Scott Topology¹

Andrzej Trybulec Warsaw University Białystok

Summary. In the article we continue the formalization in Mizar of [12, 98–105]. We work with structures of the form

$$L = \langle C, \leq, \tau \rangle$$

where C is the carrier of the structure, \leq - an ordering relation on C and τ a family of subsets of C. When $\langle C, \leq \rangle$ is a complete lattice we say that L is Scott, if τ is the Scott topology of $\langle C, \leq \rangle$. We define the Scott convergence (lim inf convergence). Following [12] we prove that in the case of a continuous lattice $\langle C, \leq \rangle$ the Scott convergence is topological, i.e. enjoys the properties: (CONSTANTS), (SUBNETS), (DIVERGENCE), (ITERATED LIMITS). We formalize the theorem, that if the Scott convergence has the (ITERATED LIMITS) property, the $\langle C, \leq \rangle$ is continuous.

MML Identifier: WAYBEL11.

WWW: http://mizar.org/JFM/Vol9/waybel11.html

The articles [23], [10], [29], [31], [11], [30], [7], [9], [8], [2], [28], [19], [21], [32], [22], [20], [34], [24], [1], [18], [27], [3], [4], [5], [13], [33], [14], [15], [16], [6], [25], [17], and [26] provide the notation and terminology for this paper.

1. Preliminaries

The scheme *Irrel* deals with non empty sets \mathcal{A} , \mathcal{B} , a unary functor \mathcal{F} yielding a set, a binary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P} , and states that:

 $\{\mathcal{F}(u); u \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[u]\} = \{\mathcal{F}(i,v); i \text{ ranges over elements of } \mathcal{B}, v \text{ ranges over elements of } \mathcal{A} : \mathcal{P}[v]\}$

provided the following condition is met:

- For every element i of \mathcal{B} and for every element u of \mathcal{A} holds $\mathcal{F}(u) = \mathcal{F}(i,u)$. We now state three propositions:
- (1) For every complete lattice L and for all subsets X, Y of L such that Y is coarser than X holds $\bigcap_{L} X \leq \bigcap_{L} Y$.
- (2) For every complete lattice L and for all subsets X, Y of L such that X is finer than Y holds $\bigsqcup_L X \leq \bigsqcup_L Y$.
- (3) Let T be a relational structure, A be an upper subset of T, and B be a directed subset of T. Then $A \cap B$ is directed.

Let T be a reflexive non empty relational structure. One can verify that there exists a subset of T which is non empty, directed, and finite.

We now state the proposition

¹This work was partially supported by the Office of Naval Research Grant N00014-95-1-1336.

(4) For every poset T with l.u.b.'s and for every non empty directed finite subset D of T holds $\sup D \in D$.

Let us observe that there exists a relational structure which is trivial, reflexive, transitive, non empty, antisymmetric, finite, and strict and has l.u.b.'s and g.l.b.'s.

One can check that there exists a 1-sorted structure which is finite, non empty, and strict.

Let T be a finite 1-sorted structure. Observe that every subset of T is finite.

Let *R* be a relational structure. One can check that \emptyset_R is lower and upper.

Let *R* be a trivial non empty relational structure. One can verify that every subset of *R* is upper. Next we state two propositions:

- (5) Let T be a non empty relational structure, x be an element of T, and A be an upper subset of T. If $x \notin A$, then A misses $\downarrow x$.
- (6) Let *T* be a non empty relational structure, *x* be an element of *T*, and *A* be a lower subset of *T*. If $x \in A$, then $\downarrow x \subseteq A$.

2. SCOTT TOPOLOGY

Let T be a non empty reflexive relational structure and let S be a subset of T. We say that S is inaccessible by directed joins if and only if:

(Def. 1) For every non empty directed subset *D* of *T* such that $\sup D \in S$ holds *D* meets *S*.

We introduce S is inaccessible as a synonym of S is inaccessible by directed joins. We say that S is closed under directed sups if and only if:

(Def. 2) For every non empty directed subset *D* of *T* such that $D \subseteq S$ holds $\sup D \in S$.

We introduce S is directly closed as a synonym of S is closed under directed sups. We say that S is property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) Let *D* be a non empty directed subset of *T*. Suppose $\sup D \in S$. Then there exists an element *y* of *T* such that $y \in D$ and for every element *x* of *T* such that $x \in D$ and $x \ge y$ holds $x \in S$.

We introduce S has the property (S) as a synonym of S is property(S).

Let T be a non empty reflexive relational structure. Observe that \emptyset_T is property(S) and directly closed

Let T be a non empty reflexive relational structure. Note that there exists a subset of T which is property(S) and directly closed.

