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Summary. Mizar formalization of pp. 105-108 of [10] which continuési[27]. We
found a simplification for the proof of Corollary 1.15, in the last case, see the proof in the
Mizar article for details.

MML Identifier: WAYBEL14.

WWW: http://mizar.org/JFM/Vol9/waybelld . html

The articles([28],[[7],[[29],[118],[9],[122][6],[[28] [[2],[[1],[[20],[19] [[24] [121] [ 18] /3] [1T1] /[112],
[13], [25], [26], [4], [14], [5], [3C], [1€], [1%], [15], and[[2F] provide the notation and terminology
for this paper.

1. PRELIMINARIES
One can prove the following propositions:

(1) LetX be a setané be a finite family of subsets &f. Then there exists a finite familg
of subsets oK such thatG C F and|JG = |JF and for every subset of X such thag € G

holdsg Z U(G\ {g})-

(2) For every 1-sorted structuand for every subsef of SholdsX® = the carrier ofSiff X
is empty.

(3) LetRbe an antisymmetric transitive non empty relational structure with g.1.b.'sxande
elements oR. Then|(xMy) = [xN]y.

(4) LetRbe an antisymmetric transitive non empty relational structure with l.u.b.'sanbe
elements oR. Thent(xUy) = TxN1y.

(5) LetL be a complete antisymmetric non empty relational structurexabe a lower subset
of L. If supX € X, thenX = |supX.

(6) LetL be a complete antisymmetric non empty relational structureXaoelan upper subset
of L. If inf X € X, thenX = Tinf X.

(7) LetR be a non empty reflexive transitive relational structure angbe elements oR.
Thenx < yifand only if Ty C 1x.

(8) LetR be a non empty reflexive transitive relational structure gangbe elements oR.
Thenx < yif and only if |x C ly.
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(9) LetR be a complete reflexive antisymmetric non empty relational structurexdredan
element ofR. Then sugx < x andx < inf X

(10) For every lower-bounded antisymmetric non empty relational structuoéds( (L. ) = the
carrier ofL.

(11) For every upper-bounded antisymmetric non empty relational struchalels| (T ) = the
carrier ofL.

(12) For every pose? with l.u.b.'s and for all elements y of P holdstxLify C T(xUy).
(13) For every pose® with g.l.b.’s and for all elements y of P holds[xrly C | (xy).

(14) LetRbe anon empty poset with l.u.b.'s ahte an element dR. Thenl is co-prime if and
only if for all elementsx, y of Rsuch that < xUy holdsl < xorl <y.

(15) For every complete non empty posgetand for every non empty subsét of P holds
linfV =N{]u;uranges over elements Bf uc V}.

(16) For every complete non empty pogetand for every non empty subset of P holds
Tsupv = N{Tu;u ranges over elements Bf uc V}.

Let L be a sup-semilattice and Igtbe an element oE. Observe that compactbel(w is
directed.
We now state four propositions:

(17) LetT be a non empty topological spacgbe an irreducible subset df, andV be an
element of(the topology ofT, C). If V = §°, thenV is prime.

(18) LetT be a non empty topological space and/ be elements ofthe topology ofT, C).
ThenxUy = xUyandxny=xnNy.

(19) LetT be a non empty topological space anide an element ofthe topology ofT, C).
ThenV is prime if and only if for all element¥X, Y of (the topology ofT, C) such that
XNY CV holdsX CVorY CV.

(20) LetT be a non empty topological space anide an element ofthe topology ofT, C).
ThenV is co-prime if and only if for all elementX, Y of (the topology ofT, C) such that
V C XUY holdsV C XorV CY.

Let T be a non empty topological space. Observe {tta topology ofT, C) is distributive.
Next we state two propositions:

(21) LetT be a non empty topological spatebe a top-latticet be a point ofT, | be a point of
L, andX be a family of subsets df. Suppose the topological structureTof= the topological
structure oflL andt = | andX is a basis of. ThenX is a basis of.

(22) LetL be atop-lattice and be an element df. Suppose that for every subsébf L such
thatX is open holds< is upper. Therfx is compact.

2. THE SCOTT TOPOLOGY

[

For simplicity, we use the following conventioi: denotes a complete Scott top-lattisede-
notes an element &f, X, Y denote subsets &f V, W denote elements @b (L), C), andV; denotes
a subset ofo(L),C).

LetL be a complete lattice. Observe tlmt ) is non empty.

Next we state four propositions:

1o(L) = sigma., as defined i [27, p. 316, Def. 12] ang = supop(L), as defined if[14, p. 163, Def.
5].
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(23) o(L) = the topology ofL.
(24) X eo(L)iff Xis open.
(25) For every filtered subsit of L such thats = {(|X)¢: x € X} holdsV; is directed.

