Algebra of Vector Functions

Hiroshi Yamazaki Shinshu University Nagano Yasunari Shidama Shinshu University Nagano

Summary. We develop the algebra of partial vector functions, with domains being algebra of vector functions.

MML Identifier: VFUNCT_1.

WWW: http://mizar.org/JFM/Vol4/vfunct_1.html

The articles [9], [13], [1], [10], [3], [7], [12], [14], [2], [5], [11], [8], [4], and [6] provide the notation and terminology for this paper.

For simplicity, we adopt the following rules: X, Y are sets, C is a non empty set, c is an element of C, V is a real normed space, f, f_1 , f_2 , f_3 are partial functions from C to the carrier of V, and r, p are real numbers.

Let us consider C, let us consider V, and let us consider f_1 , f_2 . The functor $f_1 + f_2$ yields a partial function from C to the carrier of V and is defined as follows:

(Def. 1) $dom(f_1 + f_2) = dom f_1 \cap dom f_2$ and for every c such that $c \in dom(f_1 + f_2)$ holds $(f_1 + f_2)_c = (f_1)_c + (f_2)_c$.

The functor $f_1 - f_2$ yields a partial function from C to the carrier of V and is defined by:

(Def. 2) $\operatorname{dom}(f_1 - f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 - f_2)$ holds $(f_1 - f_2)_c = (f_1)_c - (f_2)_c$.

Let us consider C, let us consider V, let f_1 be a partial function from C to \mathbb{R} , and let us consider f_2 . The functor f_1 f_2 yields a partial function from C to the carrier of V and is defined as follows:

(Def. 3) $\operatorname{dom}(f_1 f_2) = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ and for every c such that $c \in \operatorname{dom}(f_1 f_2)$ holds $(f_1 f_2)_c = f_1(c) \cdot (f_2)_c$.

Let us consider C, let us consider V, and let us consider f, r. The functor r f yielding a partial function from C to the carrier of V is defined by:

(Def. 4) $\operatorname{dom}(rf) = \operatorname{dom} f$ and for every c such that $c \in \operatorname{dom}(rf)$ holds $(rf)_c = r \cdot f_c$.

Let us consider C, let us consider V, and let us consider f. The functor ||f|| yields a partial function from C to \mathbb{R} and is defined as follows:

(Def. 5) $\operatorname{dom} ||f|| = \operatorname{dom} f$ and for every c such that $c \in \operatorname{dom} ||f||$ holds $||f||(c) = ||f_c||$.

The functor -f yields a partial function from C to the carrier of V and is defined by:

(Def. 6) dom(-f) = dom f and for every c such that $c \in dom(-f)$ holds $(-f)_c = -f_c$.

One can prove the following propositions:

- (7)¹ For every partial function f_1 from C to \mathbb{R} holds $dom(f_1 f_2) \setminus (f_1 f_2)^{-1}(\{0_V\}) = (dom f_1 \setminus f_1^{-1}(\{0\})) \cap (dom f_2 \setminus f_2^{-1}(\{0_V\}))$.
- (8) $||f||^{-1}(\{0\}) = f^{-1}(\{0_V\}) \text{ and } (-f)^{-1}(\{0_V\}) = f^{-1}(\{0_V\}).$
- (9) If $r \neq 0$, then $(r f)^{-1}(\{0_V\}) = f^{-1}(\{0_V\})$.
- (10) $f_1 + f_2 = f_2 + f_1$.
- (11) $(f_1 + f_2) + f_3 = f_1 + (f_2 + f_3).$
- (12) Let f_1 , f_2 be partial functions from C to \mathbb{R} and f_3 be a partial function from C to the carrier of V. Then (f_1, f_2) $f_3 = f_1$ (f_2, f_3) .
- (13) For all partial functions f_1 , f_2 from C to \mathbb{R} holds $(f_1 + f_2) f_3 = f_1 f_3 + f_2 f_3$.
- (14) For every partial function f_3 from C to \mathbb{R} holds f_3 $(f_1 + f_2) = f_3 f_1 + f_3 f_2$.
- (15) For every partial function f_1 from C to \mathbb{R} holds $r(f_1, f_2) = (r, f_1) f_2$.
- (16) For every partial function f_1 from C to \mathbb{R} holds $r(f_1, f_2) = f_1(r, f_2)$.
- (17) For all partial functions f_1 , f_2 from C to \mathbb{R} holds $(f_1 f_2)$ $f_3 = f_1$ $f_3 f_2$ f_3 .
- (18) For every partial function f_3 from C to \mathbb{R} holds f_3 $f_1 f_3$ $f_2 = f_3$ $(f_1 f_2)$.
- (19) $r(f_1+f_2)=rf_1+rf_2$.
- (20) $(r \cdot p) f = r (p f).$
- (21) $r(f_1 f_2) = r f_1 r f_2$.
- (22) $f_1 f_2 = (-1)(f_2 f_1).$
- (23) $f_1 (f_2 + f_3) = f_1 f_2 f_3$.
- (24) 1 f = f.
- (25) $f_1 (f_2 f_3) = (f_1 f_2) + f_3$.
- (26) $f_1 + (f_2 f_3) = (f_1 + f_2) f_3$.
- (27) For every partial function f_1 from C to \mathbb{R} holds $||f_1|f_2|| = |f_1| ||f_2||$.
- (28) ||r f|| = |r| ||f||.
- (29) -f = (-1) f.
- (30) --f = f.
- (31) $f_1 f_2 = f_1 + -f_2$.
- (32) $f_1 -f_2 = f_1 + f_2$.
- (33) $(f_1 + f_2) \upharpoonright X = f_1 \upharpoonright X + f_2 \upharpoonright X$ and $(f_1 + f_2) \upharpoonright X = f_1 \upharpoonright X + f_2$ and $(f_1 + f_2) \upharpoonright X = f_1 + f_2 \upharpoonright X$.
- (34) For every partial function f_1 from C to \mathbb{R} holds $(f_1 f_2) \upharpoonright X = (f_1 \upharpoonright X) (f_2 \upharpoonright X)$ and $(f_1 f_2) \upharpoonright X = (f_1 \upharpoonright X) f_2$ and $(f_1 f_2) \upharpoonright X = f_1 (f_2 \upharpoonright X)$.
- (35) (-f) | X = -f | X and ||f|| | X = ||f| | X ||.
- (36) $(f_1 f_2) \upharpoonright X = f_1 \upharpoonright X f_2 \upharpoonright X$ and $(f_1 f_2) \upharpoonright X = f_1 \upharpoonright X f_2$ and $(f_1 f_2) \upharpoonright X = f_1 f_2 \upharpoonright X$.
- (37) $(r f) \upharpoonright X = r (f \upharpoonright X).$

