The Lawson Topology¹

Grzegorz Bancerek University of Białystok

Summary. The article includes definitions, lemmas and theorems 1.1–1.7, 1.9, 1.10 presented in Chapter III of [11, pp. 142–146].

MML Identifier: WAYBEL19.

WWW: http://mizar.org/JFM/Vol10/waybel19.html

The articles [19], [8], [24], [16], [25], [6], [10], [7], [23], [1], [17], [20], [9], [2], [3], [18], [13], [14], [21], [4], [15], [22], and [5] provide the notation and terminology for this paper.

1. Lower Topology

Let T be a non empty FR-structure. We say that T is lower if and only if:

(Def. 1) $\{(\uparrow x)^c : x \text{ ranges over elements of } T\}$ is a prebasis of T.

Let us note that every non empty reflexive topological space-like FR-structure which is trivial is also lower.

Let us note that there exists a top-lattice which is lower, trivial, complete, and strict. One can prove the following proposition

(1) For every non empty relational structure L_1 holds there exists a strict correct topological augmentation of L_1 which is lower.

Let *R* be a non empty relational structure. Note that there exists a strict correct topological augmentation of *R* which is lower.

We now state the proposition

(2) Let L_2 , L_3 be topological space-like lower non empty FR-structures. Suppose the relational structure of L_2 = the relational structure of L_3 . Then the topology of L_2 = the topology of L_3 .

Let R be a non empty relational structure. The functor $\omega(R)$ yielding a family of subsets of R is defined by:

(Def. 2) For every lower correct topological augmentation T of R holds $\omega(R)$ = the topology of T.

One can prove the following propositions:

- (3) Let R_1 , R_2 be non empty relational structures. Suppose the relational structure of R_1 = the relational structure of R_2 . Then $\omega(R_1) = \omega(R_2)$.
- (4) For every lower non empty FR-structure T and for every point x of T holds $(\uparrow x)^c$ is open and $\uparrow x$ is closed.

¹This work has been partially supported by KBN grant 8 T11C 018 12 and NATO CRG 951368 grant.

- (5) For every transitive lower non empty FR-structure *T* and for every subset *A* of *T* such that *A* is open holds *A* is lower.
- (6) For every transitive lower non empty FR-structure *T* and for every subset *A* of *T* such that *A* is closed holds *A* is upper.
- (7) Let T be a non empty topological space-like FR-structure. Then T is lower if and only if $\{(\uparrow F)^c; F \text{ ranges over subsets of } T: F \text{ is finite}\}$ is a basis of T.
- (8) Let S, T be lower complete top-lattices and f be a map from S into T. Suppose that for every non empty subset X of S holds f preserves inf of X. Then f is continuous.
- (9) Let S, T be lower complete top-lattices and f be a map from S into T. If f is infs-preserving, then f is continuous.
- (10) Let T be a lower complete top-lattice, B_1 be a prebasis of T, and F be a non empty filtered subset of T. Suppose that for every subset A of T such that $A \in B_1$ and $\inf F \in A$ holds F meets A. Then $\inf F \in \overline{F}$.
- (11) Let S, T be lower complete top-lattices and f be a map from S into T. If f is continuous, then f is filtered-infs-preserving.
- (12) Let S, T be lower complete top-lattices and f be a map from S into T. Suppose f is continuous and for every finite subset X of S holds f preserves inf of X. Then f is infspreserving.
- (13) Let *T* be a lower topological space-like reflexive transitive non empty FR-structure and *x* be a point of *T*. Then $\overline{\{x\}} = \uparrow x$.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-structure.

One can check that every non empty top-poset which is lower is also T_0 .

Let *R* be a lower-bounded non empty relational structure. Observe that every topological augmentation of *R* is lower-bounded.

Next we state four propositions:

- (14) Let S, T be non empty relational structures, s be an element of S, and t be an element of T. Then $(\uparrow \langle s, t \rangle)^c = [:(\uparrow s)^c$, the carrier of T:] \cup [:the carrier of S, $(\uparrow t)^c$:].
- (15) Let S, T be lower-bounded non empty posets, S' be a lower correct topological augmentation of S, and T' be a lower correct topological augmentation of T. Then $\omega([:S,T:])$ = the topology of [:S',(T'] qua non empty topological space):].
- (16) Let S, T be lower lower-bounded non empty top-posets. Then $\omega([:S, (T \text{ qua poset}):]) = \text{the topology of } [:S, (T \text{ qua non empty topological space}):].$
- (17) Let T, T_2 be lower complete top-lattices. Suppose T_2 is a topological augmentation of [:T, (T qua | lattice):]. Let f be a map from T_2 into T. If $f = \sqcap_T$, then f is continuous.

