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The articles [16], [20], [21], [7], [8], [10], [15], [9], [19], [1], [12], [2], [22], [3], [4], [17], [14], [5],
[18], [13], and [6] provide the notation and terminology for this paper.

1. SEMILATTICE HOMOMORPHISM AND INHERITANCE

Let S, T be semilattices. Let us assume that ifS is upper-bounded, thenT is upper-bounded. A map
from S into T is said to be a semilattice morphism fromS into T if:

(Def. 1) For every finite subsetX of Sholds it preserves inf ofX.

Let S, T be semilattices. Observe that every map fromS into T which is meet-preserving is also
monotone.

Let S be a semilattice and letT be an upper-bounded semilattice. One can verify that every
semilattice morphism fromS into T is meet-preserving.

Next we state a number of propositions:

(1) For all upper-bounded semilatticesS, T and for every semilattice morphismf from S into
T holds f (>S) =>T .

(2) Let S, T be semilattices andf be a map fromS into T. Supposef is meet-preserving. Let
X be a finite non empty subset ofS. Then f preserves inf ofX.

(3) Let S, T be upper-bounded semilattices andf be a meet-preserving map fromS into T. If
f (>S) =>T , then f is a semilattice morphism fromS into T.

(4) Let S, T be semilattices andf be a map fromS into T. Supposef is meet-preserving and
for every filtered non empty subsetX of Sholds f preserves inf ofX. Let X be a non empty
subset ofS. Then f preserves inf ofX.

(5) LetS, T be semilattices andf be a map fromS into T. Supposef is infs-preserving. Then
f is a semilattice morphism fromS into T.

1Partially supported by NATO Grant CRG 951368, NSERC OGP 9207 grant and KBN grant 8 T11C 018
12.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol10/waybel21.html


LAWSON TOPOLOGY IN CONTINUOUS LATTICES 2

(6) LetS1, T1, S2, T2 be non empty relational structures. Suppose that

(i) the relational structure ofS1 = the relational structure ofS2, and

(ii) the relational structure ofT1 = the relational structure ofT2.

Let f1 be a map fromS1 into T1 and f2 be a map fromS2 into T2 such thatf1 = f2. Then

(iii) if f1 is infs-preserving, thenf2 is infs-preserving, and

(iv) if f1 is directed-sups-preserving, thenf2 is directed-sups-preserving.

(7) LetS1, T1, S2, T2 be non empty relational structures. Suppose that

(i) the relational structure ofS1 = the relational structure ofS2, and

(ii) the relational structure ofT1 = the relational structure ofT2.

Let f1 be a map fromS1 into T1 and f2 be a map fromS2 into T2 such thatf1 = f2. Then

(iii) if f1 is sups-preserving, thenf2 is sups-preserving, and

(iv) if f1 is filtered-infs-preserving, thenf2 is filtered-infs-preserving.

(8) LetT be a complete lattice andSbe an infs-inheriting full non empty relational substructure
of T. Then incl(S,T) is infs-preserving.

(9) LetT be a complete lattice andSbe a sups-inheriting full non empty relational substructure
of T. Then incl(S,T) is sups-preserving.

(10) Let T be an up-complete non empty poset andS be a directed-sups-inheriting full non
empty relational substructure ofT. Then incl(S,T) is directed-sups-preserving.

(11) Let T be a complete lattice andS be a filtered-infs-inheriting full non empty relational
substructure ofT. Then incl(S,T) is filtered-infs-preserving.

(12) LetT1, T2, Rbe relational structures andSbe a relational substructure ofT1. Suppose that

(i) the relational structure ofT1 = the relational structure ofT2, and

(ii) the relational structure ofS= the relational structure ofR.

ThenR is a relational substructure ofT2 and ifS is full, thenR is a full relational substructure
of T2.

(13) Every non empty relational structureT is an infs-inheriting sups-inheriting full relational
substructure ofT.

Let T be a complete lattice. Observe that there exists a continuous subframe ofT which is
complete.

We now state a number of propositions:

(14) Let T be a semilattice andS be a full non empty relational substructure ofT. ThenS is
meet-inheriting if and only if for every finite non empty subsetX of Sholdsd−eTX ∈ the carrier
of S.

(15) LetT be a sup-semilattice andSbe a full non empty relational substructure ofT. ThenS is
join-inheriting if and only if for every finite non empty subsetX of Sholds

⊔
T X ∈ the carrier

of S.

(16) LetT be an upper-bounded semilattice andSbe a meet-inheriting full non empty relational
substructure ofT. Suppose>T ∈ the carrier ofSandS is filtered-infs-inheriting. ThenS is
infs-inheriting.

(17) Let T be a lower-bounded sup-semilattice andS be a join-inheriting full non empty re-
lational substructure ofT. Suppose⊥T ∈ the carrier ofS andS is directed-sups-inheriting.
ThenS is sups-inheriting.
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(18) LetT be a complete lattice andSbe a full non empty relational substructure ofT. If S is
infs-inheriting, thenS is complete.