¹ The propositions (1)–(6) have been removed.

- (38) f_1 is total and f_2 is total iff $f_1 + f_2$ is total and f_1 is total and f_2 is total iff $f_1 f_2$ is total.
- (39) For every partial function f_1 from C to \mathbb{R} holds f_1 is total and f_2 is total iff f_1 f_2 is total.
- (40) f is total iff r f is total.
- (41) f is total iff -f is total.
- (42) f is total iff ||f|| is total.
- (43) If f_1 is total and f_2 is total, then $(f_1 + f_2)_c = (f_1)_c + (f_2)_c$ and $(f_1 f_2)_c = (f_1)_c (f_2)_c$.
- (44) For every partial function f_1 from C to \mathbb{R} such that f_1 is total and f_2 is total holds $(f_1 f_2)_c = f_1(c) \cdot (f_2)_c$.
- (45) If f is total, then $(r f)_c = r \cdot f_c$.
- (46) If f is total, then $(-f)_c = -f_c$ and $||f||(c) = ||f_c||$.

Let us consider C, let us consider V, and let us consider f, Y. We say that f is bounded on Y if and only if:

(Def. 7) There exists r such that for every c such that $c \in Y \cap \text{dom } f$ holds $||f_c|| \le r$.

Next we state a number of propositions:

- $(48)^2$ If $Y \subseteq X$ and f is bounded on X, then f is bounded on Y.
- (49) If X misses dom f, then f is bounded on X.
- (50) 0 f is bounded on Y.
- (51) If f is bounded on Y, then r f is bounded on Y.
- (52) If f is bounded on Y, then ||f|| is bounded on Y and -f is bounded on Y.
- (53) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (54) For every partial function f_1 from C to \mathbb{R} such that f_1 is bounded on X and f_2 is bounded on Y holds f_1 f_2 is bounded on $X \cap Y$.
- (55) If f_1 is bounded on X and f_2 is bounded on Y, then $f_1 f_2$ is bounded on $X \cap Y$.
- (56) If *f* is bounded on *X* and bounded on *Y*, then *f* is bounded on $X \cup Y$.
- (57) If f_1 is a constant on X and f_2 is a constant on Y, then $f_1 + f_2$ is a constant on $X \cap Y$ and $f_1 f_2$ is a constant on $X \cap Y$.
- (58) Let f_1 be a partial function from C to \mathbb{R} . Suppose f_1 is a constant on X and f_2 is a constant on Y. Then f_1 f_2 is a constant on $X \cap Y$.
- (59) If f is a constant on Y, then p f is a constant on Y.
- (60) If f is a constant on Y, then ||f|| is a constant on Y and -f is a constant on Y.
- (61) If f is a constant on Y, then f is bounded on Y.
- (62) If f is a constant on Y, then for every r holds r f is bounded on Y and -f is bounded on Y and ||f|| is bounded on Y.
- (63) If f_1 is bounded on X and f_2 is a constant on Y, then $f_1 + f_2$ is bounded on $X \cap Y$.
- (64) If f_1 is bounded on X and f_2 is a constant on Y, then $f_1 f_2$ is bounded on $X \cap Y$ and $f_2 f_1$ is bounded on $X \cap Y$.

² The proposition (47) has been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [3] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [4] Jarosław Kotowicz. Real sequences and basic operations on them. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/ JFM/Voll/seq_1.html.
- [5] Jarosław Kotowicz. Partial functions from a domain to a domain. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/partfun2.html.
- [6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/rfunct_1.html.
- [7] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [8] Jan Popiołek. Real normed space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/normsp_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [12] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [13] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [14] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.

Received October 27, 1992

Published January 2, 2004