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The articles[[19],[[21],[116],[1222],[18],19],([10],112],[12],[13],[11], [[17],[120],[118],[14],[15],[114],
[23], [6], [11], [7], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES
The following proposition is true

(1) For every non empty posetand for every elementof L holds compactbelogx) = |xNthe
carrier of CompactSubldtt).

LetL be a non empty reflexive transitive relational structure an¥ le¢ a subset ofids(L), C).
ThenJ X is a subset of.
Next we state a number of propositions:

(2) For every non empty relational structureand for all subsetX, Y of L such thatX CY
holds finsup&X) C finsupgY).

(3) LetL be a non empty transitive relational structusdje a sups-inheriting non empty full
relational substructure df, X be a subset ok, andY be a subset 08 If X =Y, then
finsupgX) C finsupgy).

(4) LetL be a complete transitive antisymmetric non empty relational strucBlre,a sups-
inheriting non empty full relational substructurelgfX be a subset df, andY be a subset of
S If X =Y, then finsupgX) = finsupgY).

(5) LetL be a complete sup-semilattice aBde a join-inheriting non empty full relational
substructure of. Supposel € the carrier ofS. Let X be a subset df andY be a subset of
S If X =Y, then finsupgY) C finsupgX).

(6) For every lower-bounded sup-semilatticeand for every subseX of (lds(L),C) holds
supX = [finsupglUX).

(7) For every reflexive transitive relational structirand for every subse€ of L holds| | X =
IX.

1This work has been supported by KBN Grant 8 T11C 018 12.

1 © Association of Mizar Users


http://mizar.org/JFM/Vol10/waybel23.html

BASES OF CONTINUOUS LATTICES 2

(8) For every reflexive transitive relational structirand for every subsé of L holdsTTX =
1X.

(9) For every non empty reflexive transitive relational structusad for every elementof L
holds| [x = |x.

(10) For every non empty reflexive transitive relational structuasmd for every elementof L
holdsT1x = Tx.

(11) LetL be a non empty relational structu®be a non empty relational substructure o
be a subset df, andY be a subset d&. If X =Y, then|Y C |X.

(12) LetL be a non empty relational structu@be a non empty relational substructurd_oX
be a subset df, andY be a subset d&. If X =Y, thenlY C TX.

(13) LetL be a non empty relational structu@be a non empty relational substructure_oik
be an element df, andy be an element d&. If x=y, then]y C |x.

(14) LetL be a non empty relational structu@be a non empty relational substructureLoik
be an element df, andy be an element d&. If x=y, thenTy C Tx.

2. RELATIONAL SUBSETS

Let L be a non empty relational structure andSdde a subset df. We say thaBis meet-closed if
and only if:

(Def. 1) sul§S) is meet-inheriting.

Let L be a non empty relational structure and3dte a subset df. We say thaSis join-closed
if and only if:

(Def. 2) sul§S) is join-inheriting.

LetL be a non empty relational structure and3dde a subset df. We say thaSis infs-closed
if and only if:

(Def. 3) sul§S) is infs-inheriting.

LetL be a non empty relational structure and3dte a subset df. We say thaSis sups-closed
if and only if:

(Def. 4) sul§S) is sups-inheriting.

Let L be a non empty relational structure. One can verify that every subsetvbfch is infs-
closed is also meet-closed and every subsétwhich is sups-closed is also join-closed.

Let L be a non empty relational structure. Observe that there exists a subsetiath is
infs-closed, sups-closed, and non empty.

We now state a number of propositions:

(15) LetL be a non empty relational structure a®tle a subset df. ThenSis meet-closed if
and only if for all elements;, y of L such tha € Sandy € Sand inf{x,y} exists inL holds
inf{x,y} € S

(16) LetL be a non empty relational structure athe a subset df. ThenSis join-closed if
and only if for all elements, y of L such thak € Sandy € Sand sup{x,y} exists inL holds
sup{x,y} € S.

