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Summary. In the article we continue the formalization in Mizar bf[12, 98-105]. We

work with structures of the form
L=(C, <, 1),

whereC is the carrier of the structures - an ordering relation o@ andt a family of subsets
of C. When(C, <) is a complete lattice we say thiatis Scott, ift is the Scott topology of
(C, <). We define the Scott convergence (lim inf convergence). Following [12] we prove that
in the case of a continuous latti¢€, <) the Scott convergence is topological, i.e. enjoys
the properties: (CONSTANTS), (SUBNETS), (DIVERGENCE), (ITERATED LIMITS). We
formalize the theorem, that if the Scott convergence has the (ITERATED LIMITS) property,
the (C, <) is continuous.

MML Identifier: WAYBEL11.

WWW: http://mizar.org/JFM/Vol9/waybelll . html

The articles[[2B],[[10],129],[31],/[21]/130] /171191, 18]..[2],
(24], [0, [18], [27], [3], [4], [5]. (23], [33], [14], [15], [1€],
notation and terminology for this paper.

8]119]/121], [32];[22]/ [20]L [34],

[2
[6], [25], [17], and[[2B] provide the

1. PRELIMINARIES

The schemérrel deals with non empty sef8, B, a unary functorf yielding a set, a binary functor
F yielding a set, and a unary predicateand states that:
{¥ (u);uranges over elements @f: P[u]} = { ¥ (i,v);i ranges over elements B v
ranges over elements &f : P|v|}
provided the following condition is met:
e For every elemernitof B and for every element of 4 holds F (u) = ¥ (i,u).
We now state three propositions:

(1) For every complete lattick and for all subset¥X, Y of L such thaty is coarser tharX
holds ﬂLX < HLY.

(2) For every complete lattide and for all subsetX, Y of L such thaiX is finer thanY holds
LLX<LILY.

(3) LetT be arelational structuré, be an upper subset @f, andB be a directed subset &f.
ThenANB is directed.

Let T be a reflexive non empty relational structure. One can verify that there exists a subset of
T which is non empty, directed, and finite.
We now state the proposition
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(4) For every poset with l.u.b.'s and for every non empty directed finite sutBeif T holds
supD € D.

Let us observe that there exists a relational structure which is trivial, reflexive, transitive, non
empty, antisymmetric, finite, and strict and has l.u.b.s and g.l.b.'s.

One can check that there exists a 1-sorted structure which is finite, non empty, and strict.

LetT be afinite 1-sorted structure. Observe that every subskiofinite.

Let R be a relational structure. One can check hagis lower and upper.

Let Rbe a trivial non empty relational structure. One can verify that every subsisafpper.

Next we state two propositions:

(5) LetT be a non empty relational structusehe an element of , andA be an upper subset
of T. If x¢ A, thenA misses|x.

(6) LetT be anonempty relational structusehe an element of, andA be a lower subset of
T.If xe A then|xC A.

2. SCOTTTOPOLOGY

Let T be a non empty reflexive relational structure and3éte a subset of . We say thaSis
inaccessible by directed joins if and only if:

(Def. 1) For every non empty directed subBedf T such that sup € SholdsD meetsS.

We introduceSis inaccessible as a synonym®ifs inaccessible by directed joins. We say t8at
closed under directed sups if and only if:

(Def. 2) For every non empty directed subBedf T such thaD C Sholds sup € S

We introduceSis directly closed as a synonym 8iis closed under directed sups. We say that
property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) LetD be a non empty directed subseflofSuppose sup € S. Then there exists an element
y of T such thaty € D and for every elementof T such thai € D andx >y holdsx € S.

We introduceS has the property (S) as a synonymSaé property(S).
Let T be a non empty reflexive relational structure. Observe@has property(S) and directly

closed.
Let T be a non empty reflexive relational structure. Note that there exists a suisettoch is

property(S) and directly closed.
Let T be a non empty reflexive relational structure andSdie a property(S) subset df.

Observe tha¥ is directly closed.
Let T be a reflexive non empty FR-structure. We say i Scott if and only if:

(Def. 4) For every subs&of T holdsSis open iffSis inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational structure with l.u.b.’s.

One can verify that every subsetbfis inaccessible.
Let T be a reflexive transitive antisymmetric non empty finite FR-structure with l.u.b.’s. Let us

observe thaT is Scott if and only if:
(Def. 5) For every subs&of T holdsSis open iffSis upper.

One can check that there exists a top-lattice which is trivial, complete, strict, non empty, and

Scott.
Let T be a non empty reflexive relational structure. One can verify @hats directly closed

and inaccessible.
Let T be a non empty reflexive relational structure. Note that there exists a suisettoth is

directly closed, lower, inaccessible, and upper.
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LetT be a non empty reflexive relational structure andleé an inaccessible subseflaf Note
thatS is directly closed.