Let T be a non empty reflexive relational structure and let S be a property(S) subset of T. Observe that S^c is directly closed.

Let *T* be a reflexive non empty FR-structure. We say that *T* is Scott if and only if:

(Def. 4) For every subset *S* of *T* holds *S* is open iff *S* is inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational structure with l.u.b.'s. One can verify that every subset of T is inaccessible.

Let *T* be a reflexive transitive antisymmetric non empty finite FR-structure with l.u.b.'s. Let us observe that *T* is Scott if and only if:

(Def. 5) For every subset *S* of *T* holds *S* is open iff *S* is upper.

One can check that there exists a top-lattice which is trivial, complete, strict, non empty, and Scott.

Let T be a non empty reflexive relational structure. One can verify that Ω_T is directly closed and inaccessible.

Let T be a non empty reflexive relational structure. Note that there exists a subset of T which is directly closed, lower, inaccessible, and upper.

Let T be a non empty reflexive relational structure and let S be an inaccessible subset of T. Note that S^c is directly closed.

Let T be a non empty reflexive relational structure and let S be a directly closed subset of T. Note that S^c is inaccessible.

Next we state several propositions:

- (7) Let *T* be an up-complete Scott non empty reflexive transitive FR-structure and *S* be a subset of *T*. Then *S* is closed if and only if *S* is directly closed and lower.
- (8) Let T be an up-complete non empty reflexive transitive antisymmetric FR-structure and x be an element of T. Then $\downarrow x$ is directly closed.
- (9) For every complete Scott top-lattice T and for every element x of T holds $\overline{\{x\}} = \downarrow x$.
- (10) Every complete Scott top-lattice is a T_0 -space.
- (11) Let T be a Scott up-complete non empty reflexive transitive antisymmetric FR-structure and x be an element of T. Then $\downarrow x$ is closed.
- (12) For every up-complete Scott top-lattice T and for every element x of T holds $(\downarrow x)^c$ is open.
- (13) Let T be an up-complete Scott top-lattice, x be an element of T, and A be an upper subset of T. If $x \notin A$, then $(\downarrow x)^c$ is a neighbourhood of A.
- (14) Let T be a complete Scott top-lattice and S be an upper subset of T. Then there exists a family F of subsets of T such that $S = \bigcap F$ and for every subset X of T such that $X \in F$ holds X is a neighbourhood of S.
- (15) Let *T* be a Scott top-lattice and *S* be a subset of *T*. Then *S* is open if and only if *S* is upper and property(S).

Let T be a complete top-lattice. One can verify that every subset of T which is lower is also property(S).

We now state the proposition

(16) Let T be a non empty transitive reflexive FR-structure. Suppose the topology of $T = \{S; S \text{ ranges over subsets of } T: S \text{ has the property } (S) \}$. Then T is topological space-like.

3. SCOTT CONVERGENCE

In the sequel R denotes a non empty relational structure, N denotes a net in R, and i denotes an element of N.

Let us consider R, N. The functor $\liminf N$ yielding an element of R is defined as follows:

(Def. 6) $\liminf N = \bigsqcup_{R} \{ \bigcap_{R} \{ N(i) : i \ge j \} : j \text{ ranges over elements of } N \}.$

Let R be a reflexive non empty relational structure, let N be a net in R, and let p be an element of R. We say that p is S-limit of N if and only if:

(Def. 7) $p \leq \liminf N$.

Let *R* be a reflexive non empty relational structure. The Scott convergence of *R* yields a convergence class of *R* and is defined by the condition (Def. 8).

(Def. 8) Let N be a strict net in R. Suppose $N \in \text{NetUniv}(R)$. Let p be an element of R. Then $\langle N, p \rangle \in \text{the Scott convergence of } R$ if and only if p is S-limit of N.

Next we state two propositions:

(17) Let *R* be a complete lattice, *N* be a net in *R*, and *p*, *q* be elements of *R*. If *p* is S-limit of *N* and *N* is eventually in $\downarrow q$, then $p \leq q$.

(18) Let *R* be a complete lattice, *N* be a net in *R*, and *p*, *q* be elements of *R*. If *N* is eventually in $\uparrow q$, then $\liminf N \ge q$.

Let *R* be a reflexive non empty relational structure and let *N* be a non empty net structure over *R*. Let us observe that *N* is monotone if and only if:

(Def. 9) For all elements i, j of N such that $i \le j$ holds $N(i) \le N(j)$.

Let R be a non empty relational structure, let S be a non empty set, and let f be a function from S into the carrier of R. The functor $\operatorname{NetStr}(S, f)$ yielding a strict non empty net structure over R is defined by the conditions (Def. 10).

