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The articles [19], [8], [24], [16], [25], [6], [10], [7], [23], [1], [17], [20], [9], [2], [3], [12], [18],
[13], [14], [21], [4], [15], [22], and [5] provide the notation and terminology for this paper.

1. LOWER TOPOLOGY

Let T be a non empty FR-structure. We say thatT is lower if and only if:

(Def. 1) {(↑x)c : x ranges over elements ofT} is a prebasis ofT.

Let us note that every non empty reflexive topological space-like FR-structure which is trivial is
also lower.

Let us note that there exists a top-lattice which is lower, trivial, complete, and strict.
One can prove the following proposition

(1) For every non empty relational structureL1 holds there exists a strict correct topological
augmentation ofL1 which is lower.

Let R be a non empty relational structure. Note that there exists a strict correct topological
augmentation ofRwhich is lower.

We now state the proposition

(2) LetL2, L3 be topological space-like lower non empty FR-structures. Suppose the relational
structure ofL2 = the relational structure ofL3. Then the topology ofL2 = the topology ofL3.

Let R be a non empty relational structure. The functorω(R) yielding a family of subsets ofR is
defined by:

(Def. 2) For every lower correct topological augmentationT of Rholdsω(R) = the topology ofT.

One can prove the following propositions:

(3) Let R1, R2 be non empty relational structures. Suppose the relational structure ofR1 = the
relational structure ofR2. Thenω(R1) = ω(R2).

(4) For every lower non empty FR-structureT and for every pointx of T holds(↑x)c is open
and↑x is closed.
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(5) For every transitive lower non empty FR-structureT and for every subsetA of T such that
A is open holdsA is lower.

(6) For every transitive lower non empty FR-structureT and for every subsetA of T such that
A is closed holdsA is upper.

(7) Let T be a non empty topological space-like FR-structure. ThenT is lower if and only if
{(↑F)c;F ranges over subsets ofT: F is finite} is a basis ofT.

(8) Let S, T be lower complete top-lattices andf be a map fromS into T. Suppose that for
every non empty subsetX of Sholds f preserves inf ofX. Then f is continuous.

(9) LetS, T be lower complete top-lattices andf be a map fromSintoT. If f is infs-preserving,
then f is continuous.

(10) LetT be a lower complete top-lattice,B1 be a prebasis ofT, andF be a non empty filtered
subset ofT. Suppose that for every subsetA of T such thatA ∈ B1 and infF ∈ A holdsF
meetsA. Then infF ∈ F .

(11) LetS, T be lower complete top-lattices andf be a map fromS into T. If f is continuous,
then f is filtered-infs-preserving.

(12) Let S, T be lower complete top-lattices andf be a map fromS into T. Supposef is
continuous and for every finite subsetX of S holds f preserves inf ofX. Then f is infs-
preserving.

(13) LetT be a lower topological space-like reflexive transitive non empty FR-structure andx
be a point ofT. Then{x}= ↑x.

A top-poset is a topological space-like reflexive transitive antisymmetric FR-structure.
One can check that every non empty top-poset which is lower is alsoT0.
Let R be a lower-bounded non empty relational structure. Observe that every topological aug-

mentation ofR is lower-bounded.
Next we state four propositions:

(14) LetS, T be non empty relational structures,sbe an element ofS, andt be an element ofT.
Then(↑〈〈s, t〉〉)c = [:(↑s)c, the carrier ofT :]∪ [: the carrier ofS, (↑t)c :].

(15) LetS, T be lower-bounded non empty posets,S′ be a lower correct topological augmenta-
tion of S, andT ′ be a lower correct topological augmentation ofT. Thenω([:S, T :]) = the
topology of[:S′, (T ′ qua non empty topological space) :].

(16) LetS, T be lower lower-bounded non empty top-posets. Thenω([:S, (T qua poset) :]) = the
topology of[:S, (T qua non empty topological space) :].

(17) LetT, T2 be lower complete top-lattices. SupposeT2 is a topological augmentation of[:T,
(T qua lattice) :]. Let f be a map fromT2 into T. If f = uT , then f is continuous.

2. REFINEMENTSREVISITED

The schemeTopInddeals with a top-latticeA and a unary predicateP , and states that:
For every subsetA of A such thatA is open holdsP [A]

provided the parameters meet the following conditions:
• There exists a prebasisK of A such that for every subsetA of A such thatA ∈ K

holdsP [A],
• For every familyF of subsets ofA such that for every subsetA of A such thatA∈ F

holdsP [A] holdsP [
⋃

F ],
• For all subsetsA1, A2 of A such thatP [A1] andP [A2] holdsP [A1∩A2], and
• P [ΩA ].

The following proposition is true
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(18) Let L2, L3 be up-complete antisymmetric non empty reflexive relational structures. Sup-
pose that

(i) the relational structure ofL2 = the relational structure ofL3, and

(ii) for every elementx of L2 holds↓↓x is directed and non empty.

If L2 satisfies axiom of approximation, thenL3 satisfies axiom of approximation.

Let T be a continuous non empty poset. Note that every topological augmentation ofT is
continuous.

Next we state a number of propositions:

(19) LetT, Sbe topological spaces,R be a refinement ofT andS, andW be a subset ofR. If
W ∈ the topology ofT or W ∈ the topology ofS, thenW is open.

