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The articles [21], [11], [25], [23], [26], [9], [10], [7], [13], [8], [1], [2], [19], [24], [27], [12], [16],
[20], [3], [4], [15], [5], [28], [17], [6], [18], and [22] provide the notation and terminology for this
paper.

1. PRELIMINARIES

Let T be a topological structure and letP be a subset ofT. Let us observe thatP is closed if and
only if:

(Def. 1) Pc is open.

Let T be a topological structure and letF be a family of subsets ofT. We say thatF is dense if
and only if:

(Def. 2) For every subsetX of T such thatX ∈ F holdsX is dense.

Let us mention that there exists a 1-sorted structure which is empty.
Let Sbe an empty 1-sorted structure. One can check that the carrier ofS is empty.
Let Sbe an empty 1-sorted structure. Note that every subset ofS is empty.
Let us note that every set which is finite is also countable.
Let us mention that there exists a set which is empty.
Let Sbe a 1-sorted structure. One can verify that there exists a subset ofSwhich is empty.
Let us note that there exists a set which is non empty and finite.
Let L be a non empty relational structure. Note that there exists a subset ofL which is non empty

and finite.
Let us observe thatN is infinite.
One can verify that there exists a set which is infinite and countable.
Let Sbe a 1-sorted structure. One can verify that there exists a family of subsets ofSwhich is

empty.
One can prove the following propositions:

(2)1 For all setsX, Y such thatX ≤ Y andY is countable holdsX is countable.

1This work has been partially supported by the Office of Naval Research Grant N00014-95-1-1336.
1 The proposition (1) has been removed.
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(3) For every infinite countable setA holdsN≈ A.

(4) For every non empty countable setA there exists a functionf from N into A such that
rng f = A.

(5) For every 1-sorted structureSand for all subsetsX, Y of Sholds(X∪Y)c = Xc∩Yc.

(6) For every 1-sorted structureSand for all subsetsX, Y of Sholds(X∩Y)c = Xc∪Yc.

(7) Let L be a non empty transitive relational structure andA, B be subsets ofL. If A is finer
thanB, then↓A⊆ ↓B.

(8) LetL be a non empty transitive relational structure andA, B be subsets ofL. If A is coarser
thanB, then↑A⊆ ↑B.

(9) LetL be a non empty poset andD be a non empty finite filtered subset ofL. If inf D exists
in L, then infD ∈ D.

(10) Let L be a lower-bounded antisymmetric non empty relational structure andX be a non
empty lower subset ofL. Then⊥L ∈ X.

(11) Let L be a lower-bounded antisymmetric non empty relational structure andX be a non
empty subset ofL. Then⊥L ∈ ↓X.

(12) LetL be an upper-bounded antisymmetric non empty relational structure andX be a non
empty upper subset ofL. Then>L ∈ X.

(13) LetL be an upper-bounded antisymmetric non empty relational structure andX be a non
empty subset ofL. Then>L ∈ ↑X.

(14) LetL be a lower-bounded antisymmetric relational structure with g.l.b.’s andX be a subset
of L. ThenXu{⊥L} ⊆ {⊥L}.

(15) Let L be a lower-bounded antisymmetric relational structure with g.l.b.’s andX be a non
empty subset ofL. ThenXu{⊥L}= {⊥L}.

(16) LetL be an upper-bounded antisymmetric relational structure with l.u.b.’s andX be a subset
of L. ThenXt{>L} ⊆ {>L}.

(17) LetL be an upper-bounded antisymmetric relational structure with l.u.b.’s andX be a non
empty subset ofL. ThenXt{>L}= {>L}.

(18) For every upper-bounded semilatticeL and for every subsetX of L holds{>L}uX = X.

(19) For every lower-bounded posetL with l.u.b.’s and for every subsetX of L holds{⊥L}tX =
X.

(20) LetL be a non empty reflexive relational structure andA, B be subsets ofL. If A⊆ B, then
A is finer thanB and coarser thanB.

(21) Let L be an antisymmetric transitive relational structure with g.l.b.’s,V be a subset ofL,
andx, y be elements ofL. If x≤ y, then{y}uV is coarser than{x}uV.

