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The articles|[19],([8],[[24],[16],[25],[16],[[10], 1], [123],[[1],[[17],[[20],[[9],[[2],[[8],[[12],[[18],
[13], [14], [21], [4], [15], |22], and [5] provide the notation and terminology for this paper.

1. LOWERTOPOLOGY

Let T be a non empty FR-structure. We say thas lower if and only if:
(Def. 1) {(1x)°: xranges over elements &f} is a prebasis of .

Let us note that every non empty reflexive topological space-like FR-structure which is trivial is
also lower.

Let us note that there exists a top-lattice which is lower, trivial, complete, and strict.

One can prove the following proposition

(1) For every non empty relational structure holds there exists a strict correct topological
augmentation of ; which is lower.

Let R be a non empty relational structure. Note that there exists a strict correct topological
augmentation oR which is lower.
We now state the proposition

(2) LetLy, L3 be topological space-like lower non empty FR-structures. Suppose the relational
structure o, = the relational structure df;. Then the topology of» = the topology of_s.

Let Rbe a non empty relational structure. The funadR) yielding a family of subsets dRis
defined by:

(Def. 2) For every lower correct topological augmentaffoaf R holdsw(R) = the topology ofT .

One can prove the following propositions:

(3) LetRy, R; be non empty relational structures. Suppose the relational structBe-othe
relational structure oR,. Thenw(R;) = W(Ry).

(4) For every lower non empty FR-structuFeand for every poink of T holds(1x)¢ is open
andxis closed.
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(5) For every transitive lower non empty FR-structiirand for every subsef of T such that
Ais open hold® is lower.

(6) For every transitive lower non empty FR-structiirand for every subse of T such that
Ais closed hold#\ is upper.

(7) LetT be a non empty topological space-like FR-structure. Théslower if and only if
{(1F)S; F ranges over subsets ®f F is finite} is a basis of .

(8) LetS T be lower complete top-lattices arfdbe a map fronSinto T. Suppose that for
every non empty subs#tof Sholdsf preserves inf oK. Thenf is continuous.

(9) LetS T belower complete top-lattices arfidbe a map fronsinto T. If f is infs-preserving,
thenf is continuous.

(10) LetT be a lower complete top-latticB; be a prebasis of, andF be a non empty filtered
subset ofT. Suppose that for every subseof T such thatA € B; and infF € A holdsF
meetsA. Then infF € F.

(11) LetS T be lower complete top-lattices aricbe a map fronSinto T. If f is continuous,
thenf is filtered-infs-preserving.

(12) LetS T be lower complete top-lattices arfdbe a map fromSinto T. Supposef is
continuous and for every finite subs¢tof S holds f preserves inf oiX. Thenf is infs-
preserving.

(13) LetT be a lower topological space-like reflexive transitive non empty FR-structure and
be a point ofT. Then{x} = Tx.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-structure.

One can check that every non empty top-poset which is lower isTalso

Let R be a lower-bounded non empty relational structure. Observe that every topological aug-
mentation ofR is lower-bounded.

Next we state four propositions:

(14) LetS T be non empty relational structureade an element db, andt be an element of .
Then(7(s,t))¢ = [ (19)°, the carrier ofT ] U [ the carrier ofS, (1t)°].

(15) LetS T be lower-bounded non empty posedshbe a lower correct topological augmenta-
tion of S andT’ be a lower correct topological augmentationTof Thenw([: S T ) = the
topology of|: S, (T’ qua non empty topological spacg):

(16) LetS T be lower lower-bounded non empty top-posets. ThérS, (T quaposet)]) =the
topology of: S, (T qua non empty topological spacg):

(17) LetT, T, be lower complete top-lattices. Suppdses a topological augmentation pf,
(T qualattice)]. Let f be amap fronT, into T. If f =y, thenf is continuous.

2. REFINEMENTSREVISITED

The schemdoplnddeals with a top-lattice? and a unary predicatg, and states that:
For every subse of 4 such thatA is open holdsP[A]
provided the parameters meet the following conditions:
e There exists a prebasis of 4 such that for every subsét of 4 such thatA € K
holdsP[A],
e For every familyF of subsets ofg such that for every subsatof 4 such thatA € F
holds®?[A] holdsP[JF],
e For all subsetd\;, Ay of 4 such thatP[A;] andP[A;] holdsP[A1 N A], and
o P[Qg].
The following proposition is true
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(18) LetLy, L3 be up-complete antisymmetric non empty reflexive relational structures. Sup-
pose that

(i) the relational structure df; = the relational structure dfz, and
(i) for every elemenk of L, holds|x is directed and non empty.
If L, satisfies axiom of approximation, thep satisfies axiom of approximation.
Let T be a continuous non empty poset. Note that every topological augmentatibrisof

continuous.
Next we state a number of propositions:

(19) LetT, Shbe topological space® be a refinement of andS, andW be a subset oR. If
W € the topology ofT orW € the topology ofS, thenW is open.