- (Def. 10)(i) The carrier of NetStr(S, f) = S,
 - (ii) the mapping of NetStr(S, f) = f, and
 - (iii) for all elements i, j of NetStr(S, f) holds $i \le j$ iff (NetStr(S, f))(i) \le (NetStr(S, f))(j).

The following propositions are true:

- (19) Let L be a non empty 1-sorted structure and N be a non empty net structure over L. Then rng (the mapping of N) = $\{N(i) : i \text{ ranges over elements of } N\}$.
- (20) Let R be a non empty relational structure, S be a non empty set, and f be a function from S into the carrier of R. If rng f is directed, then NetStr(S, f) is directed.

Let R be a non empty relational structure, let S be a non empty set, and let f be a function from S into the carrier of R. One can check that NetStr(S, f) is monotone.

Let R be a transitive non empty relational structure, let S be a non empty set, and let f be a function from S into the carrier of R. Note that NetStr(S, f) is transitive.

Let R be a reflexive non empty relational structure, let S be a non empty set, and let f be a function from S into the carrier of R. Observe that NetStr(S, f) is reflexive.

Next we state the proposition

(21) Let R be a non empty transitive relational structure, S be a non empty set, and f be a function from S into the carrier of R. If $S \subseteq$ the carrier of R and NetStr(S, f) is directed, then NetStr $(S, f) \in$ NetUniv(R).

Let *R* be a lattice. Observe that there exists a net in *R* which is monotone, reflexive, and strict. Next we state three propositions:

- (22) For every complete lattice R and for every monotone reflexive net N in R holds $\liminf N = \sup N$.
- (23) For every complete lattice R and for every constant net N in R holds the value of $N = \liminf N$.
- (24) For every complete lattice R and for every constant net N in R holds the value of N is S-limit of N.

Let S be a non empty 1-sorted structure and let e be an element of S. The functor NetStr(e) yielding a strict net structure over S is defined as follows:

(Def. 11) The carrier of $\operatorname{NetStr}(e) = \{e\}$ and the internal relation of $\operatorname{NetStr}(e) = \{\langle e, e \rangle\}$ and the mapping of $\operatorname{NetStr}(e) = \operatorname{id}_{\{e\}}$.

Let S be a non empty 1-sorted structure and let e be an element of S. Note that NetStr(e) is non empty.

One can prove the following two propositions:

(25) For every non empty 1-sorted structure S and for every element e of S and for every element e of NetStr(e) holds e = e.

(26) For every non empty 1-sorted structure S and for every element e of S and for every element e of NetStr(e) holds (NetStr(e))(e) (e) holds (NetStr(e))(e) holds (NetStr(e))(e) holds (NetStr(e))(e) holds (NetStr(e))(e) holds (NetStr(e))(e)

Let S be a non empty 1-sorted structure and let e be an element of S. Note that NetStr(e) is reflexive, transitive, directed, and antisymmetric.

We now state several propositions:

- (27) Let S be a non empty 1-sorted structure, e be an element of S, and X be a set. Then NetStr(e) is eventually in X if and only if $e \in X$.
- (28) For every reflexive antisymmetric non empty relational structure S and for every element e of S holds $e = \liminf \text{NetStr}(e)$.
- (29) For every non empty reflexive relational structure S and for every element e of S holds $NetStr(e) \in NetUniv(S)$.
- (30) Let R be a complete lattice, Z be a net in R, and D be a subset of R. Suppose $D = \{ \bigcap_{R} \{Z(k); k \text{ ranges over elements of } Z : k \ge j \} : j \text{ ranges over elements of } Z \}$. Then D is non empty and directed.
- (31) Let L be a complete lattice and S be a subset of L. Then $S \in$ the topology of ConvergenceSpace(the Scott convergence of L) if and only if S is inaccessible and upper.
- (32) For every complete Scott top-lattice T holds the topological structure of T = ConvergenceSpace(the Scott convergence of T).
- (33) Let T be a complete top-lattice. Suppose the topological structure of T = ConvergenceSpace(the Scott convergence of T). Let S be a subset of T. Then S is open if and only if S is inaccessible and upper.
- (34) Let T be a complete top-lattice. Suppose the topological structure of T = ConvergenceSpace(the Scott convergence of T). Then T is Scott.

Let *R* be a complete lattice. Observe that the Scott convergence of *R* has (CONSTANTS) property.

Let *R* be a complete lattice. Note that the Scott convergence of *R* has (SUBNETS) property. Next we state the proposition

(35) Let S be a non empty 1-sorted structure, N be a net in S, X be a set, and M be a subnet of N. If $M = N^{-1}(X)$, then for every element i of M holds $M(i) \in X$.

