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Summary. In the article we continue the formalization in Mizar of [12, 98–105]. We
work with structures of the form

L = 〈C, ≤, τ〉,
whereC is the carrier of the structure,≤ - an ordering relation onC andτ a family of subsets
of C. When〈C, ≤〉 is a complete lattice we say thatL is Scott, ifτ is the Scott topology of
〈C, ≤〉. We define the Scott convergence (lim inf convergence). Following [12] we prove that
in the case of a continuous lattice〈C, ≤〉 the Scott convergence is topological, i.e. enjoys
the properties: (CONSTANTS), (SUBNETS), (DIVERGENCE), (ITERATED LIMITS). We
formalize the theorem, that if the Scott convergence has the (ITERATED LIMITS) property,
the〈C, ≤〉 is continuous.

MML Identifier: WAYBEL11.

WWW: http://mizar.org/JFM/Vol9/waybel11.html

The articles [23], [10], [29], [31], [11], [30], [7], [9], [8], [2], [28], [19], [21], [32], [22], [20], [34],
[24], [1], [18], [27], [3], [4], [5], [13], [33], [14], [15], [16], [6], [25], [17], and [26] provide the
notation and terminology for this paper.

1. PRELIMINARIES

The schemeIrrel deals with non empty setsA , B, a unary functorF yielding a set, a binary functor
F yielding a set, and a unary predicateP , and states that:

{F (u);u ranges over elements ofA : P [u]}= {F (i,v); i ranges over elements ofB,v
ranges over elements ofA : P [v]}

provided the following condition is met:
• For every elementi of B and for every elementu of A holdsF (u) = F (i,u).

We now state three propositions:

(1) For every complete latticeL and for all subsetsX, Y of L such thatY is coarser thanX
holdsd−eLX ≤ d−eLY.

(2) For every complete latticeL and for all subsetsX, Y of L such thatX is finer thanY holds⊔
L X ≤

⊔
LY.

(3) Let T be a relational structure,A be an upper subset ofT, andB be a directed subset ofT.
ThenA∩B is directed.

Let T be a reflexive non empty relational structure. One can verify that there exists a subset of
T which is non empty, directed, and finite.

We now state the proposition
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(4) For every posetT with l.u.b.’s and for every non empty directed finite subsetD of T holds
supD ∈ D.

Let us observe that there exists a relational structure which is trivial, reflexive, transitive, non
empty, antisymmetric, finite, and strict and has l.u.b.’s and g.l.b.’s.

One can check that there exists a 1-sorted structure which is finite, non empty, and strict.
Let T be a finite 1-sorted structure. Observe that every subset ofT is finite.
Let Rbe a relational structure. One can check that/0R is lower and upper.
Let Rbe a trivial non empty relational structure. One can verify that every subset ofR is upper.
Next we state two propositions:

(5) Let T be a non empty relational structure,x be an element ofT, andA be an upper subset
of T. If x /∈ A, thenA misses↓x.

(6) LetT be a non empty relational structure,x be an element ofT, andA be a lower subset of
T. If x∈ A, then↓x⊆ A.

2. SCOTT TOPOLOGY

Let T be a non empty reflexive relational structure and letS be a subset ofT. We say thatS is
inaccessible by directed joins if and only if:

(Def. 1) For every non empty directed subsetD of T such that supD ∈ SholdsD meetsS.

We introduceS is inaccessible as a synonym ofS is inaccessible by directed joins. We say thatS is
closed under directed sups if and only if:

(Def. 2) For every non empty directed subsetD of T such thatD⊆ Sholds supD ∈ S.

We introduceS is directly closed as a synonym ofS is closed under directed sups. We say thatS is
property(S) if and only if the condition (Def. 3) is satisfied.

(Def. 3) LetD be a non empty directed subset ofT. Suppose supD∈S. Then there exists an element
y of T such thaty∈ D and for every elementx of T such thatx∈ D andx≥ y holdsx∈ S.

We introduceShas the property (S) as a synonym ofS is property(S).
Let T be a non empty reflexive relational structure. Observe that/0T is property(S) and directly

closed.
Let T be a non empty reflexive relational structure. Note that there exists a subset ofT which is

property(S) and directly closed.
Let T be a non empty reflexive relational structure and letS be a property(S) subset ofT.

Observe thatSc is directly closed.
Let T be a reflexive non empty FR-structure. We say thatT is Scott if and only if:

(Def. 4) For every subsetSof T holdsS is open iffS is inaccessible and upper.

Let T be a reflexive transitive antisymmetric non empty finite relational structure with l.u.b.’s.
One can verify that every subset ofT is inaccessible.

Let T be a reflexive transitive antisymmetric non empty finite FR-structure with l.u.b.’s. Let us
observe thatT is Scott if and only if:

(Def. 5) For every subsetSof T holdsS is open iffS is upper.

One can check that there exists a top-lattice which is trivial, complete, strict, non empty, and
Scott.

Let T be a non empty reflexive relational structure. One can verify thatΩT is directly closed
and inaccessible.

