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The articles [23], [7], [29], [18], [9], [22], [6], [28], [2], [1], [20], [19], [24], [21], [8], [3], [11], [12],
[13], [25], [26], [4], [14], [5], [30], [16], [17], [15], and [27] provide the notation and terminology
for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) Let X be a set andF be a finite family of subsets ofX. Then there exists a finite familyG
of subsets ofX such thatG⊆ F and

⋃
G =

⋃
F and for every subsetg of X such thatg∈ G

holdsg 6⊆
⋃

(G\{g}).

(2) For every 1-sorted structureSand for every subsetX of SholdsXc = the carrier ofS iff X
is empty.

(3) LetRbe an antisymmetric transitive non empty relational structure with g.l.b.’s andx, y be
elements ofR. Then↓(xuy) = ↓x∩↓y.

(4) LetRbe an antisymmetric transitive non empty relational structure with l.u.b.’s andx, y be
elements ofR. Then↑(xty) = ↑x∩↑y.

(5) Let L be a complete antisymmetric non empty relational structure andX be a lower subset
of L. If supX ∈ X, thenX = ↓supX.

(6) LetL be a complete antisymmetric non empty relational structure andX be an upper subset
of L. If inf X ∈ X, thenX = ↑inf X.

(7) Let R be a non empty reflexive transitive relational structure andx, y be elements ofR.
Thenx� y if and only if ↑y⊆ ↑↑x.

(8) Let R be a non empty reflexive transitive relational structure andx, y be elements ofR.
Thenx� y if and only if ↓x⊆ ↓↓y.
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(9) Let R be a complete reflexive antisymmetric non empty relational structure andx be an
element ofR. Then sup↓↓x≤ x andx≤ inf ↑↑x.

(10) For every lower-bounded antisymmetric non empty relational structureL holds↑(⊥L) = the
carrier ofL.

(11) For every upper-bounded antisymmetric non empty relational structureL holds↓(>L) = the
carrier ofL.

(12) For every posetP with l.u.b.’s and for all elementsx, y of P holds↑↑xt↑↑y⊆ ↑(xty).

(13) For every posetP with g.l.b.’s and for all elementsx, y of P holds↓↓xu↓↓y⊆ ↓(xuy).

(14) LetRbe a non empty poset with l.u.b.’s andl be an element ofR. Thenl is co-prime if and
only if for all elementsx, y of Rsuch thatl ≤ xty holdsl ≤ x or l ≤ y.

(15) For every complete non empty posetP and for every non empty subsetV of P holds
↓infV =

⋂
{↓u;u ranges over elements ofP: u∈V}.

(16) For every complete non empty posetP and for every non empty subsetV of P holds
↑supV =

⋂
{↑u;u ranges over elements ofP: u∈V}.

Let L be a sup-semilattice and letx be an element ofL. Observe that compactbelow(x) is
directed.

We now state four propositions:

(17) Let T be a non empty topological space,S be an irreducible subset ofT, andV be an
element of〈the topology ofT,⊆〉. If V = Sc, thenV is prime.

(18) Let T be a non empty topological space andx, y be elements of〈the topology ofT, ⊆〉.
Thenxty = x∪y andxuy = x∩y.

(19) Let T be a non empty topological space andV be an element of〈the topology ofT, ⊆〉.
ThenV is prime if and only if for all elementsX, Y of 〈the topology ofT, ⊆〉 such that
X∩Y ⊆V holdsX ⊆V or Y ⊆V.

(20) Let T be a non empty topological space andV be an element of〈the topology ofT, ⊆〉.
ThenV is co-prime if and only if for all elementsX, Y of 〈the topology ofT, ⊆〉 such that
V ⊆ X∪Y holdsV ⊆ X or V ⊆Y.

Let T be a non empty topological space. Observe that〈the topology ofT,⊆〉 is distributive.
Next we state two propositions:

(21) LetT be a non empty topological space,L be a top-lattice,t be a point ofT, l be a point of
L, andX be a family of subsets ofL. Suppose the topological structure ofT = the topological
structure ofL andt = l andX is a basis ofl . ThenX is a basis oft.