Let T be a non empty reflexive relational structure and3éie a directly closed subset of
Note thatS" is inaccessible.

Next we state several propositions:

(7) LetT be an up-complete Scott non empty reflexive transitive FR-structur8baa subset
of T. ThenSis closed if and only iSis directly closed and lower.

(8) LetT be an up-complete non empty reflexive transitive antisymmetric FR-structune and
be an element of . Then|x s directly closed.

(9) For every complete Scott top-lattifeand for every elementof T holds{x} = |x.
(10) Every complete Scott top-lattice islgespace.

(11) LetT be a Scott up-complete non empty reflexive transitive antisymmetric FR-structure
andx be an element of . Then|x s closed.

(12) For every up-complete Scott top-lattiteand for every elementof T holds(|x)® is open.

(13) LetT be an up-complete Scott top-latticebe an element of, andA be an upper subset
of T. If x¢ A, then(|x) is a neighbourhood 4.

(14) LetT be a complete Scott top-lattice afde an upper subset @f. Then there exists a
family F of subsets off such thaS= NF and for every subsé of T such thaX € F holds
X is a neighbourhood d&.

(15) LetT be a Scott top-lattice arfdbe a subset of . ThenSis open if and only ifSis upper
and property(S).

Let T be a complete top-lattice. One can verify that every subs@t which is lower is also

property(S).
We now state the proposition

(16) LetT be a non empty transitive reflexive FR-structure. Suppose the topology=ofS; S
ranges over subsets f Shas the property ($) ThenT is topological space-like.

3. ScoTT CONVERGENCE

In the sequeR denotes a non empty relational structukedenotes a net iR, andi denotes an
element ofN.
Let us consideR, N. The functor liminfN yielding an element oR is defined as follows:

(Def. 6) liminfN = | |g{[ |r{N(i) :i > j} : j ranges over elements bif}.

Let R be a reflexive non empty relational structure,Nebe a net inR, and letp be an element
of R. We say thap is S-limit of N if and only if:

(Def. 7) p <IliminfN.

Let R be a reflexive non empty relational structure. The Scott convergeriRgiefds a conver-
gence class dR and is defined by the condition (Def. 8).

(Def. 8) LetN be a strict net irR. SupposeN € NetUniv(R). Let p be an element dR. Then(N,
p) € the Scott convergence &¥if and only if p is S-limit of N.

Next we state two propositions:

(17) LetRbe a complete latticd\ be a net inR, andp, q be elements oR. If pis S-limit of N
andN is eventually in| g, thenp < q.
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(18) LetRbe acomplete lattica\ be a net irR, andp, g be elements dR. If N is eventually in
1q, then liminfN > q.

Let R be a reflexive non empty relational structure and\die a non empty net structure over
R. Let us observe that is monotone if and only if:

(Def. 9) For all elements j of N such thai < j holdsN(i) < N(j).

Let R be a non empty relational structure, &lbe a non empty set, and létbe a function from
Sinto the carrier oR. The functor NetStiS ) yielding a strict non empty net structure oWRis
defined by the conditions (Def. 10).

(Def. 10)()) The carrier of NetS{5 f) = S
(i) the mapping of NetStiS, f) = f, and
(iii)  for all elementsi, j of NetSt(S f) holdsi < j iff (NetSt(S, f))(i) < (NetSt(S, ))(j).

The following propositions are true:

(19) LetL be a non empty 1-sorted structure axidbe a non empty net structure oder Then
rng (the mapping oN) = {N(i) : i ranges over elements bif}.

(20) LetRbe a non empty relational structuhe a non empty set, arfdbe a function fronts
into the carrier oR. If rng f is directed, then NetSt8, f) is directed.

Let Rbe a non empty relational structure, &tbe a non empty set, and létbe a function from
Sinto the carrier oR. One can check that Net$& f) is monotone.

Let R be a transitive non empty relational structure, 3die a non empty set, and Iétbe a
function fromSinto the carrier oR. Note that NetS{S, f) is transitive.

Let R be a reflexive non empty relational structure, $dbe a non empty set, and Iétbe a
function fromSinto the carrier oR. Observe that NetSi8, f) is reflexive.

Next we state the proposition

(21) LetR be a non empty transitive relational structube a non empty set, anflbe a
function fromSinto the carrier oR. If SC the carrier oR and NetSt(S, f) is directed, then
NetSt(S, f) € NetUniv(R).

Let Rbe a lattice. Observe that there exists a n€& which is monotone, reflexive, and strict.
Next we state three propositions:

(22) For every complete lattide and for every monotone reflexive ngtin R holds liminfN =
SupN.

