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The articles [19], [21], [16], [22], [8], [9], [10], [12], [2], [3], [1], [17], [20], [18], [4], [5], [14],
[23], [6], [11], [7], and [15] provide the notation and terminology for this paper.

1. PRELIMINARIES

The following proposition is true

(1) For every non empty posetL and for every elementx of L holds compactbelow(x) = ↓↓x∩ the
carrier of CompactSublatt(L).

Let L be a non empty reflexive transitive relational structure and letX be a subset of〈Ids(L),⊆〉.
Then

⋃
X is a subset ofL.

Next we state a number of propositions:

(2) For every non empty relational structureL and for all subsetsX, Y of L such thatX ⊆ Y
holds finsups(X)⊆ finsups(Y).

(3) Let L be a non empty transitive relational structure,Sbe a sups-inheriting non empty full
relational substructure ofL, X be a subset ofL, andY be a subset ofS. If X = Y, then
finsups(X)⊆ finsups(Y).

(4) Let L be a complete transitive antisymmetric non empty relational structure,S be a sups-
inheriting non empty full relational substructure ofL, X be a subset ofL, andY be a subset of
S. If X = Y, then finsups(X) = finsups(Y).

(5) Let L be a complete sup-semilattice andS be a join-inheriting non empty full relational
substructure ofL. Suppose⊥L ∈ the carrier ofS. Let X be a subset ofL andY be a subset of
S. If X = Y, then finsups(Y)⊆ finsups(X).

(6) For every lower-bounded sup-semilatticeL and for every subsetX of 〈Ids(L),⊆〉 holds
supX = ↓finsups(

⋃
X).

(7) For every reflexive transitive relational structureL and for every subsetX of L holds↓↓X =
↓X.
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(8) For every reflexive transitive relational structureL and for every subsetX of L holds↑↑X =
↑X.

(9) For every non empty reflexive transitive relational structureL and for every elementx of L
holds↓↓x = ↓x.

(10) For every non empty reflexive transitive relational structureL and for every elementx of L
holds↑↑x = ↑x.

(11) LetL be a non empty relational structure,Sbe a non empty relational substructure ofL, X
be a subset ofL, andY be a subset ofS. If X = Y, then↓Y ⊆ ↓X.

(12) LetL be a non empty relational structure,Sbe a non empty relational substructure ofL, X
be a subset ofL, andY be a subset ofS. If X = Y, then↑Y ⊆ ↑X.

(13) LetL be a non empty relational structure,Sbe a non empty relational substructure ofL, x
be an element ofL, andy be an element ofS. If x = y, then↓y⊆ ↓x.

(14) LetL be a non empty relational structure,Sbe a non empty relational substructure ofL, x
be an element ofL, andy be an element ofS. If x = y, then↑y⊆ ↑x.

2. RELATIONAL SUBSETS

Let L be a non empty relational structure and letSbe a subset ofL. We say thatS is meet-closed if
and only if:

(Def. 1) sub(S) is meet-inheriting.

Let L be a non empty relational structure and letSbe a subset ofL. We say thatS is join-closed
if and only if:

(Def. 2) sub(S) is join-inheriting.

Let L be a non empty relational structure and letSbe a subset ofL. We say thatS is infs-closed
if and only if:

(Def. 3) sub(S) is infs-inheriting.

Let L be a non empty relational structure and letSbe a subset ofL. We say thatS is sups-closed
if and only if:

(Def. 4) sub(S) is sups-inheriting.

Let L be a non empty relational structure. One can verify that every subset ofL which is infs-
closed is also meet-closed and every subset ofL which is sups-closed is also join-closed.

Let L be a non empty relational structure. Observe that there exists a subset ofL which is
infs-closed, sups-closed, and non empty.

We now state a number of propositions:

(15) LetL be a non empty relational structure andSbe a subset ofL. ThenS is meet-closed if
and only if for all elementsx, y of L such thatx∈ Sandy∈ Sand inf{x,y} exists inL holds
inf{x,y} ∈ S.

(16) LetL be a non empty relational structure andSbe a subset ofL. ThenS is join-closed if
and only if for all elementsx, y of L such thatx∈ Sandy∈ Sand sup{x,y} exists inL holds
sup{x,y} ∈ S.

(17) Let L be an antisymmetric relational structure with g.l.b.’s andS be a subset ofL. Then
S is meet-closed if and only if for all elementsx, y of L such thatx ∈ S and y ∈ S holds
inf{x,y} ∈ S.
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(18) LetL be an antisymmetric relational structure with l.u.b.’s andSbe a subset ofL. ThenS is
join-closed if and only if for all elementsx, y of L such thatx∈Sandy∈Sholds sup{x,y} ∈S.