(26) If X is open anc € X, then infX <« x.

Let Rbe a non empty reflexive relational structure andfléie a map fronf. R, R] into R. We
say thatf is jointly Scott-continuous if and only if the condition (Def. 1) is satisfied.

(Def.1) LetT be a non empty topological space. Suppose the topological structufe=of
ConvergenceSpafthe Scott convergence &). Then there exists a mafa from [T, T ]
into T such thatf; = f andf; is continuous.

We now state a number of propositions:

(27) 1fV =X, thenV is co-prime iffX is filtered and upper.
(28) IfV =X and there exists such thatX = (|x)¢, thenV is prime andv # the carrier ofL.

(29) If V =X andL is jointly Scott-continuous and is prime andv # the carrier ofL, then
there existx such thatX = (|x)°.

(30) If Lis continuous, then) is jointly Scott-continuous.

(31) If U isjointly Scott-continuous, thelis sober.

(32) If Lis continuous, theh is compact, locally-compact, sober, and Baire.

(33) IfLis continuous anX € o(L), thenX = J{1x:x € X}.

(34) Iffor everyX such thaiX € a(L) holdsX = J{{x: x € X}, thenL is continuous.

(35) If L is continuous, then there exists a baBisf x such that for every) such thatX € B
holdsX is open and filtered.

(36) IfLis continuous, therio(L),C) is continuous.

(37) Suppose for everythere exists a basB of x such that for every such thaty € B holds
Y is open and filtered an@ (L), C) is continuous. Ther = |, {infX:xe X A X € o(L)}.

(38) Ifforeveryxholdsx=|] {infX:xeX A X e€a(L)}, thenL is continuous.

(39) The following statements are equivalent

(i) foreveryxthere exists a basBof x such that for everY such thaly € B holdsY is open
and filtered,

(i) foreveryV there exist®/; such thal = supVvy and for every such thaw € V; holdswW
is co-prime.

(40) For every there existd/; such tha/ = supVy and for everyV such thaWV € V; holdsw
is co-prime anda(L), C) is continuous if and only ifo(L), C) is completely-distributive.

(41) (a(L),C) is completely-distributive iffo(L),C) is continuous and(a(L),C))° is con-
tinuous.

(42) If L is algebraic, then there exists a baBi®f L such thatB = {1x : x € the carrier of
CompactSublatt )}.

(43) Given a basi® of L such thatB = {7x: x € the carrier of CompactSublétt)}. Then
(a(L),C) is algebraic and for every there existd/; such thalv = supV; and for everyw
such thatV € Vi holdsW is co-prime.
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(44) Supposéa(L),C) is algebraic and for evely there existd/; such tha¥/ = supv; and for
everyW such thaWW € V; holdsW is co-prime. Then there exists a baBi®f L such that
B = {1x: x € the carrier of CompactSubldit) }.

(45) Ifthere exists a basBof L such thaB = {1x: x € the carrier of CompactSublétt) }, then
L is algebraic.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbedsurnal of Formalized Mathematics, 1989.http://mizar.org/JFM/Voll/card_1.htmll
[2] Grzegorz Bancerek. Complete latticdsurnal of Formalized Mathematicd, 1992/http://mizar.org/JFM/Vold/lattice3.html}

[3] Grzegorz Bancerek. Bounds in posets and relational substructlmeshal of Formalized Mathematic8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.html.

[4] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and ndapsnal of Formalized Mathematic8, 1996.http://mizar.org/
JFM/Vol8/waybel 0.htmll

[5] Grzegorz Bancerek. The “way-below” relatiodournal of Formalized Mathematic8, 1996 /http://mizar.org/JFM/Vol8/waybel |
J.htmll

[6] Czestaw Bylfski. Functions and their basic propertidsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

[7] Czestaw Bylhski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html.

[8] Agata Darmochwat. Compact spacdsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/compts_1.htmll
[9] Agata Darmochwat. Finite setdournal of Formalized Mathematic$, 1989/http://mizar.org/JFM/Voll/finset_1.html|

[10] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Se®ttompendium of Continuous Lattic&pringer-Verlag,
Berlin, Heidelberg, New York, 1980.