(17) LetL be an antisymmetric relational structure with g.l.b.'s &lde a subset of. Then
Sis meet-closed if and only if for all elemenxs y of L such thatx € Sandy € S holds
inf{x,y} € S
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(18) LetL be an antisymmetric relational structure with l.u.b.'s &ixk a subset df. ThenSis
join-closed if and only if for all elements y of L such thak € Sandy € Sholds sugx,y} € S

(19) LetL be a non empty relational structure afthe a subset of. ThenSis infs-closed if
and only if for every subset of Ssuch that infX exists inL holds[ |LX € S

(20) LetL be a non empty relational structure aBtle a subset df. ThenSis sups-closed if
and only if for every subse{ of Ssuch that suX exists inL holds| || X € S

(21) LetL be a non empty transitive relational structu®&e an infs-closed non empty subset of
L, andX be asubset @. Ifinf X exists inL, then infX exists in subS) and([ Jsuyg X = [ ILX.

(22) LetL be a non empty transitive relational structusdhe a sups-closed non empty subset
of L, andX be a subset o If supX exists inL, then supX exists in suS) and|_lsyys) X =
L X.

(23) LetL be a non empty transitive relational structusdye a meet-closed non empty subset
of L, andx, y be elements o6 Suppose infx,y} exists inL. Then inf{x,y} exists in sukS)

and ﬂsut(s){xa v} =[{xy}

(24) LetL be a non empty transitive relational structusdne a join-closed non empty subset of
L, andx, y be elements o8& Suppose sugx,y} exists inL. Then sup{x,y} exists in subS)

andl_lsut(s) {X7 y} = |_|L {X7 y} .

(25) LetL be an antisymmetric transitive relational structure with g.l.b.’s @bé a non empty
meet-closed subset bf Then supS) has g.l.b.’s.

(26) LetL be an antisymmetric transitive relational structure with l.u.b.’s &bd a non empty
join-closed subset df. Then sulfS) has l.u.b.’s.

Let L be an antisymmetric transitive relational structure with g.l.b.’s an& ket a non empty
meet-closed subset bf One can verify that sul®) has g.l.b.’s.

Let L be an antisymmetric transitive relational structure with l.u.b.’s an® e a non empty
join-closed subset df. Observe that sul$) has l.u.b.’s.

One can prove the following four propositions:

(27) LetL be a complete transitive antisymmetric non empty relational strucBlve,an infs-
closed non empty subset bf andX be a subset d&. Then[ |s g X = [ |LX.

(28) LetL be a complete transitive antisymmetric non empty relational strucBle,a sups-
closed non empty subset bf andX be a subset & Then| |syg X = LI X.

(29) For every semilattick holds every meet-closed subsetl dk filtered.

(30) For every sup-semilattideholds every join-closed subsetlofs directed.

LetL be a semilattice. One can check that every subdetdfich is meet-closed is also filtered.
LetL be a sup-semilattice. Note that every subset which is join-closed is also directed.
We now state several propositions:

(31) LetL be a semilattice an8 be an upper non empty subsetlof ThenSis a filter ofL if
and only ifSis meet-closed.

(832) LetL be a sup-semilattice arglbe a lower non empty subsetlof ThenSis an ideal ofL
if and only if Sis join-closed.

(33) For every non empty relational structlrand for all join-closed subse&, S of L holds
S NS is join-closed.

(34) For every non empty relational structlrand for all meet-closed subs&g S of L holds
S NS is meet-closed.
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(35) For every sup-semilattideand for every elementof L holds|x is join-closed.
(36) For every semilattice and for every elementof L holds|x is meet-closed.
(37) For every sup-semilattideand for every elementof L holds{x is join-closed.

(38) For every semilattice and for every elementof L holdsTx is meet-closed.

LetL be a sup-semilattice and bebe an element df. One can verify thagx is join-closed and
Txis join-closed.

Let L be a semilattice and letbe an element of. Observe thatx is meet-closed antix is
meet-closed.

We now state three propositions:

(39) For every sup-semilattideand for every elementof L holds|x is join-closed.
(40) For every semilattice and for every elementof L holds|x is meet-closed.

(41) For every sup-semilattideand for every elementof L holdstx is join-closed.

Let L be a sup-semilattice and lebe an element df. Observe thafx is join-closed andx is
join-closed.
Let L be a semilattice and lgtbe an element df. One can check thgi is meet-closed.

3. ABOUT BASES OFCONTINUOUS LATTICES

Let T be a topological structure. The functor weighyielding a cardinal number is defined as
follows:

(Def. 5) weighfT = ﬂ{ﬁ : Branges over bases of}.

Let T be a topological structure. We say tflats second-countable if and only if:
(Def. 6) weightT C w.

LetL be a continuous sup-semilattice. A subselt @ called a CLbasis df if:
(Def. 7) ltis join-closed and for every elementf L holdsx = sup({xnNit).