(19) LetL be a non empty relational structure andS be a subset ofL. ThenS is infs-closed if
and only if for every subsetX of Ssuch that infX exists inL holdsd−eLX ∈ S.

(20) LetL be a non empty relational structure andSbe a subset ofL. ThenS is sups-closed if
and only if for every subsetX of Ssuch that supX exists inL holds

⊔
L X ∈ S.

(21) LetL be a non empty transitive relational structure,Sbe an infs-closed non empty subset of
L, andX be a subset ofS. If inf X exists inL, then infX exists in sub(S) andd−esub(S)X = d−eLX.

(22) LetL be a non empty transitive relational structure,S be a sups-closed non empty subset
of L, andX be a subset ofS. If supX exists inL, then supX exists in sub(S) and

⊔
sub(S) X =⊔

L X.

(23) LetL be a non empty transitive relational structure,Sbe a meet-closed non empty subset
of L, andx, y be elements ofS. Suppose inf{x,y} exists inL. Then inf{x,y} exists in sub(S)
andd−esub(S){x,y}= d−eL{x,y}.

(24) LetL be a non empty transitive relational structure,Sbe a join-closed non empty subset of
L, andx, y be elements ofS. Suppose sup{x,y} exists inL. Then sup{x,y} exists in sub(S)
and

⊔
sub(S){x,y}=

⊔
L{x,y}.

(25) LetL be an antisymmetric transitive relational structure with g.l.b.’s andSbe a non empty
meet-closed subset ofL. Then sub(S) has g.l.b.’s.

(26) LetL be an antisymmetric transitive relational structure with l.u.b.’s andSbe a non empty
join-closed subset ofL. Then sub(S) has l.u.b.’s.

Let L be an antisymmetric transitive relational structure with g.l.b.’s and letS be a non empty
meet-closed subset ofL. One can verify that sub(S) has g.l.b.’s.

Let L be an antisymmetric transitive relational structure with l.u.b.’s and letS be a non empty
join-closed subset ofL. Observe that sub(S) has l.u.b.’s.

One can prove the following four propositions:

(27) LetL be a complete transitive antisymmetric non empty relational structure,Sbe an infs-
closed non empty subset ofL, andX be a subset ofS. Thend−esub(S)X = d−eLX.

(28) LetL be a complete transitive antisymmetric non empty relational structure,S be a sups-
closed non empty subset ofL, andX be a subset ofS. Then

⊔
sub(S) X =

⊔
L X.

(29) For every semilatticeL holds every meet-closed subset ofL is filtered.

(30) For every sup-semilatticeL holds every join-closed subset ofL is directed.

Let L be a semilattice. One can check that every subset ofL which is meet-closed is also filtered.
Let L be a sup-semilattice. Note that every subset ofL which is join-closed is also directed.
We now state several propositions:

(31) LetL be a semilattice andSbe an upper non empty subset ofL. ThenS is a filter ofL if
and only ifS is meet-closed.

(32) LetL be a sup-semilattice andSbe a lower non empty subset ofL. ThenS is an ideal ofL
if and only if S is join-closed.

(33) For every non empty relational structureL and for all join-closed subsetsS1, S2 of L holds
S1∩S2 is join-closed.

(34) For every non empty relational structureL and for all meet-closed subsetsS1, S2 of L holds
S1∩S2 is meet-closed.
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(35) For every sup-semilatticeL and for every elementx of L holds↓x is join-closed.

(36) For every semilatticeL and for every elementx of L holds↓x is meet-closed.

(37) For every sup-semilatticeL and for every elementx of L holds↑x is join-closed.

(38) For every semilatticeL and for every elementx of L holds↑x is meet-closed.

Let L be a sup-semilattice and letx be an element ofL. One can verify that↓x is join-closed and
↑x is join-closed.

Let L be a semilattice and letx be an element ofL. Observe that↓x is meet-closed and↑x is
meet-closed.

We now state three propositions:

(39) For every sup-semilatticeL and for every elementx of L holds↓↓x is join-closed.

(40) For every semilatticeL and for every elementx of L holds↓↓x is meet-closed.

(41) For every sup-semilatticeL and for every elementx of L holds↑↑x is join-closed.

Let L be a sup-semilattice and letx be an element ofL. Observe that↓↓x is join-closed and↑↑x is
join-closed.

Let L be a semilattice and letx be an element ofL. One can check that↓↓x is meet-closed.

3. ABOUT BASES OFCONTINUOUS LATTICES

Let T be a topological structure. The functor weightT yielding a cardinal number is defined as
follows:

(Def. 5) weightT =
⋂
{B : B ranges over bases ofT}.

Let T be a topological structure. We say thatT is second-countable if and only if:

(Def. 6) weightT ⊆ ω.