(23) For every complete latticR and for every constant nét in R holds the value oN =
liminf N.

(24) For every complete latticR and for every constant nét in R holds the value oN is
S-limit of N.

Let Sbe a non empty 1-sorted structure andddte an element 08. The functor NetSte)
yielding a strict net structure ov&is defined as follows:

(Def. 11) The carrier of NetSte) = {e} and the internal relation of Net%&) = {(e, €)} and the
mapping of NetStie) = id,e.

Let Sbe a non empty 1-sorted structure andelee an element o Note that NetSte) is non
empty.
One can prove the following two propositions:

(25) For every non empty 1-sorted struct&and for every elemerof Sand for every element
x of NetSti(e) holdsx =e.
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(26) For every non empty 1-sorted struct&and for every elemerof Sand for every element
x of NetSti(e) holds(NetSti(e))(x) = e.

Let Sbe a non empty 1-sorted structure andddte an element o8 Note that NetSte) is
reflexive, transitive, directed, and antisymmetric.
We now state several propositions:

(27) LetSbe a non empty 1-sorted structuepe an element 0§ and X be a set. Then
NetStr(e) is eventually inX if and only ife € X.

(28) For every reflexive antisymmetric non empty relational struchamrd for every elemerd
of Sholdse = liminfNetStr(e).

(29) For every non empty reflexive relational struct@and for every elemerg of S holds
NetSt(e) € NetUniv(S).

(30) LetR be a complete latticeZ be a net inR, andD be a subset oR. SupposeD =
{["r{Z(k);k ranges over elements @f k > j} : j ranges over elements @f}. ThenD is
non empty and directed.

(31) LetL be a complete lattice an® be a subset ol.. Then S € the topology of
ConvergenceSpage Scott convergence bj if and only if Sis inaccessible and upper.

(32) For every complete Scott top-latticé holds the topological structure ol =
ConvergenceSpage Scott convergence @f).

(33) Let T be a complete top-lattice. Suppose the topological structureT of
ConvergenceSpa@he Scott convergence df). Let S be a subset of. ThenSis open
if and only if Sis inaccessible and upper.

(34) Let T be a complete top-lattice. Suppose the topological structureT of
ConvergenceSpafthe Scott convergence @f). ThenT is Scott.

Let Rbe a complete lattice. Observe that the Scott convergenRdnas (CONSTANTS) prop-
erty.

Let Rbe a complete lattice. Note that the Scott convergenéthafs (SUBNETS) property.

Next we state the proposition

(35) LetSbe a non empty 1-sorted structudpe a net inS, X be a set, anél be a subnet of
N. If M = N7(X), then for every elemeritof M holdsM(i) € X.

LetL be a non empty reflexive relational structure. The funatdy) yielding a family of subsets
of L is defined as follows:

(Def. 12) o(L) = the topology of ConvergenceSpétte Scott convergence bj.

One can prove the following propositions:

(36) For every continuous complete Scott top-latticend for every elementof L holdstx is
open.

(37) For every complete top-lattidesuch that the topology 6f = o(T) holdsT is Scott.

Let R be a continuous complete lattice. One can verify that the Scott convergeriRésof
topological.
Next we state a number of propositions:

(88) LetT be a continuous complete Scott top-lattizrdne an element of , andN be a net in
T. If N € NetUniv(T), thenxis S-limit of N iff x € Lim N.

(39) LetL be a complete non empty poset. Suppose the Scott convergenbas®{ITERATED
LIMITS) property. TherL is continuous.
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(40) For every complete Scott top-lattideholds T is continuous iff Convergen¢&) = the
Scott convergence df.

(41) For every complete Scott top-latti€eand for every upper subsgbf T such thaSis open
holdsSis open.

(42) LetL be a non empty relational structufbe an upper subset bf andx be an element of
L. If xe S thenTxC S

(43) LetL be a complete continuous Scott top-lattipdye an element df, andSbe a subset of
L. If Sis open and € S, then there exists an elemeaqtf L such thafj < pandqe S

(44) LetL be a complete continuous Scott top-lattice gmde an element of. Then{{q;q
ranges over elements bf g < p} is a basis op.

(45) For every complete continuous Scott top-latfickolds{{x : x ranges over elements ®f
is a basis off.

(46) LetT be a complete continuous Scott top-lattice &1tk an upper subset @f. ThenSis
open if and only ifSis open.

(47) For every complete continuous Scott top-latficeand for every elemenp of T holds
IntTp=1p.

(48) LetT be a complete continuous Scott top-lattice &de a subset of . Then IntS=
U{1x x ranges over elements @f 1x C S}.
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