(20) LetT, Sbe topological spaceR be a refinement of andS, V be a subset of, andW be
a subset oR. If W =V, then ifV is open, theW is open.

(21) LetT, She topological spaces. Suppose the carrief ef the carrier ofS Let R be a
refinement ofT andS, V be a subset of, andW be a subset oR. If W=V, then ifV is
closed, theW is closed.

(22) LetT be a non empty topological space aRdO be sets such tha¢ C O andO C the
topology of T. Then
(i) if Kis abasis ofl, thenOis a basis ofl, and
(i) if Kisaprebasis of, thenOis a prebasis of .
(23) LetTy, T be non empty topological spaces. Suppose the carri€r efthe carrier ofTs.

Let T be a refinement of; andTs, B, be a prebasis df;, andBs be a prebasis of,. Then
B, UB;3 is a prebasis of .

(24) LetTy, S, T2, S be non empty topological spacéd, be a refinement of; andS;, Ry be
a refinement of; and$;, f be a map fronT; into T,, g be a map frong; into S, andh be a
map fromRy into Ry. Supposén = f andh=g. If f is continuous and is continuous, then
his continuous.

(25) LetT be a non empty topological spad€ be a prebasis of, N be a net inT, andp be
a point of T. Suppose that for every subskof T such thatp € A andA € K holdsN is
eventually inA. Thenp € Lim N.

(26) LetT be a non empty topological spad¢be a net inT, andSbe a subset of. If N is
eventually inS, then LImN C S

(27) LetR be a non empty relational structure akdbe a non empty subset & Then the
mapping of(X;id) = idx and the mapping ofX°P;id) = idx.

(28) For every reflexive antisymmetric non empty relational strud®aad for every element
of RholdsTxN |x = {x}.

3. LAwsoNToOPOLOGY
LetT be a reflexive non empty FR-structure. We say tha Lawson if and only if;
(Def.3) w(T)Uo(T) is a prebasis of .
Next we state the proposition

(29) LetR be a complete latticd,1 be a lower correct topological augmentationRfS be a
Scott topological augmentation Bf andT be a correct topological augmentationrofThen
T is Lawson if and only ifT is a refinement o8andL;.
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Let R be a complete lattice. One can check that there exists a topological augmentd#on of
which is Lawson, strict, and correct.

Let us note that there exists a top-lattice which is Scott, complete, and strict and there exists a
complete strict top-lattice which is Lawson and continuous.

The following three propositions are true:

(30) For every Lawson complete top-latti€eholdsa(T) U {(1x)° : x ranges over elements of
T} is a prebasis of .

(31) LetT be a Lawson complete top-lattice. The(il ) U{W \ Tx;W ranges over subsets f
x ranges over elements ©f W € o(T)} is a prebasis of .

(32) LetT be a Lawson complete top-lattice. Théw \ 1F;W ranges over subsets @f F
ranges over subsets of W € o(T) A Fis finite} is a basis ofl.

Let T be a complete lattice. The functd(T) yielding a family of subsets of is defined by:

(Def. 4) For every Lawson correct topological augmentagaf T holdsA(T) = the topology of
S

Next we state a number of propositions:

(33) For every complete lattide holdsA(R) = UniCl(FinMeetC(o(R) Uw(R))).

(34) LetRbe acomplete latticd, be a lower correct topological augmentatiorRpShe a Scott
correct topological augmentation Bf andM be a refinement acBandT. ThenA(R) = the
topology ofM.

(35) For every lower up-complete top-lattifeand for every subset of T such thatA is open
holdsA has the property (S).

(36) For every Lawson complete top-latti€eand for every subsek of T such thatA is open
holdsA has the property (S).

(37) LetSbe a Scott complete top-lattic,be a Lawson correct topological augmentation of
S andA be a subset d&. If Ais open, then for every subsetof T such thaC = A holdsC
is open.

(38) LetT be a Lawson complete top-lattice axntle an element of . Then{x s closed andx
is closed andx} is closed.

(39) For every Lawson complete top-lattifeand for every elementof T holds(1x) is open
and(|x)¢ is open and x}¢ is open.

(40) For every Lawson complete continuous top-latlicand for every elementof T holdstx
is open and}x)¢ is closed.

(41) LetSbe a Scott complete top-lattic,be a Lawson correct topological augmentation of
S, andA be an upper subset @f. If Ais open, then for every subggtof Ssuch thaC = A
holdsC is open.

(42) LetT be a Lawson complete top-lattice aAde a lower subset of. ThenA is closed if
and only ifAis closed under directed sups.

(43) For every Lawson complete top-latti€eand for every non empty filtered subgetof T
holds Lim(F°P;id) = {infF}.

Let us note that every complete top-lattice which is Lawson is Blsmd compact.
Let us observe that every complete continuous top-lattice which is Lawson is also Hausdorff.
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