(19) LetT be a complete lattice andSbe a full non empty relational substructure ofT. If S is
sups-inheriting, thenS is complete.

(20) LetT1, T2 be non empty relational structures,S1 be a non empty full relational substructure
of T1, andS2 be a non empty full relational substructure ofT2. Suppose that

(i) the relational structure ofT1 = the relational structure ofT2, and

(ii) the carrier ofS1 = the carrier ofS2.

If S1 is infs-inheriting, thenS2 is infs-inheriting.

(21) LetT1, T2 be non empty relational structures,S1 be a non empty full relational substructure
of T1, andS2 be a non empty full relational substructure ofT2. Suppose that

(i) the relational structure ofT1 = the relational structure ofT2, and

(ii) the carrier ofS1 = the carrier ofS2.

If S1 is sups-inheriting, thenS2 is sups-inheriting.

(22) LetT1, T2 be non empty relational structures,S1 be a non empty full relational substructure
of T1, andS2 be a non empty full relational substructure ofT2. Suppose that

(i) the relational structure ofT1 = the relational structure ofT2, and

(ii) the carrier ofS1 = the carrier ofS2.

If S1 is directed-sups-inheriting, thenS2 is directed-sups-inheriting.

(23) LetT1, T2 be non empty relational structures,S1 be a non empty full relational substructure
of T1, andS2 be a non empty full relational substructure ofT2. Suppose that

(i) the relational structure ofT1 = the relational structure ofT2, and

(ii) the carrier ofS1 = the carrier ofS2.

If S1 is filtered-infs-inheriting, thenS2 is filtered-infs-inheriting.

2. NETS AND L IMITS

We now state the proposition

(24) LetS, T be non empty topological spaces,N be a net inS, and f be a map fromS into T.
If f is continuous, thenf ◦Lim N ⊆ Lim( f ·N).

Let T be a non empty relational structure and letN be a non empty net structure overT. Let us
observe thatN is antitone if and only if:

(Def. 2) For all elementsi, j of N such thati ≤ j holdsN(i)≥ N( j).

Let T be a non empty reflexive relational structure and letx be an element ofT. Note that
〈{x}op; id〉 is transitive, directed, monotone, and antitone.

Let T be a non empty reflexive relational structure. Observe that there exists a net inT which is
monotone, antitone, reflexive, and strict.

Let T be a non empty relational structure and letF be a non empty subset ofT. Observe that
〈Fop; id〉 is antitone.

Let S, T be non empty reflexive relational structures, letf be a monotone map fromS into T,
and letN be an antitone non empty net structure overS. Note thatf ·N is antitone.

One can prove the following propositions:

(25) LetSbe a complete lattice andN be a net inS. Then{d−eS{N(i); i ranges over elements of
N: i ≥ j} : j ranges over elements ofN} is a directed non empty subset ofS.
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(26) Let S be a non empty poset andN be a monotone reflexive net inS. Then{d−eS{N(i); i
ranges over elements ofN: i ≥ j} : j ranges over elements ofN} is a directed non empty
subset ofS.

(27) LetSbe a non empty 1-sorted structure,N be a non empty net structure overS, andX be a
set. If rng(the mapping ofN)⊆ X, thenN is eventually inX.

(28) For every inf-complete non empty posetR and for every non empty filtered subsetF of R
holds liminf〈Fop; id〉= inf F.

(29) LetS, T be inf-complete non empty posets,X be a non empty filtered subset ofS, and f be
a monotone map fromS into T. Then liminf( f · 〈Xop; id〉) = inf( f ◦X).

(30) LetS, T be non empty top-posets,X be a non empty filtered subset ofS, f be a monotone
map fromS into T, andY be a non empty filtered subset ofT. If Y = f ◦X, then f · 〈Xop; id〉
is a subnet of〈Yop; id〉.

(31) LetS, T be non empty top-posets,X be a non empty filtered subset ofS, f be a monotone
map fromSinto T, andY be a non empty filtered subset ofT. If Y = f ◦X, then Lim〈Yop; id〉 ⊆
Lim( f · 〈Xop; id〉).

(32) LetSbe a non empty reflexive relational structure andD be a non empty subset ofS. Then
the mapping of NetStr(D) = idD and the carrier of NetStr(D) = D and NetStr(D) is a full
relational substructure ofS.

(33) LetS, T be up-complete non empty posets,f be a monotone map fromS into T, andD be
a non empty directed subset ofS. Then liminf( f ·NetStr(D)) = sup( f ◦D).

(34) LetSbe a non empty reflexive relational structure,D be a non empty directed subset ofS,
andi, j be elements of NetStr(D). Theni ≤ j if and only if (NetStr(D))(i)≤ (NetStr(D))( j).

(35) For every Lawson complete top-latticeT and for every directed non empty subsetD of T
holds supD ∈ LimNetStr(D).