Let L be a continuous sup-semilattice. A subset ofL is called a CLbasis ofL if:

(Def. 7) It is join-closed and for every elementx of L holdsx = sup(↓↓x∩ it).

Let L be a non empty relational structure and letSbe a subset ofL. We say thatShas bottom if
and only if:

(Def. 8) ⊥L ∈ S.

Let L be a non empty relational structure and letSbe a subset ofL. We say thatShas top if and
only if:

(Def. 9) >L ∈ S.

Let L be a non empty relational structure. One can verify that every subset ofL which has
bottom is also non empty.

Let L be a non empty relational structure. Observe that every subset ofL which has top is also
non empty.

Let L be a non empty relational structure. One can verify that there exists a subset ofL which
has bottom and there exists a subset ofL which has top.

Let L be a continuous sup-semilattice. Observe that there exists a CLbasis ofL which has bottom
and there exists a CLbasis ofL which has top.

Next we state the proposition

(42) LetL be a lower-bounded antisymmetric non empty relational structure andSbe a subset
of L with bottom. Then sub(S) is lower-bounded.
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Let L be a lower-bounded antisymmetric non empty relational structure and letSbe a subset of
L with bottom. Observe that sub(S) is lower-bounded.

Let L be a continuous sup-semilattice. Note that every CLbasis ofL is join-closed.
One can verify that there exists a continuous lattice which is bounded and non trivial.
Let L be a lower-bounded non trivial continuous sup-semilattice. Note that every CLbasis ofL

is non empty.
One can prove the following propositions:

(43) For every sup-semilatticeL holds the carrier of CompactSublatt(L) is a join-closed subset
of L.

(44) For every algebraic lower-bounded latticeL holds the carrier of CompactSublatt(L) is a
CLbasis ofL with bottom.

(45) LetL be a continuous lower-bounded sup-semilattice. If the carrier of CompactSublatt(L)
is a CLbasis ofL, thenL is algebraic.

(46) LetL be a continuous lower-bounded lattice andB be a join-closed subset ofL. ThenB is
a CLbasis ofL if and only if for all elementsx, y of L such thaty 6≤ x there exists an element
b of L such thatb∈ B andb 6≤ x andb� y.

(47) LetL be a continuous lower-bounded lattice andB be a join-closed subset ofL. Suppose
⊥L ∈ B. ThenB is a CLbasis ofL if and only if for all elementsx, y of L such thatx� y there
exists an elementb of L such thatb∈ B andx≤ b andb� y.

(48) LetL be a continuous lower-bounded lattice andB be a join-closed subset ofL. Suppose
⊥L ∈ B. ThenB is a CLbasis ofL if and only if the following conditions are satisfied:

(i) the carrier of CompactSublatt(L)⊆ B, and

(ii) for all elementsx, y of L such thaty 6≤ x there exists an elementb of L such thatb∈ B and
b 6≤ x andb≤ y.

(49) LetL be a continuous lower-bounded lattice andB be a join-closed subset ofL. Suppose
⊥L ∈ B. ThenB is a CLbasis ofL if and only if for all elementsx, y of L such thaty 6≤ x there
exists an elementb of L such thatb∈ B andb 6≤ x andb≤ y.

(50) LetL be a lower-bounded sup-semilattice andSbe a non empty full relational substructure
of L. Suppose⊥L ∈ the carrier ofSand the carrier ofS is a join-closed subset ofL. Let x be
an element ofL. Then↓↓x∩ the carrier ofS is an ideal ofS.

Let L be a non empty reflexive transitive relational structure and letS be a non empty full
relational substructure ofL. The functor supMapSyielding a map from〈Ids(S),⊆〉 into L is defined
by:

(Def. 10) For every idealI of Sholds(supMapS)(I) =
⊔

L I .

Let L be a non empty reflexive transitive relational structure and letS be a non empty full
relational substructure ofL. The functor idsMapS yields a map from〈Ids(S),⊆〉 into 〈Ids(L),⊆〉
and is defined as follows:

(Def. 11) For every idealI of S there exists a subsetJ of L such thatI = J and(idsMapS)(I) = ↓J.

Let L be a reflexive relational structure and letB be a subset ofL. Note that sub(B) is reflexive.
Let L be a transitive relational structure and letB be a subset ofL. Note that sub(B) is transitive.
Let L be an antisymmetric relational structure and letB be a subset ofL. Observe that sub(B) is

antisymmetric.
Let L be a lower-bounded continuous sup-semilattice and letB be a CLbasis ofL with bottom.

