Lawson Topology in Continuous Lattices¹

Grzegorz Bancerek University of Białystok

Summary. The article completes Mizar formalization of Section 1 of Chapter III of [11, pp. 145–147].

MML Identifier: WAYBEL21.

WWW: http://mizar.org/JFM/Vol10/waybel21.html

The articles [16], [20], [21], [7], [8], [10], [15], [9], [19], [1], [12], [2], [22], [3], [4], [17], [14], [5], [18], [13], and [6] provide the notation and terminology for this paper.

1. SEMILATTICE HOMOMORPHISM AND INHERITANCE

Let S, T be semilattices. Let us assume that if S is upper-bounded, then T is upper-bounded. A map from S into T is said to be a semilattice morphism from S into T if:

(Def. 1) For every finite subset *X* of *S* holds it preserves inf of *X*.

Let S, T be semilattices. Observe that every map from S into T which is meet-preserving is also monotone.

Let S be a semilattice and let T be an upper-bounded semilattice. One can verify that every semilattice morphism from S into T is meet-preserving.

Next we state a number of propositions:

- (1) For all upper-bounded semilattices S, T and for every semilattice morphism f from S into T holds $f(\top_S) = \top_T$.
- (2) Let *S*, *T* be semilattices and *f* be a map from *S* into *T*. Suppose *f* is meet-preserving. Let *X* be a finite non empty subset of *S*. Then *f* preserves inf of *X*.
- (3) Let S, T be upper-bounded semilattices and f be a meet-preserving map from S into T. If $f(\top_S) = \top_T$, then f is a semilattice morphism from S into T.
- (4) Let *S*, *T* be semilattices and *f* be a map from *S* into *T*. Suppose *f* is meet-preserving and for every filtered non empty subset *X* of *S* holds *f* preserves inf of *X*. Let *X* be a non empty subset of *S*. Then *f* preserves inf of *X*.
- (5) Let *S*, *T* be semilattices and *f* be a map from *S* into *T*. Suppose *f* is infs-preserving. Then *f* is a semilattice morphism from *S* into *T*.

 $^{^{1}\}text{Partially}$ supported by NATO Grant CRG 951368, NSERC OGP 9207 grant and KBN grant 8 T11C 018 12.

- (6) Let S_1 , T_1 , S_2 , T_2 be non empty relational structures. Suppose that
- (i) the relational structure of S_1 = the relational structure of S_2 , and
- (ii) the relational structure of T_1 = the relational structure of T_2 . Let f_1 be a map from S_1 into T_1 and f_2 be a map from S_2 into T_2 such that $f_1 = f_2$. Then
- (iii) if f_1 is infs-preserving, then f_2 is infs-preserving, and
- (iv) if f_1 is directed-sups-preserving, then f_2 is directed-sups-preserving.
- (7) Let S_1 , T_1 , S_2 , T_2 be non empty relational structures. Suppose that
- (i) the relational structure of S_1 = the relational structure of S_2 , and
- (ii) the relational structure of T_1 = the relational structure of T_2 . Let f_1 be a map from S_1 into T_1 and f_2 be a map from S_2 into T_2 such that $f_1 = f_2$. Then
- (iii) if f_1 is sups-preserving, then f_2 is sups-preserving, and
- (iv) if f_1 is filtered-infs-preserving, then f_2 is filtered-infs-preserving.
- (8) Let T be a complete lattice and S be an infs-inheriting full non empty relational substructure of T. Then incl(S,T) is infs-preserving.
- (9) Let T be a complete lattice and S be a sups-inheriting full non empty relational substructure of T. Then incl(S,T) is sups-preserving.
- (10) Let T be an up-complete non empty poset and S be a directed-sups-inheriting full non empty relational substructure of T. Then incl(S,T) is directed-sups-preserving.
- (11) Let T be a complete lattice and S be a filtered-infs-inheriting full non empty relational substructure of T. Then incl(S,T) is filtered-infs-preserving.
- (12) Let T_1 , T_2 , R be relational structures and S be a relational substructure of T_1 . Suppose that
 - (i) the relational structure of T_1 = the relational structure of T_2 , and
- (ii) the relational structure of S = the relational structure of R. Then R is a relational substructure of T_2 and if S is full, then R is a full relational substructure of T_2
- (13) Every non empty relational structure T is an infs-inheriting sups-inheriting full relational substructure of T.

