Algebraic and Arithmetic Lattices. Part II¹

Robert Milewski University of Białystok

Summary. The article is a translation of [10, pp. 89–92].

MML Identifier: WAYBEL15.

WWW: http://mizar.org/JFM/Vol9/waybel15.html

The articles [16], [18], [19], [6], [7], [9], [17], [15], [2], [14], [1], [3], [11], [21], [4], [8], [5], [20], [12], and [13] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

- (1) Let *R* be a relational structure and *S* be a full relational substructure of *R*. Then every full relational substructure of *S* is a full relational substructure of *R*.
- (2) Let X be a 1-sorted structure, Y, Z be non empty 1-sorted structures, f be a map from X into Y, and g be a map from Y into Z. If f is onto and g is onto, then $g \cdot f$ is onto.
- (3) For every 1-sorted structure *X* and for every subset *Y* of *X* holds $(id_X)^{\circ}Y = Y$.
- (4) For every set *X* and for every element *a* of 2_{\subseteq}^X holds $\uparrow a = \{Y; Y \text{ ranges over subsets of } X: a \subseteq Y\}.$
- (5) Let L be an upper-bounded non empty antisymmetric relational structure and a be an element of L. If $\top_L \leq a$, then $a = \top_L$.
- (6) Let S, T be non empty posets, g be a map from S into T, and d be a map from T into S. If g is onto and $\langle g, d \rangle$ is Galois, then T and Im d are isomorphic.
- (7) Let L_1 , L_2 , L_3 be non empty posets, g_1 be a map from L_1 into L_2 , g_2 be a map from L_2 into L_3 , d_1 be a map from L_2 into L_1 , and d_2 be a map from L_3 into L_2 . If $\langle g_1, d_1 \rangle$ is Galois and $\langle g_2, d_2 \rangle$ is Galois, then $\langle g_2, g_1, d_1 \cdot d_2 \rangle$ is Galois.
- (8) Let L_1 , L_2 be non empty posets, f be a map from L_1 into L_2 , and f_1 be a map from L_2 into L_1 . Suppose $f_1 = (f$ **qua** function) $^{-1}$ and f is isomorphic. Then $\langle f, f_1 \rangle$ is Galois and $\langle f_1, f \rangle$ is Galois.
- (9) For every set *X* holds 2^X_{\subset} is arithmetic.

Let *X* be a set. Observe that 2_{\subseteq}^{X} is arithmetic. Next we state four propositions:

¹This work has been supported by KBN Grant 8 T11C 018 12.

- (10) Let L_1 , L_2 be up-complete non empty posets and f be a map from L_1 into L_2 . If f is isomorphic, then for every element x of L_1 holds $f^{\circ} \downarrow x = \downarrow f(x)$.
- (11) For all non empty posets L_1 , L_2 such that L_1 and L_2 are isomorphic and L_1 is continuous holds L_2 is continuous.
- (12) Let L_1 , L_2 be lattices. Suppose L_1 and L_2 are isomorphic and L_1 is lower-bounded and arithmetic. Then L_2 is arithmetic.
- (13) Let L_1 , L_2 , L_3 be non empty posets, f be a map from L_1 into L_2 , and g be a map from L_2 into L_3 . Suppose f is directed-sups-preserving and g is directed-sups-preserving. Then $g \cdot f$ is directed-sups-preserving.

2. Maps Preserving Sup's and Inf's

Next we state several propositions:

- (14) Let L_1 , L_2 be non empty relational structures, f be a map from L_1 into L_2 , and X be a subset of Im f. Then $(f_{\circ})^{\circ}X = X$.
- (15) Let X be a set and c be a map from 2^X_{\subseteq} into 2^X_{\subseteq} . Suppose c is idempotent and directed-supspreserving. Then c_{\circ} is directed-supspreserving.
- (16) Let L be a continuous complete lattice and p be a kernel map from L into L. If p is directed-sups-preserving, then Im p is a continuous lattice.
- (17) Let L be a continuous complete lattice and p be a projection map from L into L. If p is directed-sups-preserving, then Im p is a continuous lattice.
- (18) Let *L* be a lower-bounded lattice. Then *L* is continuous if and only if there exists an arithmetic lower-bounded lattice *A* such that there exists a map from *A* into *L* which is onto, infs-preserving, and directed-sups-preserving.
- (19) Let *L* be a lower-bounded lattice. Then *L* is continuous if and only if there exists an algebraic lower-bounded lattice *A* such that there exists a map from *A* into *L* which is onto, infs-preserving, and directed-sups-preserving.
- (20) Let L be a lower-bounded lattice. Then
 - (i) if L is continuous, then there exists a non empty set X and there exists a projection map p from 2_{\subseteq}^X into 2_{\subseteq}^X such that p is directed-sups-preserving and L and $\operatorname{Im} p$ are isomorphic, and
- (ii) if there exists a set X and there exists a projection map p from $2 \subseteq X$ such that p is directed-sups-preserving and L and Im p are isomorphic, then L is continuous.