The functor baseMapB yields a map fromL into 〈Ids(sub(B)),⊆〉 and is defined as follows:

(Def. 12) For every elementx of L holds(baseMapB)(x) = ↓↓x∩B.
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One can prove the following propositions:

(51) Let L be a non empty reflexive transitive relational structure andS be a non empty full
relational substructure ofL. Then domsupMapS= Ids(S) and rngsupMapS is a subset ofL.

(52) LetL be a non empty reflexive transitive relational structure,Sbe a non empty full relational
substructure ofL, andx be a set. Thenx∈ domsupMapS if and only if x is an ideal ofS.

(53) Let L be a non empty reflexive transitive relational structure andS be a non empty full
relational substructure ofL. Then domidsMapS= Ids(S) and rngidsMapS is a subset of
Ids(L).

(54) LetL be a non empty reflexive transitive relational structure,Sbe a non empty full relational
substructure ofL, andx be a set. Thenx∈ domidsMapS if and only if x is an ideal ofS.

(55) LetL be a non empty reflexive transitive relational structure,Sbe a non empty full relational
substructure ofL, andx be a set. Ifx∈ rng idsMapS, thenx is an ideal ofL.

(56) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then dombaseMapB = the carrier ofL and rngbaseMapB is a subset of Ids(sub(B)).

(57) Let L be a lower-bounded continuous sup-semilattice,B be a CLbasis ofL with bottom,
andx be a set. Ifx∈ rngbaseMapB, thenx is an ideal of sub(B).

(58) For every up-complete non empty posetL and for every non empty full relational substruc-
tureSof L holds supMapS is monotone.

(59) Let L be a non empty reflexive transitive relational structure andS be a non empty full
relational substructure ofL. Then idsMapS is monotone.

(60) For every lower-bounded continuous sup-semilatticeL and for every CLbasisB of L with
bottom holds baseMapB is monotone.

Let L be an up-complete non empty poset and letSbe a non empty full relational substructure
of L. One can verify that supMapS is monotone.

Let L be a non empty reflexive transitive relational structure and letS be a non empty full
relational substructure ofL. Note that idsMapS is monotone.

Let L be a lower-bounded continuous sup-semilattice and letB be a CLbasis ofL with bottom.
One can check that baseMapB is monotone.

Next we state several propositions:

(61) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then idsMapsub(B) is sups-preserving.

(62) For every up-complete non empty posetL and for every non empty full relational substruc-
tureSof L holds supMapS= SupMap(L) · idsMapS.

(63) For every lower-bounded continuous sup-semilatticeL and for every CLbasisB of L with
bottom holds〈〈supMapsub(B), baseMapB〉〉 is Galois.

(64) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then supMapsub(B) is upper adjoint and baseMapB is lower adjoint.

(65) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then rngsupMapsub(B) = the carrier ofL.

(66) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then supMapsub(B) is infs-preserving and sups-preserving.

(67) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then baseMapB is sups-preserving.
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Let L be a lower-bounded continuous sup-semilattice and letB be a CLbasis ofL with bottom.
Note that supMapsub(B) is infs-preserving and sups-preserving and baseMapB is sups-preserving.

The following propositions are true:

(69)1 Let L be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bot-
tom. Then the carrier of CompactSublatt(〈Ids(sub(B)),⊆〉) = {↓b : b ranges over elements
of sub(B)}.

(70) LetL be a lower-bounded continuous sup-semilattice andB be a CLbasis ofL with bottom.
Then CompactSublatt(〈Ids(sub(B)),⊆〉) and sub(B) are isomorphic.

(71) Let L be a continuous lower-bounded lattice andB be a CLbasis ofL with bottom. Sup-
pose that for every CLbasisB1 of L with bottom holdsB ⊆ B1. Let J be an element of
〈Ids(sub(B)),⊆〉. ThenJ = ↓↓

⊔
L J∩B.

(72) LetL be a continuous lower-bounded lattice. ThenL is algebraic if and only if the following
conditions are satisfied:

(i) the carrier of CompactSublatt(L) is a CLbasis ofL with bottom, and

(ii) for every CLbasisB of L with bottom holds the carrier of CompactSublatt(L)⊆ B.

(73) LetL be a continuous lower-bounded lattice. ThenL is algebraic if and only if there exists
a CLbasisB of L with bottom such that for every CLbasisB1 of L with bottom holdsB⊆ B1.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. The ordinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/ordinal1.
html.

[3] Grzegorz Bancerek. Sequences of ordinal numbers.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/
ordinal2.html.

[4] Grzegorz Bancerek. Complete lattices.Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/lattice3.html.

[5] Grzegorz Bancerek. Bounds in posets and relational substructures.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.html.

[6] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/waybel_0.html.

[7] Grzegorz Bancerek. The “way-below” relation.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/waybel_
3.html.
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