Let T be a complete lattice. Observe that there exists a continuous subframe of T which is complete.

We now state a number of propositions:

- (14) Let T be a semilattice and S be a full non empty relational substructure of T. Then S is meet-inheriting if and only if for every finite non empty subset X of S holds $\bigcap_T X \in$ the carrier of S.
- (15) Let T be a sup-semilattice and S be a full non empty relational substructure of T. Then S is join-inheriting if and only if for every finite non empty subset X of S holds $\bigsqcup_T X \in$ the carrier of S.
- (16) Let T be an upper-bounded semilattice and S be a meet-inheriting full non empty relational substructure of T. Suppose $\top_T \in$ the carrier of S and S is filtered-infs-inheriting. Then S is infs-inheriting.
- (17) Let T be a lower-bounded sup-semilattice and S be a join-inheriting full non empty relational substructure of T. Suppose $\bot_T \in$ the carrier of S and S is directed-sups-inheriting. Then S is sups-inheriting.

- (18) Let *T* be a complete lattice and *S* be a full non empty relational substructure of *T*. If *S* is infs-inheriting, then *S* is complete.
- (19) Let T be a complete lattice and S be a full non empty relational substructure of T. If S is sups-inheriting, then S is complete.
- (20) Let T_1 , T_2 be non empty relational structures, S_1 be a non empty full relational substructure of T_1 , and S_2 be a non empty full relational substructure of T_2 . Suppose that
 - (i) the relational structure of T_1 = the relational structure of T_2 , and
- (ii) the carrier of S_1 = the carrier of S_2 . If S_1 is infs-inheriting, then S_2 is infs-inheriting.
- (21) Let T_1 , T_2 be non empty relational structures, S_1 be a non empty full relational substructure of T_1 , and S_2 be a non empty full relational substructure of T_2 . Suppose that
 - (i) the relational structure of T_1 = the relational structure of T_2 , and
- (ii) the carrier of S_1 = the carrier of S_2 .

If S_1 is sups-inheriting, then S_2 is sups-inheriting.

- (22) Let T_1 , T_2 be non empty relational structures, S_1 be a non empty full relational substructure of T_1 , and S_2 be a non empty full relational substructure of T_2 . Suppose that
 - (i) the relational structure of T_1 = the relational structure of T_2 , and
- (ii) the carrier of S_1 = the carrier of S_2 .

If S_1 is directed-sups-inheriting, then S_2 is directed-sups-inheriting.

- (23) Let T_1 , T_2 be non empty relational structures, S_1 be a non empty full relational substructure of T_1 , and S_2 be a non empty full relational substructure of T_2 . Suppose that
 - (i) the relational structure of T_1 = the relational structure of T_2 , and
- (ii) the carrier of S_1 = the carrier of S_2 .

If S_1 is filtered-infs-inheriting, then S_2 is filtered-infs-inheriting.

2. NETS AND LIMITS

We now state the proposition

(24) Let S, T be non empty topological spaces, N be a net in S, and f be a map from S into T. If f is continuous, then $f^{\circ} \operatorname{Lim} N \subseteq \operatorname{Lim} (f \cdot N)$.

Let *T* be a non empty relational structure and let *N* be a non empty net structure over *T*. Let us observe that *N* is antitone if and only if:

(Def. 2) For all elements i, j of N such that $i \le j$ holds $N(i) \ge N(j)$.

Let T be a non empty reflexive relational structure and let x be an element of T. Note that $\langle \{x\}^{\text{op}}; \text{id} \rangle$ is transitive, directed, monotone, and antitone.

Let T be a non empty reflexive relational structure. Observe that there exists a net in T which is monotone, antitone, reflexive, and strict.

Let T be a non empty relational structure and let F be a non empty subset of T. Observe that $\langle F^{op}; id \rangle$ is antitone.

Let S, T be non empty reflexive relational structures, let f be a monotone map from S into T, and let N be an antitone non empty net structure over S. Note that $f \cdot N$ is antitone.

