids}(\operatorname{sub}(B)), \subseteq \rangle$. Then $J = \bigcup_{k} \bigcup_{L} J \cap B$.
- (72) Let *L* be a continuous lower-bounded lattice. Then *L* is algebraic if and only if the following conditions are satisfied:
 - (i) the carrier of CompactSublatt(L) is a CLbasis of L with bottom, and
 - (ii) for every CL basis B of L with bottom holds the carrier of CompactSublatt(L) $\subseteq B$.
- (73) Let *L* be a continuous lower-bounded lattice. Then *L* is algebraic if and only if there exists a CLbasis *B* of *L* with bottom such that for every CLbasis B_1 of *L* with bottom holds $B \subseteq B_1$.

REFERENCES

- [1] Grzegorz Bancerek. Cardinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/card_1.html.
- [2] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1. html.
- [3] Grzegorz Bancerek. Sequences of ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinal2.html.
- [4] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [5] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [7] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [8] Józef Białas. Group and field definitions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/realsetl. html.
- [9] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [10] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [11] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel 1.html.
- [12] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [13] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [14] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [15] Robert Milewski. Algebraic lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vo18/waybel_8.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.

¹ The proposition (68) has been removed.

- [18] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor_1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [21] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [22] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [23] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received November 28, 1998

Published January 2, 2004