(22) LetL be a top-lattice andx be an element ofL. Suppose that for every subsetX of L such
thatX is open holdsX is upper. Then↑x is compact.

2. THE SCOTT TOPOLOGY

1

For simplicity, we use the following convention:L denotes a complete Scott top-lattice,x de-
notes an element ofL, X, Y denote subsets ofL, V, W denote elements of〈σ(L),⊆〉, andV1 denotes
a subset of〈σ(L),⊆〉.

Let L be a complete lattice. Observe thatσ(L) is non empty.
Next we state four propositions:

1 σ(L) = sigmaL, as defined in [27, p. 316, Def. 12] andtL = supop(L), as defined in [14, p. 163, Def.
5].
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(23) σ(L) = the topology ofL.

(24) X ∈ σ(L) iff X is open.

(25) For every filtered subsetX of L such thatV1 = {(↓x)c : x∈ X} holdsV1 is directed.

(26) If X is open andx∈ X, then infX � x.

Let R be a non empty reflexive relational structure and letf be a map from[:R, R:] into R. We
say thatf is jointly Scott-continuous if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let T be a non empty topological space. Suppose the topological structure ofT =
ConvergenceSpace(the Scott convergence ofR). Then there exists a mapf1 from [:T, T :]
into T such thatf1 = f and f1 is continuous.

We now state a number of propositions:

(27) If V = X, thenV is co-prime iffX is filtered and upper.

(28) If V = X and there existsx such thatX = (↓x)c, thenV is prime andV 6= the carrier ofL.

(29) If V = X andtL is jointly Scott-continuous andV is prime andV 6= the carrier ofL, then
there existsx such thatX = (↓x)c.

(30) If L is continuous, thentL is jointly Scott-continuous.

(31) If tL is jointly Scott-continuous, thenL is sober.

(32) If L is continuous, thenL is compact, locally-compact, sober, and Baire.

(33) If L is continuous andX ∈ σ(L), thenX =
⋃
{↑↑x : x∈ X}.

(34) If for everyX such thatX ∈ σ(L) holdsX =
⋃
{↑↑x : x∈ X}, thenL is continuous.

(35) If L is continuous, then there exists a basisB of x such that for everyX such thatX ∈ B
holdsX is open and filtered.

(36) If L is continuous, then〈σ(L),⊆〉 is continuous.

(37) Suppose for everyx there exists a basisB of x such that for everyY such thatY ∈ B holds
Y is open and filtered and〈σ(L),⊆〉 is continuous. Thenx =

⊔
L{inf X : x∈ X ∧ X ∈ σ(L)}.

(38) If for everyx holdsx =
⊔

L{inf X : x∈ X ∧ X ∈ σ(L)}, thenL is continuous.

(39) The following statements are equivalent

(i) for everyx there exists a basisB of x such that for everyY such thatY ∈ B holdsY is open
and filtered,

(ii) for everyV there existsV1 such thatV = supV1 and for everyW such thatW ∈V1 holdsW
is co-prime.

(40) For everyV there existsV1 such thatV = supV1 and for everyW such thatW ∈V1 holdsW
is co-prime and〈σ(L),⊆〉 is continuous if and only if〈σ(L),⊆〉 is completely-distributive.

(41) 〈σ(L),⊆〉 is completely-distributive iff〈σ(L),⊆〉 is continuous and(〈σ(L),⊆〉)op is con-
tinuous.

(42) If L is algebraic, then there exists a basisB of L such thatB = {↑x : x ∈ the carrier of
CompactSublatt(L)}.

(43) Given a basisB of L such thatB = {↑x : x ∈ the carrier of CompactSublatt(L)}. Then
〈σ(L),⊆〉 is algebraic and for everyV there existsV1 such thatV = supV1 and for everyW
such thatW ∈V1 holdsW is co-prime.
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(44) Suppose〈σ(L),⊆〉 is algebraic and for everyV there existsV1 such thatV = supV1 and for
everyW such thatW ∈ V1 holdsW is co-prime. Then there exists a basisB of L such that
B = {↑x : x∈ the carrier of CompactSublatt(L)}.

(45) If there exists a basisB of L such thatB= {↑x : x∈ the carrier of CompactSublatt(L)}, then
L is algebraic.
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