One can prove the following propositions:

(25) Let *S* be a complete lattice and *N* be a net in *S*. Then $\{\bigcap_{S} \{N(i); i \text{ ranges over elements of } N: i \ge j\}$: *j* ranges over elements of *N*} is a directed non empty subset of *S*.

- (26) Let S be a non empty poset and N be a monotone reflexive net in S. Then $\{\bigcap_S \{N(i); i \text{ ranges over elements of } N: i \geq j\}: j \text{ ranges over elements of } N\}$ is a directed non empty subset of S.
- (27) Let *S* be a non empty 1-sorted structure, *N* be a non empty net structure over *S*, and *X* be a set. If rng (the mapping of N) $\subseteq X$, then N is eventually in X.
- (28) For every inf-complete non empty poset R and for every non empty filtered subset F of R holds $\liminf \langle F^{op}; id \rangle = \inf F$.
- (29) Let S, T be inf-complete non empty posets, X be a non empty filtered subset of S, and f be a monotone map from S into T. Then $\liminf(f \cdot \langle X^{op}; id \rangle) = \inf(f^{\circ}X)$.
- (30) Let S, T be non empty top-posets, X be a non empty filtered subset of S, f be a monotone map from S into T, and Y be a non empty filtered subset of T. If $Y = f^{\circ}X$, then $f \cdot \langle X^{\operatorname{op}}; \operatorname{id} \rangle$ is a subnet of $\langle Y^{\operatorname{op}}; \operatorname{id} \rangle$.
- (31) Let S, T be non empty top-posets, X be a non empty filtered subset of S, f be a monotone map from S into T, and Y be a non empty filtered subset of T. If $Y = f^{\circ}X$, then $\text{Lim}\langle Y^{\text{op}}; \text{id} \rangle \subseteq \text{Lim}(f \cdot \langle X^{\text{op}}; \text{id} \rangle)$.
- (32) Let S be a non empty reflexive relational structure and D be a non empty subset of S. Then the mapping of $NetStr(D) = id_D$ and the carrier of NetStr(D) = D and NetStr(D) is a full relational substructure of S.
- (33) Let S, T be up-complete non empty posets, f be a monotone map from S into T, and D be a non empty directed subset of S. Then $\liminf(f \cdot \operatorname{NetStr}(D)) = \sup(f^{\circ}D)$.
- (34) Let *S* be a non empty reflexive relational structure, *D* be a non empty directed subset of *S*, and *i*, *j* be elements of NetStr(*D*). Then $i \le j$ if and only if $(\text{NetStr}(D))(i) \le (\text{NetStr}(D))(j)$.
- (35) For every Lawson complete top-lattice T and for every directed non empty subset D of T holds $\sup D \in \operatorname{Lim} \operatorname{NetStr}(D)$.

Let T be a non empty 1-sorted structure, let N be a net in T, and let M be a non empty net structure over T. Let us assume that M is a subnet of N. A map from M into N is said to be an embedding of M into N if it satisfies the conditions (Def. 3).

- (Def. 3)(i) The mapping of M =(the mapping of N) · it, and
 - (ii) for every element m of N there exists an element n of M such that for every element p of M such that $n \le p$ holds $m \le \mathrm{it}(p)$.

One can prove the following propositions:

- (36) Let T be a non empty 1-sorted structure, N be a net in T, M be a non empty subnet of N, e be an embedding of M into N, and i be an element of M. Then M(i) = N(e(i)).
- (37) For every complete lattice T and for every net N in T and for every subnet M of N holds $\liminf N \leq \liminf M$.
- (38) Let T be a complete lattice, N be a net in T, M be a subnet of N, and e be an embedding of M into N. Suppose that for every element i of N and for every element j of M such that $e(j) \le i$ there exists an element j' of M such that $j' \ge j$ and $N(i) \ge M(j')$. Then $\liminf N = \liminf M$.
- (39) Let T be a non empty relational structure, N be a net in T, and M be a non empty full structure of a subnet of N. Suppose that for every element i of N there exists an element j of N such that $j \ge i$ and $j \in$ the carrier of M. Then M is a subnet of N and $\operatorname{incl}(M,N)$ is an embedding of M into N.
- (40) Let T be a non empty relational structure, N be a net in T, and i be an element of N. Then $N \mid i$ is a subnet of N and $\operatorname{incl}(N \mid i, N)$ is an embedding of $N \mid i$ into N.