Let T be a non empty reflexive relational structure. Note that there exists a subset ofT which is
directly closed, lower, inaccessible, and upper.
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Let T be a non empty reflexive relational structure and letSbe an inaccessible subset ofT. Note
thatSc is directly closed.

Let T be a non empty reflexive relational structure and letS be a directly closed subset ofT.
Note thatSc is inaccessible.

Next we state several propositions:

(7) LetT be an up-complete Scott non empty reflexive transitive FR-structure andSbe a subset
of T. ThenS is closed if and only ifS is directly closed and lower.

(8) Let T be an up-complete non empty reflexive transitive antisymmetric FR-structure andx
be an element ofT. Then↓x is directly closed.

(9) For every complete Scott top-latticeT and for every elementx of T holds{x}= ↓x.

(10) Every complete Scott top-lattice is aT0-space.

(11) Let T be a Scott up-complete non empty reflexive transitive antisymmetric FR-structure
andx be an element ofT. Then↓x is closed.

(12) For every up-complete Scott top-latticeT and for every elementx of T holds(↓x)c is open.

(13) LetT be an up-complete Scott top-lattice,x be an element ofT, andA be an upper subset
of T. If x /∈ A, then(↓x)c is a neighbourhood ofA.

(14) Let T be a complete Scott top-lattice andS be an upper subset ofT. Then there exists a
family F of subsets ofT such thatS=

⋂
F and for every subsetX of T such thatX ∈ F holds

X is a neighbourhood ofS.

(15) LetT be a Scott top-lattice andSbe a subset ofT. ThenS is open if and only ifS is upper
and property(S).

Let T be a complete top-lattice. One can verify that every subset ofT which is lower is also
property(S).

We now state the proposition

(16) LetT be a non empty transitive reflexive FR-structure. Suppose the topology ofT = {S;S
ranges over subsets ofT: Shas the property (S)}. ThenT is topological space-like.

3. SCOTT CONVERGENCE

In the sequelR denotes a non empty relational structure,N denotes a net inR, and i denotes an
element ofN.

Let us considerR, N. The functor liminfN yielding an element ofR is defined as follows:

(Def. 6) liminfN =
⊔

R{d
−eR{N(i) : i ≥ j} : j ranges over elements ofN}.

Let R be a reflexive non empty relational structure, letN be a net inR, and letp be an element
of R. We say thatp is S-limit of N if and only if:

(Def. 7) p≤ liminf N.

Let Rbe a reflexive non empty relational structure. The Scott convergence ofRyields a conver-
gence class ofRand is defined by the condition (Def. 8).

(Def. 8) LetN be a strict net inR. SupposeN ∈ NetUniv(R). Let p be an element ofR. Then〈〈N,
p〉〉 ∈ the Scott convergence ofR if and only if p is S-limit of N.

Next we state two propositions:

(17) LetR be a complete lattice,N be a net inR, andp, q be elements ofR. If p is S-limit of N
andN is eventually in↓q, thenp≤ q.
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(18) LetRbe a complete lattice,N be a net inR, andp, q be elements ofR. If N is eventually in
↑q, then liminfN ≥ q.

Let R be a reflexive non empty relational structure and letN be a non empty net structure over
R. Let us observe thatN is monotone if and only if:

(Def. 9) For all elementsi, j of N such thati ≤ j holdsN(i)≤ N( j).

Let R be a non empty relational structure, letSbe a non empty set, and letf be a function from
S into the carrier ofR. The functor NetStr(S, f ) yielding a strict non empty net structure overR is
defined by the conditions (Def. 10).

(Def. 10)(i) The carrier of NetStr(S, f ) = S,

(ii) the mapping of NetStr(S, f ) = f , and

(iii) for all elementsi, j of NetStr(S, f ) holdsi ≤ j iff (NetStr(S, f ))(i)≤ (NetStr(S, f ))( j).

The following propositions are true:

(19) LetL be a non empty 1-sorted structure andN be a non empty net structure overL. Then
rng(the mapping ofN) = {N(i) : i ranges over elements ofN}.

(20) LetRbe a non empty relational structure,Sbe a non empty set, andf be a function fromS
into the carrier ofR. If rng f is directed, then NetStr(S, f ) is directed.

Let R be a non empty relational structure, letSbe a non empty set, and letf be a function from
S into the carrier ofR. One can check that NetStr(S, f ) is monotone.

Let R be a transitive non empty relational structure, letS be a non empty set, and letf be a
function fromS into the carrier ofR. Note that NetStr(S, f ) is transitive.

Let R be a reflexive non empty relational structure, letS be a non empty set, and letf be a
function fromS into the carrier ofR. Observe that NetStr(S, f ) is reflexive.

Next we state the proposition

(21) Let R be a non empty transitive relational structure,S be a non empty set, andf be a
function fromS into the carrier ofR. If S⊆ the carrier ofR and NetStr(S, f ) is directed, then
NetStr(S, f ) ∈ NetUniv(R).

Let Rbe a lattice. Observe that there exists a net inRwhich is monotone, reflexive, and strict.
Next we state three propositions:

(22) For every complete latticeRand for every monotone reflexive netN in Rholds liminfN =
supN.