LetL be a non empty relational structure and3dte a subset df. We say thaGhas bottom if
and only if:

(Def.8) 1, €S

Let L be a non empty relational structure and3dte a subset df. We say thaShas top if and
only if;

(Def.9) TLeS

Let L be a non empty relational structure. One can verify that every subdetdiich has
bottom is also non empty.

Let L be a non empty relational structure. Observe that every subsewbich has top is also
non empty.

Let L be a non empty relational structure. One can verify that there exists a suthsethidh
has bottom and there exists a subsdt afhich has top.

LetL be a continuous sup-semilattice. Observe that there exists a CLbasi$ath has bottom
and there exists a CLbasis lofwhich has top.

Next we state the proposition

(42) LetL be a lower-bounded antisymmetric non empty relational structureSdmeda subset
of L with bottom. Then sut®) is lower-bounded.
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Let L be a lower-bounded antisymmetric non empty relational structure afbket subset of
L with bottom. Observe that sgB) is lower-bounded.

Let L be a continuous sup-semilattice. Note that every CLbadisi®foin-closed.
One can verify that there exists a continuous lattice which is bounded and non trivial.

Let L be a lower-bounded non trivial continuous sup-semilattice. Note that every CLbadsis of
is non empty.

One can prove the following propositions:

(43) For every sup-semilattideholds the carrier of CompactSubldtj is a join-closed subset
of L.

(44) For every algebraic lower-bounded latticéholds the carrier of CompactSubl@fj is a
ClLbasis ofL with bottom.

(45) LetL be a continuous lower-bounded sup-semilattice. If the carrier of Compact$ublatt
is a CLbasis of_, thenL is algebraic.

(46) LetL be a continuous lower-bounded lattice d@lle a join-closed subset af ThenB is

a ClLbasis oL if and only if for all elements, y of L such thaty £ x there exists an element
b of L such thab € Bandb £ xandb < y.

(47) LetL be a continuous lower-bounded lattice @tle a join-closed subset &f Suppose

1, € B. ThenBis a CLbasis of. if and only if for all elements, y of L such thak <« y there
exists an elemerit of L such thab € Bandx < bandb < y.

(48) LetL be a continuous lower-bounded lattice @tle a join-closed subset &f Suppose
1, € B. ThenBis a CLbasis ot if and only if the following conditions are satisfied:

(i) the carrier of CompactSublgtt) C B, and

(i) for all elementsx, y of L such thaty £ x there exists an elemehtof L such thab € B and
b« xandb<y.

(49) LetL be a continuous lower-bounded lattice @tle a join-closed subset &f Suppose

1, € B. ThenBis a CLbasis otf. if and only if for all elements, y of L such thaty £ x there
exists an elemerii of L such thab € Bandb £ xandb <y.

(50) LetL be alower-bounded sup-semilattice &lge a non empty full relational substructure
of L. Supposel € the carrier ofSand the carrier 06is a join-closed subset af. Letx be
an element of.. Then|xNthe carrier ofSis an ideal ofS.

Let L be a non empty reflexive transitive relational structure andSlbe a non empty full
relational substructure df. The functor supMagyielding a map from(lds(S), C) into L is defined

by:
(Def. 10) For every idedl of Sholds(supMaB)(l) =, I.

Let L be a non empty reflexive transitive relational structure andslbe a non empty full

relational substructure df. The functor idsMa yields a map from(lds(S), C) into (Ids(L), <)
and is defined as follows:

(Def. 11) For every idedl of Sthere exists a subséwof L such that = J and(idsMapS)(l) = |J.

Let L be a reflexive relational structure and lebe a subset df. Note that sufB) is reflexive.

Let L be a transitive relational structure andBdbe a subset df. Note that sufB) is transitive.

Let L be an antisymmetric relational structure andBdte a subset df. Observe that syB) is
antisymmetric.

Let L be a lower-bounded continuous sup-semilattice anB let a CLbasis of with bottom.
The functor baseMaB yields a map froni into (Ids(suk(B)), C) and is defined as follows:

(Def. 12) For every elementof L holds(baseMaB)(x) = |xNB.
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One can prove the following propositions:

(51) LetL be a non empty reflexive transitive relational structure Srme a non empty full
relational substructure df. Then domsupMaf = Ids(S) and rngsupMagis a subset ok.