- (41) For every complete lattice T and for every net N in T and for every element i of N holds $\liminf(N \restriction i) = \liminf N$.
- (42) Let T be a non empty relational structure, N be a net in T, and X be a set. Suppose N is eventually in X. Then there exists an element i of N such that $N(i) \in X$ and rng (the mapping of $N \upharpoonright i) \subseteq X$.
- (43) Let T be a Lawson complete top-lattice and N be an eventually-filtered net in T. Then rng (the mapping of N) is a filtered non empty subset of T.
- (44) For every Lawson complete top-lattice T and for every eventually-filtered net N in T holds $Lim N = \{inf N\}$.

3. LAWSON TOPOLOGY REVISITED

The following propositions are true:

- (45) Let S, T be Lawson complete top-lattices and f be a meet-preserving map from S into T. Then f is continuous if and only if the following conditions are satisfied:
 - (i) f is directed-sups-preserving, and
- (ii) for every non empty subset *X* of *S* holds *f* preserves inf of *X*.
- (46) Let S, T be Lawson complete top-lattices and f be a semilattice morphism from S into T. Then f is continuous if and only if f is infs-preserving and directed-sups-preserving.
- Let S, T be non empty relational structures and let f be a map from S into T. We say that f is liminfs-preserving if and only if:
- (Def. 4) For every net *N* in *S* holds $f(\liminf N) = \liminf (f \cdot N)$.

The following propositions are true:

- (47) Let S, T be Lawson complete top-lattices and f be a semilattice morphism from S into T. Then f is continuous if and only if f is liminfs-preserving.
- (48) Let T be a Lawson complete continuous top-lattice and S be a meet-inheriting full non empty relational substructure of T. Suppose $\top_T \in$ the carrier of S and there exists a subset X of T such that X = the carrier of S and X is closed. Then S is infs-inheriting.
- (49) Let T be a Lawson complete continuous top-lattice and S be a full non empty relational substructure of T. Given a subset X of T such that X = the carrier of S and X is closed. Then S is directed-sups-inheriting.
- (50) Let T be a Lawson complete continuous top-lattice and S be an infs-inheriting directed-sups-inheriting full non empty relational substructure of T. Then there exists a subset X of T such that X = the carrier of S and X is closed.
- (51) Let T be a Lawson complete continuous top-lattice, S be an infs-inheriting directed-sups-inheriting full non empty relational substructure of T, and N be a net in T. If N is eventually in the carrier of S, then $\liminf N \in \text{the carrier of } S$.
- (52) Let T be a Lawson complete continuous top-lattice and S be a meet-inheriting full non empty relational substructure of T. Suppose that
 - (i) $\top_T \in \text{the carrier of } S$, and
- (ii) for every net N in T such that rng (the mapping of N) \subseteq the carrier of S holds $\liminf N \in$ the carrier of S.

Then *S* is infs-inheriting.

- (53) Let T be a Lawson complete continuous top-lattice and S be a full non empty relational substructure of T. Suppose that for every net N in T such that rng (the mapping of N) \subseteq the carrier of S holds $\liminf N \in$ the carrier of S. Then S is directed-sups-inheriting.
- (54) Let T be a Lawson complete continuous top-lattice, S be a meet-inheriting full non empty relational substructure of T, and X be a subset of T. Suppose X = the carrier of S and T_T $\in X$. Then X is closed if and only if for every net N in T such that N is eventually in X holds $\liminf N \in X$.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow 0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [4] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/vellow 9.html.
- [6] Grzegorz Bancerek. The Lawson topology. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel19. html
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [12] Adam Grabowski. On the category of posets. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/orders_3.html.
- [13] Adam Grabowski. Scott-continuous functions. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/Vol10/waybel17.html.
- [14] Artur Korniłowicz. On the topological properties of meet-continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [18] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vo19/waybell1.html.
- [19] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [20] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [21] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[22] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received July 12, 1998

Published January 2, 2004