(23) For every complete latticeR and for every constant netN in R holds the value ofN =
liminf N.

(24) For every complete latticeR and for every constant netN in R holds the value ofN is
S-limit of N.

Let S be a non empty 1-sorted structure and lete be an element ofS. The functor NetStr(e)
yielding a strict net structure overS is defined as follows:

(Def. 11) The carrier of NetStr(e) = {e} and the internal relation of NetStr(e) = {〈〈e, e〉〉} and the
mapping of NetStr(e) = id{e}.

Let Sbe a non empty 1-sorted structure and lete be an element ofS. Note that NetStr(e) is non
empty.

One can prove the following two propositions:

(25) For every non empty 1-sorted structureSand for every elementeof Sand for every element
x of NetStr(e) holdsx = e.
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(26) For every non empty 1-sorted structureSand for every elementeof Sand for every element
x of NetStr(e) holds(NetStr(e))(x) = e.

Let S be a non empty 1-sorted structure and lete be an element ofS. Note that NetStr(e) is
reflexive, transitive, directed, and antisymmetric.

We now state several propositions:

(27) Let S be a non empty 1-sorted structure,e be an element ofS, andX be a set. Then
NetStr(e) is eventually inX if and only if e∈ X.

(28) For every reflexive antisymmetric non empty relational structureSand for every elemente
of Sholdse= liminfNetStr(e).

(29) For every non empty reflexive relational structureS and for every elemente of S holds
NetStr(e) ∈ NetUniv(S).

(30) Let R be a complete lattice,Z be a net inR, and D be a subset ofR. SupposeD =
{d−eR{Z(k);k ranges over elements ofZ: k ≥ j} : j ranges over elements ofZ}. ThenD is
non empty and directed.

(31) Let L be a complete lattice andS be a subset ofL. Then S ∈ the topology of
ConvergenceSpace(the Scott convergence ofL) if and only if S is inaccessible and upper.

(32) For every complete Scott top-latticeT holds the topological structure ofT =
ConvergenceSpace(the Scott convergence ofT).

(33) Let T be a complete top-lattice. Suppose the topological structure ofT =
ConvergenceSpace(the Scott convergence ofT). Let S be a subset ofT. ThenS is open
if and only if S is inaccessible and upper.

(34) Let T be a complete top-lattice. Suppose the topological structure ofT =
ConvergenceSpace(the Scott convergence ofT). ThenT is Scott.

Let R be a complete lattice. Observe that the Scott convergence ofR has (CONSTANTS) prop-
erty.

Let Rbe a complete lattice. Note that the Scott convergence ofRhas (SUBNETS) property.
Next we state the proposition

(35) LetSbe a non empty 1-sorted structure,N be a net inS, X be a set, andM be a subnet of
N. If M = N−1(X), then for every elementi of M holdsM(i) ∈ X.

Let L be a non empty reflexive relational structure. The functorσ(L) yielding a family of subsets
of L is defined as follows:

(Def. 12) σ(L) = the topology of ConvergenceSpace(the Scott convergence ofL).

One can prove the following propositions:

(36) For every continuous complete Scott top-latticeL and for every elementx of L holds↑↑x is
open.

(37) For every complete top-latticeT such that the topology ofT = σ(T) holdsT is Scott.

Let R be a continuous complete lattice. One can verify that the Scott convergence ofR is
topological.

Next we state a number of propositions:

(38) LetT be a continuous complete Scott top-lattice,x be an element ofT, andN be a net in
T. If N ∈ NetUniv(T), thenx is S-limit of N iff x∈ Lim N.

(39) LetL be a complete non empty poset. Suppose the Scott convergence ofL has (ITERATED
LIMITS) property. ThenL is continuous.
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(40) For every complete Scott top-latticeT holds T is continuous iff Convergence(T) = the
Scott convergence ofT.

(41) For every complete Scott top-latticeT and for every upper subsetSof T such thatSis open
holdsS is open.

(42) LetL be a non empty relational structure,Sbe an upper subset ofL, andx be an element of
L. If x∈ S, then↑x⊆ S.

(43) LetL be a complete continuous Scott top-lattice,p be an element ofL, andSbe a subset of
L. If S is open andp∈ S, then there exists an elementq of L such thatq� p andq∈ S.

(44) Let L be a complete continuous Scott top-lattice andp be an element ofL. Then{↑↑q;q
ranges over elements ofL: q� p} is a basis ofp.

(45) For every complete continuous Scott top-latticeT holds{↑↑x : x ranges over elements ofT}
is a basis ofT.

(46) LetT be a complete continuous Scott top-lattice andSbe an upper subset ofT. ThenS is
open if and only ifS is open.

(47) For every complete continuous Scott top-latticeT and for every elementp of T holds
Int↑p = ↑↑p.

(48) Let T be a complete continuous Scott top-lattice andS be a subset ofT. Then IntS=⋃
{↑↑x;x ranges over elements ofT: ↑↑x⊆ S}.
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