Let T be a non empty 1-sorted structure, letN be a net inT, and letM be a non empty net
structure overT. Let us assume thatM is a subnet ofN. A map fromM into N is said to be an
embedding ofM into N if it satisfies the conditions (Def. 3).

(Def. 3)(i) The mapping ofM = (the mapping ofN) · it, and

(ii) for every elementm of N there exists an elementn of M such that for every elementp of
M such thatn≤ p holdsm≤ it(p).

One can prove the following propositions:

(36) LetT be a non empty 1-sorted structure,N be a net inT, M be a non empty subnet ofN, e
be an embedding ofM into N, andi be an element ofM. ThenM(i) = N(e(i)).

(37) For every complete latticeT and for every netN in T and for every subnetM of N holds
liminf N ≤ liminf M.

(38) LetT be a complete lattice,N be a net inT, M be a subnet ofN, andebe an embedding ofM
into N. Suppose that for every elementi of N and for every elementj of M such thate( j)≤ i
there exists an elementj ′ of M such thatj ′ ≥ j andN(i)≥M( j ′). Then liminfN = liminf M.

(39) Let T be a non empty relational structure,N be a net inT, andM be a non empty full
structure of a subnet ofN. Suppose that for every elementi of N there exists an elementj
of N such thatj ≥ i and j ∈ the carrier ofM. ThenM is a subnet ofN and incl(M,N) is an
embedding ofM into N.

(40) LetT be a non empty relational structure,N be a net inT, andi be an element ofN. Then
N�i is a subnet ofN and incl(N�i,N) is an embedding ofN�i into N.
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(41) For every complete latticeT and for every netN in T and for every elementi of N holds
liminf(N�i) = liminf N.

(42) LetT be a non empty relational structure,N be a net inT, andX be a set. SupposeN is
eventually inX. Then there exists an elementi of N such thatN(i) ∈ X and rng(the mapping
of N�i)⊆ X.

(43) Let T be a Lawson complete top-lattice andN be an eventually-filtered net inT. Then
rng(the mapping ofN) is a filtered non empty subset ofT.

(44) For every Lawson complete top-latticeT and for every eventually-filtered netN in T holds
Lim N = {inf N}.

3. LAWSON TOPOLOGYREVISITED

The following propositions are true:

(45) LetS, T be Lawson complete top-lattices andf be a meet-preserving map fromS into T.
Then f is continuous if and only if the following conditions are satisfied:

(i) f is directed-sups-preserving, and

(ii) for every non empty subsetX of Sholds f preserves inf ofX.

(46) LetS, T be Lawson complete top-lattices andf be a semilattice morphism fromS into T.
Then f is continuous if and only iff is infs-preserving and directed-sups-preserving.

Let S, T be non empty relational structures and letf be a map fromS into T. We say thatf is
liminfs-preserving if and only if:

(Def. 4) For every netN in Sholds f (liminf N) = liminf( f ·N).

The following propositions are true:

(47) LetS, T be Lawson complete top-lattices andf be a semilattice morphism fromS into T.
Then f is continuous if and only iff is liminfs-preserving.

(48) Let T be a Lawson complete continuous top-lattice andS be a meet-inheriting full non
empty relational substructure ofT. Suppose>T ∈ the carrier ofSand there exists a subsetX
of T such thatX = the carrier ofSandX is closed. ThenS is infs-inheriting.

(49) Let T be a Lawson complete continuous top-lattice andS be a full non empty relational
substructure ofT. Given a subsetX of T such thatX = the carrier ofSandX is closed. Then
S is directed-sups-inheriting.

(50) Let T be a Lawson complete continuous top-lattice andS be an infs-inheriting directed-
sups-inheriting full non empty relational substructure ofT. Then there exists a subsetX of T
such thatX = the carrier ofSandX is closed.

(51) LetT be a Lawson complete continuous top-lattice,Sbe an infs-inheriting directed-sups-
inheriting full non empty relational substructure ofT, andN be a net inT. If N is eventually
in the carrier ofS, then liminfN ∈ the carrier ofS.

(52) Let T be a Lawson complete continuous top-lattice andS be a meet-inheriting full non
empty relational substructure ofT. Suppose that

(i) >T ∈ the carrier ofS, and

(ii) for every netN in T such that rng(the mapping ofN)⊆ the carrier ofSholds liminfN∈ the
carrier ofS.

ThenS is infs-inheriting.
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(53) Let T be a Lawson complete continuous top-lattice andS be a full non empty relational
substructure ofT. Suppose that for every netN in T such that rng(the mapping ofN) ⊆ the
carrier ofSholds liminfN ∈ the carrier ofS. ThenS is directed-sups-inheriting.

(54) LetT be a Lawson complete continuous top-lattice,Sbe a meet-inheriting full non empty
relational substructure ofT, and X be a subset ofT. SupposeX = the carrier ofS and
>T ∈ X. ThenX is closed if and only if for every netN in T such thatN is eventually inX
holds liminfN ∈ X.
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