Let L be a non empty reflexive relational structure. The functor $\sigma(L)$ yielding a family of subsets of L is defined as follows:

(Def. 12) $\sigma(L)$ = the topology of ConvergenceSpace(the Scott convergence of L).

One can prove the following propositions:

- (36) For every continuous complete Scott top-lattice L and for every element x of L holds $\uparrow x$ is open.
- (37) For every complete top-lattice T such that the topology of $T = \sigma(T)$ holds T is Scott.

Let R be a continuous complete lattice. One can verify that the Scott convergence of R is topological.

Next we state a number of propositions:

- (38) Let *T* be a continuous complete Scott top-lattice, *x* be an element of *T*, and *N* be a net in *T*. If $N \in \text{NetUniv}(T)$, then *x* is S-limit of *N* iff $x \in \text{Lim } N$.
- (39) Let L be a complete non empty poset. Suppose the Scott convergence of L has (ITERATED LIMITS) property. Then L is continuous.

- (40) For every complete Scott top-lattice T holds T is continuous iff Convergence T = the Scott convergence of T.
- (41) For every complete Scott top-lattice *T* and for every upper subset *S* of *T* such that *S* is open holds *S* is open.
- (42) Let *L* be a non empty relational structure, *S* be an upper subset of *L*, and *x* be an element of *L*. If $x \in S$, then $\uparrow x \subseteq S$.
- (43) Let *L* be a complete continuous Scott top-lattice, *p* be an element of *L*, and *S* be a subset of *L*. If *S* is open and $p \in S$, then there exists an element *q* of *L* such that $q \ll p$ and $q \in S$.
- (44) Let L be a complete continuous Scott top-lattice and p be an element of L. Then $\{\uparrow q; q \text{ ranges over elements of } L: q \ll p\}$ is a basis of p.
- (45) For every complete continuous Scott top-lattice T holds $\{\uparrow x : x \text{ ranges over elements of } T\}$ is a basis of T.
- (46) Let *T* be a complete continuous Scott top-lattice and *S* be an upper subset of *T*. Then *S* is open if and only if *S* is open.
- (47) For every complete continuous Scott top-lattice T and for every element p of T holds $\operatorname{Int} \uparrow p = \uparrow p$.
- (48) Let T be a complete continuous Scott top-lattice and S be a subset of T. Then Int $S = \bigcup \{ \uparrow x; x \text{ ranges over elements of } T : \uparrow x \subseteq S \}$.

REFERENCES

- [1] Grzegorz Bancerek. König's theorem. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/card_3.html.
- [2] Grzegorz Bancerek. Cartesian product of functions. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/funct_6.html.
- [3] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [4] Grzegorz Bancerek. Bounds in posets and relational substructures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/yellow_0.html.
- [5] Grzegorz Bancerek. Directed sets, nets, ideals, filters, and maps. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/ JFM/Vol8/waybel_0.html.
- [6] Grzegorz Bancerek. The "way-below" relation. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 3.html.
- [7] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [8] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [9] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [10] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [11] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [12] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.
- [13] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_1.html.
- [14] Artur Korniłowicz. Cartesian products of relations and relational structures. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_3.html.
- [15] Artur Korniłowicz. Definitions and properties of the join and meet of subsets. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_4.html.
- [16] Artur Korniłowicz. Meet continuous lattices. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_ 2.html.

- [17] Artur Komiłowicz. On the topological properties of meet-continuous lattices. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/waybel_9.html.
- [18] Beata Madras. Product of family of universal algebras. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pralg_1.html.
- [19] Beata Madras. Irreducible and prime elements. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/waybel_6.html.
- [20] Beata Padlewska. Locally connected spaces. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/connsp_
- [21] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topc.html.
- [22] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/cantor 1.html.
- [23] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [24] Andrzej Trybulec. Many-sorted sets. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/pboole.html.
- [25] Andrzej Trybulec. Moore-Smith convergence. Journal of Formalized Mathematics, 8, 1996. http://mizar.org/JFM/Vol8/yellow_6.html.
- [26] Andrzej Trybulec. Baire spaces, Sober spaces. Journal of Formalized Mathematics, 9, 1997. http://mizar.org/JFM/Vol9/yellow_
- [27] Wojciech A. Trybulec. Partially ordered sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/orders_ 1.html.
- [28] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [29] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [30] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [31] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relset_1.html.
- [32] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/tops_1.html.
- [33] Mariusz Żynel and Czesław Byliński. Properties of relational structures, posets, lattices and maps. *Journal of Formalized Mathematics*, 8, 1996. http://mizar.org/JFM/Vol8/yellow_2.html.
- [34] Mariusz Żynel and Adam Guzowski. To topological spaces. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/t_Otopsp.html.

Received January 29, 1997

Published January 2, 2004