2. Refinements Revisited

The scheme *TopInd* deals with a top-lattice \mathcal{A} and a unary predicate \mathcal{P} , and states that: For every subset A of \mathcal{A} such that A is open holds $\mathcal{P}[A]$

provided the parameters meet the following conditions:

- There exists a prebasis K of \mathcal{A} such that for every subset A of \mathcal{A} such that $A \in K$ holds $\mathcal{P}[A]$,
- For every family F of subsets of \mathcal{A} such that for every subset A of \mathcal{A} such that $A \in F$ holds $\mathcal{P}[A]$ holds $\mathcal{P}[\bigcup F]$,
- For all subsets A_1 , A_2 of \mathcal{A} such that $\mathcal{P}[A_1]$ and $\mathcal{P}[A_2]$ holds $\mathcal{P}[A_1 \cap A_2]$, and
- $\mathcal{P}[\Omega_{\mathcal{A}}].$

The following proposition is true

- (18) Let L_2 , L_3 be up-complete antisymmetric non empty reflexive relational structures. Suppose that
 - (i) the relational structure of L_2 = the relational structure of L_3 , and
- (ii) for every element x of L_2 holds $\downarrow x$ is directed and non empty.

If L_2 satisfies axiom of approximation, then L_3 satisfies axiom of approximation.

Let T be a continuous non empty poset. Note that every topological augmentation of T is continuous.

Next we state a number of propositions:

- (19) Let T, S be topological spaces, R be a refinement of T and S, and W be a subset of R. If $W \in$ the topology of T or $W \in$ the topology of S, then W is open.
- (20) Let T, S be topological spaces, R be a refinement of T and S, V be a subset of T, and W be a subset of R. If W = V, then if V is open, then W is open.
- (21) Let T, S be topological spaces. Suppose the carrier of T = the carrier of S. Let R be a refinement of T and S, V be a subset of T, and W be a subset of R. If W = V, then if V is closed, then W is closed.
- (22) Let T be a non empty topological space and K, O be sets such that $K \subseteq O$ and $O \subseteq$ the topology of T. Then
 - (i) if K is a basis of T, then O is a basis of T, and
- (ii) if K is a prebasis of T, then O is a prebasis of T.
- (23) Let T_1 , T_2 be non empty topological spaces. Suppose the carrier of T_1 = the carrier of T_2 . Let T be a refinement of T_1 and T_2 , T_2 be a prebasis of T_2 , and T_3 be a prebasis of T_2 . Then $T_2 \cup T_3$ is a prebasis of T_3 .
- (24) Let T_1 , S_1 , T_2 , S_2 be non empty topological spaces, R_1 be a refinement of T_1 and S_1 , R_2 be a refinement of T_2 and S_2 , f be a map from T_1 into T_2 , g be a map from S_1 into S_2 , and h be a map from R_1 into R_2 . Suppose h = f and h = g. If f is continuous and g is continuous, then h is continuous.
- (25) Let T be a non empty topological space, K be a prebasis of T, N be a net in T, and p be a point of T. Suppose that for every subset A of T such that $p \in A$ and $A \in K$ holds N is eventually in A. Then $p \in \text{Lim} N$.
- (26) Let T be a non empty topological space, N be a net in T, and S be a subset of T. If N is eventually in S, then $\text{Lim } N \subseteq \overline{S}$.
- (27) Let R be a non empty relational structure and X be a non empty subset of R. Then the mapping of $\langle X; \mathrm{id} \rangle = \mathrm{id}_X$ and the mapping of $\langle X^{\mathrm{op}}; \mathrm{id} \rangle = \mathrm{id}_X$.
- (28) For every reflexive antisymmetric non empty relational structure R and for every element x of R holds $\uparrow x \cap \downarrow x = \{x\}$.

3. LAWSON TOPOLOGY

Let *T* be a reflexive non empty FR-structure. We say that *T* is Lawson if and only if:

(Def. 3) $\omega(T) \cup \sigma(T)$ is a prebasis of T.