(22) Let L be an antisymmetric transitive relational structure with l.u.b.’s,V be a subset ofL,
andx, y be elements ofL. If x≤ y, then{x}tV is finer than{y}tV.

(23) LetL be a non empty relational structure andV, S, T be subsets ofL. If S is coarser thanT
andV is upper andT ⊆V, thenS⊆V.

(24) LetL be a non empty relational structure andV, S, T be subsets ofL. If S is finer thanT
andV is lower andT ⊆V, thenS⊆V.

(25) For every semilatticeL and for every upper filtered subsetF of L holdsF uF = F.
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(26) For every sup-semilatticeL and for every lower directed subsetI of L holdsI t I = I .

(27) For every upper-bounded semilatticeL and for every subsetV of L holds{x;x ranges over
elements ofL: V u{x} ⊆V} is non empty.

(28) LetL be an antisymmetric transitive relational structure with g.l.b.’s andV be a subset of
L. Then{x;x ranges over elements ofL: V u{x} ⊆V} is a filtered subset ofL.

(29) Let L be an antisymmetric transitive relational structure with g.l.b.’s andV be an upper
subset ofL. Then{x;x ranges over elements ofL: V u{x} ⊆V} is an upper subset ofL.

(30) For every posetL with g.l.b.’s and for every subsetX of L such thatX is open and lower
holdsX is filtered.

Let L be a poset with g.l.b.’s. Observe that every subset ofL which is open and lower is also
filtered.

Let L be a continuous antisymmetric non empty reflexive relational structure. Note that every
subset ofL which is lower is also open.

Let L be a continuous semilattice and letx be an element ofL. Note that(↓x)c is open.
One can prove the following two propositions:

(31) LetL be a semilattice andC be a non empty subset ofL. Suppose that for all elementsx, y
of L such thatx∈C andy∈C holdsx≤ y or y≤ x. Let Y be a non empty finite subset ofC.
Thend−eLY ∈Y.

(32) LetL be a sup-semilattice andC be a non empty subset ofL. Suppose that for all elements
x, y of L such thatx∈C andy∈C holdsx≤ y or y≤ x. Let Y be a non empty finite subset of
C. Then

⊔
LY ∈Y.

Let L be a semilattice and letF be a filter ofL. A subset ofL is called a generator set ofF if:

(Def. 3) F = ↑fininfs(it).

Let L be a semilattice and letF be a filter ofL. Observe that there exists a generator set ofF
which is non empty.

We now state four propositions:

(33) LetL be a semilattice,A be a subset ofL, andB be a non empty subset ofL. If A is coarser
thanB, then fininfs(A) is coarser than fininfs(B).

(34) LetL be a semilattice,F be a filter ofL, G be a generator set ofF , andA be a non empty
subset ofL. SupposeG is coarser thanA andA is coarser thanF . ThenA is a generator set of
F .

(35) LetL be a semilattice,A be a subset ofL, and f , g be functions fromN into the carrier of
L. Suppose rngf = A and for every elementn of N holdsg(n) = d−eL{ f (m);m ranges over
natural numbers:m≤ n}. ThenA is coarser than rngg.

(36) LetL be a semilattice,F be a filter ofL, G be a generator set ofF , and f , g be functions
from N into the carrier ofL. Suppose rngf = G and for every elementn of N holdsg(n) =
d−eL{ f (m);m ranges over natural numbers:m≤ n}. Then rngg is a generator set ofF .

2. ON THE BAIRE CATEGORY THEOREM

We now state four propositions:

(37) LetL be a lower-bounded continuous lattice,V be an open upper subset ofL, F be a filter
of L, andv be an element ofL. SupposeV uF ⊆V andv∈V and there exists a non empty
generator set ofF which is countable. Then there exists an open filterO of L such thatO⊆V
andv∈O andF ⊆O.
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(38) LetL be a lower-bounded continuous lattice,V be an open upper subset ofL, N be a non
empty countable subset ofL, andv be an element ofL. SupposeV uN ⊆V andv∈V. Then
there exists an open filterO of L such that{v}uN⊆O andO⊆V andv∈O.

