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Summary. We develop the algebra of partial vector functions, with domains being
algebra of vector functions.
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The articles[[9],[[13],[[1],[10],[[8],[1¥],[12],114],[2],[15],T11],[[8].[[4], and [6] provide the notation
and terminology for this paper.

For simplicity, we adopt the following rules, Y are setsC is a non empty set is an element
of C,V is areal normed spacé, f1, fo, f3 are partial functions fror® to the carrier o/, andr, p
are real numbers.

Let us consideC, let us conside¥, and let us considef;, f,. The functorf; 4 fo yields a
partial function fromC to the carrier ol and is defined as follows:

(Def. 1) domfy + fy) = domfy ndomf, and for everyc such thatc € dom(f; + ;) holds (f1 +
f2)c = (f1)c+ (f2)c.

The functorf, — f, yields a partial function fron€ to the carrier ol and is defined by:

(Def. 2) donmfy — f2) = domfy ndomf, and for everyc such thatc € dom(f; — f2) holds (f1 —
f2)e = (f1)c — (f2)c.

Let us conside€, let us consideY, let f1 be a partial function fron€ to R, and let us consider
fo. The functorf; f; yields a partial function fron€ to the carrier oV and is defined as follows:

(Def. 3) don{f; f;) = domf; Nndomf, and for everyc such thatt € dom(f; f2) holds(f; f2)c =
fa(c) - (f2)c.

Let us conside€, let us consideY, and let us considef, r. The functorr f yielding a partial
function fromC to the carrier oV is defined by:

(Def. 4) domr f) =domf and for everyc such that € dom(r ) holds(r f)c=r - f..

Let us consideC, let us conside¥, and let us considef. The functor| f|| yields a partial
function fromC to R and is defined as follows:

(Def. 5) domj|f|| =domf and for everyc such that € dom| f|| holds|| f||(c) = || f¢|l-
The functor—f yields a partial function fron€ to the carrier o/ and is defined by:
(Def. 6) dom{—f) = domf and for everyc such that € dom(— f) holds(—f)c = —fc.

One can prove the following propositions:
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(7H For every partial functiorf; from C to R holds donify f2)\ (f1 f2) ({0 }) = (domfy \
f171({0})) N (domfz\ f2~*({Ov })).

@) [Ifl*({o}) = f*({ov}) and(—f)~*({Ov}) = F*({Ov}).
(9) Ifr#0,then(r f)~*({Ov}) = f*({Ov}).

(10) fi+fo=fo+ f1.

(11) (fi+f2)+ fa= fi+(fa+ f3).

(12) Letfq, fo be partial functions fron€ to R and f3 be a partial function front to the carrier
of V. Then(fl fz) fa=f1 (fz f3).

(13) For all partial functiond;, f, fromC to R holds(f1 + f2) f3 = f; f3+ 5 fa.
(14) For every partial functioifis from C to R holds f3 (f1 + f2) = f3 f1 + f3 2.
(15) For every partial functio; from C to R holdsr (f;1 fz) = (r f1) fo.

(16) For every partial functio; from C to R holdsr (f1 fz) = f1 (r f2).

(17) For all partial functionds, f, fromCto R holds(fy — fp) fz = f1 f3— f3 fa.
(18) For every partial functioriz from C to R holds f3 f1 — f3 fo = f3 (f1 — f2).
(29) r(fi+f)=rfi+rfo.

(20) (r-p)f=r(pf).

21) r(fi—fy)=rfy—rfy.

(22) f1—fo=(-1)(f2—f1).

(23) fi—(fo+f3)="f1—fr—fa.

(24) 1f="1.

(25) f1—(fo—f3)=(f1— o)+ fs.

(26) f1+(fa—f3)=(f1+ f2) — fa.

(27) For every partial functiorfy from C to R holds|| f1 fo|| = | f1] || f2]|-

(28) [Ir 1| =r| ||l

29) —f=(-1f.

30) ——f="f.

(31) fi—fo="f1+—"fo.

(32) fi——fo="f1+fo.

(33) (fi+ f)IX = f1X+ fa[X and(fy+ f2) X = f1[X+ fpand(f1+ f2) [X = f1+ fo[X.

(34) For every partial functiofy fromCto R holds(fy f2) [ X = (f11X) (f2[X) and(f1 f2)[X =
(fl fX) f2 and(fl fz) fX = f1 (fz [X)

(35) (=f)IX=—f[Xand|f|IX=|fIX].
(36) (fl— fz) TX = f1[X— fzfx and(fl— fz) FX = f1[X— f2 and(fl— fz) [X = f1— fzfx.
(37) (rf)IX=r(fIX).
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(38) fyistotal andf; is total iff f; + f; is total andf; is total andf; is total iff f; — f; is total.
(39) For every partial functiotfi; from C to R holds f; is total andf; is total iff f; f; is total.
(40) fistotaliffr f is total.

(41) fistotaliff —f is total.

(42) fistotaliff ||f|| is total.

(43) If f1is total andf; is total, then(f1 + f2)c = (f1)c+ (f2)c and(f1 — f2)c = (f1)c — (f2)e.

(44) For every partial functiofy from C to R such thatf; is total andf; is total holds(f; f)c =
f1(c)- (f2)c.

(45) If fistotal, then(r f)c=r- f..
(46) If fistotal, then(—f)c. = —fc and| f||(c) = || fe||.

Let us consideC, let us consideY, and let us considef, Y. We say thaff is bounded ol if
and only if:

(Def. 7) There exists such that for everg such that € Y ndomf holds|| f¢|| <.
Next we state a number of propositions:
(48ﬂ If Y C X andf is bounded oiX, thenf is bounded orY.
(49) If X misses donfi, thenf is bounded orX.
(50) Of is bounded or.
(51) If f is bounded orY, thenr f is bounded orY.
(52) If f is bounded ory, then||f|| is bounded orY and—f is bounded orY.
(53) If f1is bounded oX and f; is bounded orY, thenf; + f; is bounded oiX NY.

(54) For every partial functiori; from C to R such thatf; is bounded orX and f; is bounded
onY holdsf; f; is bounded orXNY.

(55) If f1 is bounded orX and f; is bounded ory, thenf; — f; is bounded olX NY.
(56) If f is bounded orX and bounded ol, thenf is bounded orX UY.

(57) If fyis a constant oiX and f;, is a constant olY, then f; + f, is a constant oiXXNY and
f1 — fo is a constant oiX NY.

(58) Letf; be a partial function fron® to R. Supposef; is a constant oiX and f; is a constant
onY. Thenf; fy is a constant oiXNY.

(59) If f is a constant olY, thenp f is a constant o
(60) If fis a constant ol, then|| f| is a constant ol and—f is a constant ol.
(61) If f is a constant olY, thenf is bounded orY.

(62) If f is a constant olY, then for every holdsr f is bounded orY and—f is bounded orY
and|| f|| is bounded orY.

(63) If f1 is bounded oX and f; is a constant oiY, thenf; + f; is bounded orX NY.

(64) If f1 is bounded orX and f, is a constant otY, then f; — f, is bounded orX NY and
fo — f1 is bounded orXNY.

2 The proposition (47) has been removed.
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