(20) LetT, Sbe topological spaces,Rbe a refinement ofT andS, V be a subset ofT, andW be
a subset ofR. If W = V, then ifV is open, thenW is open.

(21) Let T, S be topological spaces. Suppose the carrier ofT = the carrier ofS. Let R be a
refinement ofT andS, V be a subset ofT, andW be a subset ofR. If W = V, then if V is
closed, thenW is closed.

(22) Let T be a non empty topological space andK, O be sets such thatK ⊆ O andO⊆ the
topology ofT. Then

(i) if K is a basis ofT, thenO is a basis ofT, and

(ii) if K is a prebasis ofT, thenO is a prebasis ofT.

(23) LetT1, T2 be non empty topological spaces. Suppose the carrier ofT1 = the carrier ofT2.
Let T be a refinement ofT1 andT2, B2 be a prebasis ofT1, andB3 be a prebasis ofT2. Then
B2∪B3 is a prebasis ofT.

(24) LetT1, S1, T2, S2 be non empty topological spaces,R1 be a refinement ofT1 andS1, R2 be
a refinement ofT2 andS2, f be a map fromT1 into T2, g be a map fromS1 into S2, andh be a
map fromR1 into R2. Supposeh = f andh = g. If f is continuous andg is continuous, then
h is continuous.

(25) LetT be a non empty topological space,K be a prebasis ofT, N be a net inT, andp be
a point ofT. Suppose that for every subsetA of T such thatp ∈ A andA ∈ K holdsN is
eventually inA. Thenp∈ Lim N.

(26) LetT be a non empty topological space,N be a net inT, andSbe a subset ofT. If N is
eventually inS, then LimN ⊆ S.

(27) Let R be a non empty relational structure andX be a non empty subset ofR. Then the
mapping of〈X; id〉= idX and the mapping of〈Xop; id〉= idX.

(28) For every reflexive antisymmetric non empty relational structureRand for every elementx
of Rholds↑x∩↓x = {x}.

3. LAWSON TOPOLOGY

Let T be a reflexive non empty FR-structure. We say thatT is Lawson if and only if:

(Def. 3) ω(T)∪σ(T) is a prebasis ofT.

Next we state the proposition

(29) Let R be a complete lattice,L1 be a lower correct topological augmentation ofR, S be a
Scott topological augmentation ofR, andT be a correct topological augmentation ofR. Then
T is Lawson if and only ifT is a refinement ofSandL1.
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Let R be a complete lattice. One can check that there exists a topological augmentation ofR
which is Lawson, strict, and correct.

Let us note that there exists a top-lattice which is Scott, complete, and strict and there exists a
complete strict top-lattice which is Lawson and continuous.

The following three propositions are true:

(30) For every Lawson complete top-latticeT holdsσ(T)∪{(↑x)c : x ranges over elements of
T} is a prebasis ofT.

(31) LetT be a Lawson complete top-lattice. Thenσ(T)∪{W\↑x;W ranges over subsets ofT,
x ranges over elements ofT: W ∈ σ(T)} is a prebasis ofT.

(32) Let T be a Lawson complete top-lattice. Then{W \ ↑F ;W ranges over subsets ofT, F
ranges over subsets ofT: W ∈ σ(T) ∧ F is finite} is a basis ofT.

Let T be a complete lattice. The functorλ(T) yielding a family of subsets ofT is defined by:

(Def. 4) For every Lawson correct topological augmentationS of T holdsλ(T) = the topology of
S.

Next we state a number of propositions:

(33) For every complete latticeRholdsλ(R) = UniCl(FinMeetCl(σ(R)∪ω(R))).

(34) LetRbe a complete lattice,T be a lower correct topological augmentation ofR, Sbe a Scott
correct topological augmentation ofR, andM be a refinement ofSandT. Thenλ(R) = the
topology ofM.

(35) For every lower up-complete top-latticeT and for every subsetA of T such thatA is open
holdsA has the property (S).

(36) For every Lawson complete top-latticeT and for every subsetA of T such thatA is open
holdsA has the property (S).

(37) LetSbe a Scott complete top-lattice,T be a Lawson correct topological augmentation of
S, andA be a subset ofS. If A is open, then for every subsetC of T such thatC = A holdsC
is open.

(38) LetT be a Lawson complete top-lattice andx be an element ofT. Then↑x is closed and↓x
is closed and{x} is closed.

(39) For every Lawson complete top-latticeT and for every elementx of T holds(↑x)c is open
and(↓x)c is open and{x}c is open.

(40) For every Lawson complete continuous top-latticeT and for every elementx of T holds↑↑x
is open and(↑↑x)c is closed.

(41) LetSbe a Scott complete top-lattice,T be a Lawson correct topological augmentation of
S, andA be an upper subset ofT. If A is open, then for every subsetC of Ssuch thatC = A
holdsC is open.

(42) LetT be a Lawson complete top-lattice andA be a lower subset ofT. ThenA is closed if
and only ifA is closed under directed sups.

(43) For every Lawson complete top-latticeT and for every non empty filtered subsetF of T
holds Lim〈Fop; id〉= {inf F}.

Let us note that every complete top-lattice which is Lawson is alsoT1 and compact.
Let us observe that every complete continuous top-lattice which is Lawson is also Hausdorff.
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