(52) LetL be a non empty reflexive transitive relational struct@iee a non empty full relational
substructure of, andx be a set. Ther € domsupMasif and only if xis an ideal ofS.

(53) LetL be a non empty reflexive transitive relational structure Srze a non empty full
relational substructure df. Then domidsMa@ = Ids(S) and rngidsMa® is a subset of
lds(L).

(54) LetL be a non empty reflexive transitive relational struct&ee a non empty full relational
substructure ok, andx be a set. Ther € domidsMaSif and only if x is an ideal ofS.

(55) LetL be a non empty reflexive transitive relational struct&iee a non empty full relational
substructure of, andx be a set. I« € rngidsMas, thenx is an ideal ofL.

(56) LetL be alower-bounded continuous sup-semilatticebéd a CLbasis of with bottom.
Then dombaseMap= the carrier oL and rngbaseMaB is a subset of Idsul(B)).

(57) LetL be a lower-bounded continuous sup-semilatt@dye a CLbasis of with bottom,
andx be a set. I € rngbaseMap, thenx is an ideal of sufB).

(58) For every up-complete non empty polseind for every non empty full relational substruc-
tureSof L holds supMajSis monotone.

(59) LetL be a non empty reflexive transitive relational structure 8rze a non empty full
relational substructure &f. Then idsMafsis monotone.

(60) For every lower-bounded continuous sup-semilattiemd for every CLbasiB of L with
bottom holds baseMdpis monotone.

Let L be an up-complete non empty poset and3ée a non empty full relational substructure
of L. One can verify that supM&is monotone.

Let L be a non empty reflexive transitive relational structure andslbe a non empty full
relational substructure df. Note that idsMafis monotone.

LetL be a lower-bounded continuous sup-semilattice anB le¢ a CLbasis of with bottom.
One can check that baseMAjfs monotone.

Next we state several propositions:

(61) LetL be alower-bounded continuous sup-semilatticeBbd a CLbasis of with bottom.
Then idsMap sufB) is sups-preserving.

(62) For every up-complete non empty polseind for every non empty full relational substruc-
tureSof L holds supMaj= SupMagL) - idsMapS.

(63) For every lower-bounded continuous sup-semilattieed for every CLbasiB of L with
bottom holds{ supMap sutB), baseMaB) is Galois.

(64) LetL be alower-bounded continuous sup-semilatticebéd a CLbasis of with bottom.
Then supMap sulB) is upper adjoint and baseMBps lower adjoint.

(65) LetL be alower-bounded continuous sup-semilatticeBbéd a CLbasis of with bottom.
Then rngsupMapsyB) = the carrier ofL.

(66) LetL be alower-bounded continuous sup-semilatticeBbéd a CLbasis of with bottom.
Then supMap sulB) is infs-preserving and sups-preserving.

(67) LetL be alower-bounded continuous sup-semilatticeBbd a CLbasis of with bottom.
Then baseMaB is sups-preserving.
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LetL be a lower-bounded continuous sup-semilattice anB le¢ a CLbasis of with bottom.

Note that supMapsyB) is infs-preserving and sups-preserving and baseBAajsups-preserving.

The following propositions are true:

(69@ Let L be a lower-bounded continuous sup-semilattice Bk a CLbasis of with bot-

tom. Then the carrier of CompactSub({@ktis(sul(B)),C)) = {|b: b ranges over elements
of sul(B)}.

(70) LetL be alower-bounded continuous sup-semilatticebd a CLbasis of with bottom.

Then CompactSubldtids(sul(B)), C)) and sujB) are isomorphic.

(71) LetL be a continuous lower-bounded lattice @the a CLbasis ot with bottom. Sup-

pose that for every CLbasiB; of L with bottom holdsB C B;. Let J be an element of
(lds(sub(B)),C). Thend = [| |, INB.

(72) LetL be a continuous lower-bounded lattice. Ther algebraic if and only if the following

conditions are satisfied:
(i) the carrier of CompactSublétt) is a CLbasis of. with bottom, and

(i) for every CLbasisB of L with bottom holds the carrier of CompactSub{ajtC B.

(73) LetL be a continuous lower-bounded lattice. Theis algebraic if and only if there exists

(1
(2]

(3]

(4]
5]

6l

(7]

8l

[

[10]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

a CLbasisB of L with bottom such that for every CLbad#s of L with bottom holdsB C B;.
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