3. ATOMS ELEMENTS

The following proposition is true

(21) For every non empty relational structure L and for every element x of L holds $x \in PRIME(L^{op})$ iff x is co-prime.

Let L be a non empty relational structure and let a be an element of L. We say that a is atom if and only if:

(Def. 1) $\perp_L < a$ and for every element b of L such that $\perp_L < b$ and $b \le a$ holds b = a.

Let L be a non empty relational structure. The functor ATOM(L) yielding a subset of L is defined as follows:

(Def. 2) For every element x of L holds $x \in ATOM(L)$ iff x is atom.

We now state the proposition

(23)¹ For every Boolean lattice L and for every element a of L holds a is atom iff a is co-prime and $a \neq \bot_L$.

Let L be a Boolean lattice. Observe that every element of L which is atom is also co-prime. The following propositions are true:

- (24) For every Boolean lattice *L* holds ATOM(*L*) = PRIME(L^{op}) \ { \perp_L }.
- (25) For every Boolean lattice *L* and for all elements *x*, *a* of *L* such that *a* is atom holds $a \le x$ iff $a \not\le \neg x$.
- (26) Let *L* be a complete Boolean lattice, *X* be a subset of *L*, and *x* be an element of *L*. Then $x \sqcap \sup X = \bigsqcup_{L} \{x \sqcap y; y \text{ ranges over elements of } L: y \in X\}.$
- (27) Let *L* be a lower-bounded antisymmetric non empty relational structure with g.l.b.'s and *x*, *y* be elements of *L*. If *x* is atom and *y* is atom and $x \neq y$, then $x \sqcap y = \bot_L$.
- (28) Let L be a complete Boolean lattice, x be an element of L, and A be a subset of L. If $A \subseteq ATOM(L)$, then $x \in A$ iff x is atom and $x \le \sup A$.
- (29) Let L be a complete Boolean lattice and X, Y be subsets of L. If $X \subseteq ATOM(L)$ and $Y \subseteq ATOM(L)$, then $X \subseteq Y$ iff $\sup X \le \sup Y$.

4. More on the Boolean Lattice

The following propositions are true:

- (30) For every Boolean lattice L holds L is arithmetic iff there exists a set X such that L and 2_{\subseteq}^{X} are isomorphic.
- (31) For every Boolean lattice L holds L is arithmetic iff L is algebraic.
- (32) For every Boolean lattice L holds L is arithmetic iff L is continuous.
- (33) For every Boolean lattice L holds L is arithmetic iff L is continuous and L^{op} is continuous.
- (34) For every Boolean lattice L holds L is arithmetic iff L is completely-distributive.
- (35) Let *L* be a Boolean lattice. Then *L* is arithmetic if and only if the following conditions are satisfied:
 - (i) L is complete, and
- (ii) for every element x of L there exists a subset X of L such that $X \subseteq ATOM(L)$ and $x = \sup X$.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Grzegorz Bancerek. Quantales. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/quantal1.html.
- [3] Grzegorz Bancerek. Bounds in posets and relational substructures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [5] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [6] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.

¹ The proposition (22) has been removed.

- [7] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [8] Czesław Byliński. Galois connections. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_1.html.
- [9] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finset_1.html.
- [10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [12] Beata Madras. Irreducible and prime elements. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 6.html.
- [13] Robert Milewski. Algebraic lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_8.html.
- [14] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [16] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [17] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [18] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [19] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat 1.html.
- [20] Mariusz Żynel. The equational characterization of continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_5.html.
- [21] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.

Received October 29, 1997

Published January 2, 2004