[11] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational strdctumesl. of
Formalized Mathemati¢$, 1996 http://mizar.org/JFM/Vol8/yellow_1.html}

[12] Artur Kornitowicz. Cartesian products of relations and relational structudesirnal of Formalized Mathematic$, 1996. http:
//mizar.org/JFM/Vol8/yellow_3.htmll

[13] Artur Kornitowicz. Definitions and properties of the join and meet of subsétsirnal of Formalized Mathematic8§, 1996. http:
//mizar.orq/JFM/Vol8/yellow_4.html,

[14] Artur Kornitowicz. Meet — continuous latticedournal of Formalized Mathematic8, 1996/http://mizar.org/JFM/Vol8/waybel |
2. htmll

[15] Artur Kornitowicz. On the topological properties of meet-continuous latticésurnal of Formalized Mathematic8, 1996. http:
//mizar.org/JFM/Vol8/waybel 9.htmll

[16] Beata Madras. Irreducible and prime elemedtirnal of Formalized Mathematic8, 1996 http://mizar.org/JEM/Vol8/waybel |
6.htmll

[17] Robert Milewski. Algebraic latticeslournal of Formalized Mathematic8, 1996 /http://mizar.org/JFM/Vol8/waybel 8.html}
[18] Beata Padlewska. Families of selsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/setfam_1.htmll

[19] Beata Padlewska. Locally connected spadesirnal of Formalized Mathematic8, 1990.http://mizar.org/JFM/Vol2/connsp_|
2.htmll

[20] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous funlingl of Formalized Mathematic, 1989.
http://mizar.org/JFM/Voll/pre_topc.htmll

[21] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor Seurnal of Formalized Mathematic3, 1995.http://mizar.org/
JFM/Vol7/cantor_1.htmll

[22] Andrzej Trybulec. Domains and their Cartesian produdsurnal of Formalized Mathematic4, 1989. http://mizar.org/JFM/
Voll/domain_1.html}

[23] Andrzej Trybulec. Tarski Grothendieck set theodgurnal of Formalized Mathematicé\xiomatics, 1989 http://mizar.org/JFM/
Axiomatics/tarski.htmll

[24] Andrzej Trybulec. A Borsuk theorem on homotopy typdeurnal of Formalized Mathematic8, 1991./http://mizar.org/JFM/
Vol3/borsuk_1.htmll

[25] Andrzej Trybulec. Moore-Smith convergenckurnal of Formalized Mathematic8, 1996.http://mizar.org/JFM/Vol8/yellow_|
6.htmll

[26] Andrzej Trybulec. Baire spaces, Sober spadesirnal of Formalized Mathematic8, 1997 http://mizar.org/JFM/Vol9/yellow |
8. htmll


http://mizar.org/JFM/Vol1/card_1.html
http://mizar.org/JFM/Vol4/lattice3.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol8/yellow_0.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_0.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol8/waybel_3.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/compts_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol8/yellow_1.html
http://mizar.org/JFM/Vol8/yellow_3.html
http://mizar.org/JFM/Vol8/yellow_3.html
http://mizar.org/JFM/Vol8/yellow_4.html
http://mizar.org/JFM/Vol8/yellow_4.html
http://mizar.org/JFM/Vol8/waybel_2.html
http://mizar.org/JFM/Vol8/waybel_2.html
http://mizar.org/JFM/Vol8/waybel_9.html
http://mizar.org/JFM/Vol8/waybel_9.html
http://mizar.org/JFM/Vol8/waybel_6.html
http://mizar.org/JFM/Vol8/waybel_6.html
http://mizar.org/JFM/Vol8/waybel_8.html
http://mizar.org/JFM/Vol1/setfam_1.html
http://mizar.org/JFM/Vol2/connsp_2.html
http://mizar.org/JFM/Vol2/connsp_2.html
http://mizar.org/JFM/Vol1/pre_topc.html
http://mizar.org/JFM/Vol7/cantor_1.html
http://mizar.org/JFM/Vol7/cantor_1.html
http://mizar.org/JFM/Vol1/domain_1.html
http://mizar.org/JFM/Vol1/domain_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol3/borsuk_1.html
http://mizar.org/JFM/Vol3/borsuk_1.html
http://mizar.org/JFM/Vol8/yellow_6.html
http://mizar.org/JFM/Vol8/yellow_6.html
http://mizar.org/JFM/Vol9/yellow_8.html
http://mizar.org/JFM/Vol9/yellow_8.html

[27]

[28]

[29]

[30]

THE SCOTT TOPOLOGY PART Il 5

Andrzej Trybulec. Scott topologylournal of Formalized Mathematic9, 1997 /http://mizar.org/JFM/Vol9/waybelll.htmll

Wojciech A. Trybulec. Partially ordered setdournal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/orders_|
T.htmll

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989 http://mizar.org/JFM/Voll/subset_1.htmll

MariuszZynel. The equational characterization of continuous lattidesirnal of Formalized Mathematic8, 1996 /http://mizar.
org/JFM/Vol8/waybel 5.htmll

Received August 27, 1997

Published January 2, 2004


http://mizar.org/JFM/Vol9/waybel11.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/orders_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol8/waybel_5.html
http://mizar.org/JFM/Vol8/waybel_5.html

	the scott topology. part ii By czeslaw bylinski and piotr rudnicki