Next we state the proposition

(29) Let R be a complete lattice, L_1 be a lower correct topological augmentation of R, S be a Scott topological augmentation of R, and T be a correct topological augmentation of R. Then T is Lawson if and only if T is a refinement of S and L_1 .

Let *R* be a complete lattice. One can check that there exists a topological augmentation of *R* which is Lawson, strict, and correct.

Let us note that there exists a top-lattice which is Scott, complete, and strict and there exists a complete strict top-lattice which is Lawson and continuous.

The following three propositions are true:

- (30) For every Lawson complete top-lattice T holds $\sigma(T) \cup \{(\uparrow x)^c : x \text{ ranges over elements of } T\}$ is a prebasis of T.
- (31) Let T be a Lawson complete top-lattice. Then $\sigma(T) \cup \{W \setminus \uparrow x; W \text{ ranges over subsets of } T$, x ranges over elements of T: $W \in \sigma(T)\}$ is a prebasis of T.
- (32) Let T be a Lawson complete top-lattice. Then $\{W \setminus \uparrow F; W \text{ ranges over subsets of } T, F \text{ ranges over subsets of } T: W \in \sigma(T) \land F \text{ is finite} \}$ is a basis of T.

Let T be a complete lattice. The functor $\lambda(T)$ yielding a family of subsets of T is defined by:

(Def. 4) For every Lawson correct topological augmentation S of T holds $\lambda(T)$ = the topology of S.

Next we state a number of propositions:

- (33) For every complete lattice *R* holds $\lambda(R) = \text{UniCl}(\text{FinMeetCl}(\sigma(R) \cup \omega(R)))$.
- (34) Let R be a complete lattice, T be a lower correct topological augmentation of R, S be a Scott correct topological augmentation of R, and M be a refinement of S and T. Then $\lambda(R)$ = the topology of M.
- (35) For every lower up-complete top-lattice *T* and for every subset *A* of *T* such that *A* is open holds *A* has the property (S).
- (36) For every Lawson complete top-lattice *T* and for every subset *A* of *T* such that *A* is open holds *A* has the property (S).
- (37) Let S be a Scott complete top-lattice, T be a Lawson correct topological augmentation of S, and A be a subset of S. If A is open, then for every subset C of T such that C = A holds C is open.
- (38) Let *T* be a Lawson complete top-lattice and *x* be an element of *T*. Then $\uparrow x$ is closed and $\downarrow x$ is closed and $\{x\}$ is closed.
- (39) For every Lawson complete top-lattice T and for every element x of T holds $(\uparrow x)^c$ is open and $\{x\}^c$ is open.
- (40) For every Lawson complete continuous top-lattice T and for every element x of T holds $\uparrow x$ is open and $(\uparrow x)^c$ is closed.
- (41) Let S be a Scott complete top-lattice, T be a Lawson correct topological augmentation of S, and A be an upper subset of T. If A is open, then for every subset C of S such that C = A holds C is open.
- (42) Let T be a Lawson complete top-lattice and A be a lower subset of T. Then A is closed if and only if A is closed under directed sups.
- (43) For every Lawson complete top-lattice T and for every non empty filtered subset F of T holds $Lim\langle F^{op}; id \rangle = \{\inf F\}$.

Let us note that every complete top-lattice which is Lawson is also T_1 and compact. Let us observe that every complete continuous top-lattice which is Lawson is also Hausdorff.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow 0.html.
- [3] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel 0.html.
- [4] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3 html
- [5] Grzegorz Bancerek. Bases and refinements of topologies. Journal of Formalized Mathematics, 10, 1998. http://mizar.org/JFM/ Vol10/yellow_9.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [9] Agata Darmochwał. Compact spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/compts_1.html.
- [10] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [11] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [12] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [13] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [14] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.
- [15] Artur Komiłowicz. On the topological properties of meet-continuous lattices. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [16] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [17] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [18] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vo17/cantor 1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. A Borsuk theorem on homotopy types. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/borsuk_1.html.
- [21] Andrzej Trybulec. Moore-Smith convergence. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [22] Andrzej Trybulec. Scott topology. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/waybelll.html.
- [23] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [24] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [25] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

Received June 21, 1998

Published January 2, 2004