(39) LetL be a lower-bounded continuous lattice,V be an open upper subset ofL, N be a non
empty countable subset ofL, andx, y be elements ofL. SupposeV uN ⊆V andy∈V and
x /∈V. Then there exists an irreducible elementp of L such thatx≤ p andp /∈ ↑({y}uN).

(40) LetL be a lower-bounded continuous lattice,x be an element ofL, andN be a non empty
countable subset ofL. Suppose that for all elementsn, y of L such thaty 6≤ x andn∈ N holds
yun 6≤ x. Let y be an element ofL. Supposey 6≤ x. Then there exists an irreducible element
p of L such thatx≤ p andp /∈ ↑({y}uN).

Let L be a non empty relational structure and letu be an element ofL. We say thatu is dense if
and only if:

(Def. 4) For every elementv of L such thatv 6=⊥L holdsuuv 6=⊥L.

Let L be an upper-bounded semilattice. Observe that>L is dense.
Let L be an upper-bounded semilattice. Note that there exists an element ofL which is dense.
The following proposition is true

(41) For every non trivial bounded semilatticeL and for every elementx of L such thatx is dense
holdsx 6=⊥L.

Let L be a non empty relational structure and letD be a subset ofL. We say thatD is dense if
and only if:

(Def. 5) For every elementd of L such thatd ∈ D holdsd is dense.

The following proposition is true

(42) For every upper-bounded semilatticeL holds{>L} is dense.

Let L be an upper-bounded semilattice. Observe that there exists a subset ofL which is non
empty, finite, countable, and dense.

Next we state several propositions:

(43) LetL be a lower-bounded continuous lattice,D be a non empty countable dense subset of
L, andu be an element ofL. Supposeu 6=⊥L. Then there exists an irreducible elementp of L
such thatp 6=>L andp /∈ ↑({u}uD).

(44) LetT be a non empty topological space,A be an element of〈the topology ofT,⊆〉, andB
be a subset ofT. If A = B andBc is irreducible, thenA is irreducible.

(45) LetT be a non empty topological space,A be an element of〈the topology ofT, ⊆〉, and
B be a subset ofT. SupposeA = B andA 6=>〈the topology ofT,⊆〉. ThenA is irreducible if and
only if Bc is irreducible.

(46) LetT be a non empty topological space,A be an element of〈the topology ofT,⊆〉, andB
be a subset ofT. If A = B, thenA is dense iffB is everywhere dense.

(47) LetT be a non empty topological space. SupposeT is locally-compact. LetD be a count-
able family of subsets ofT. SupposeD is non empty, dense, and open. LetO be a non empty
subset ofT. SupposeO is open. Then there exists an irreducible subsetA of T such that for
every subsetV of T if V ∈ D, thenA∩O meetsV.

Let T be a non empty topological space. Let us observe thatT is Baire if and only if the
condition (Def. 6) is satisfied.
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(Def. 6) Let F be a family of subsets ofT. SupposeF is countable and for every subsetS of
T such thatS∈ F holdsS is open and dense. Then there exists a subsetI of T such that
I = Intersect(F) andI is dense.

Next we state the proposition

(48) For every non empty topological spaceT such thatT is sober and locally-compact holdsT
is Baire.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/card_1.html.

[2] Grzegorz Bancerek. Countable sets and Hessenberg’s theorem.Journal of Formalized Mathematics, 2, 1990. http://mizar.org/
JFM/Vol2/card_4.html.

[3] Grzegorz Bancerek. Complete lattices.Journal of Formalized Mathematics, 4, 1992.http://mizar.org/JFM/Vol4/lattice3.html.

[4] Grzegorz Bancerek. Bounds in posets and relational substructures.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/yellow_0.html.

[5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/
JFM/Vol8/waybel_0.html.

[6] Grzegorz Bancerek. The “way-below” relation.Journal of Formalized Mathematics, 8, 1996.http://mizar.org/JFM/Vol8/waybel_
3.html.

[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences.Journal of Formalized Mathematics,
1, 1989.http://mizar.org/JFM/Vol1/finseq_1.html.

[8] Józef Białas. Group and field definitions.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/realset1.
html.
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