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Summary. The main purpose of the paper is to define the dimension of an abstract
vector space. The dimension of a finite-dimensional vector space is, by the most common
definition, the number of vectors in a basis. Obviously, each basis contains the same number
of vectors. We prove the Steinitz Theorem together with Exchange Lemma in the second
section. The Steinitz Theorem says that each linearly-independent subset of a vector space
has cardinality less than any subset that generates the space, moreover it can be extended to
a basis. Further we review some of the standard facts involving the dimension of a vector
space. Additionally, in the last section, we introduce two notions: the family of subspaces of
a fixed dimension and the pencil of subspaces. Both of them can be applied in the algebraic
representation of several geometries.

MML Identifier: VECTSP_9.

WWW: http://mizar.org/JFM/Vol7/vectsp_9.html

The articles[[10],[[18],[11]/12],[[19],[14],[[6],[1],[16], 3], 116], 1], [12],[[8], [17],[14],[[15],[18],
and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules; is a field,V is a vector space ovés;, W is a
subspace d¥, x is a set, anah is a natural number.
Let Sbe a non empty 1-sorted structure. Note that there exists a sulahidh is non empty.
One can prove the following proposition

(1) For every finite seX such thanh < X there exists a finite subsatof X such thatA = n.

In the sequef, g are functions.
One can prove the following propositions:

(2) For everyf such thatf is one-to-one holds i € rngf, then f-1({x}) = 1.

(8) For everyf such thai ¢ rngf holds f~1({x}) = 0.

(4) Forall f, gsuch that rnd = rngg and f is one-to-one and is one-to-one hold$ andg
are fiberwise equipotent.

(5) LetL be alinear combination &f, F, G be finite sequences of elements of the carrier of
V, andP be a permutation of dof If G=F -P, theny (LF) = S(L G).
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(6) LetL be alinear combination &f andF be a finite sequence of elements of the carrier of
V. If the support oL misses rng, theny (LF) = 0Oy.

(7) LetF be a finite sequence of elements of the carrie¥ oSupposé- is one-to-one. Lek
be a linear combination &f. If the support ol C rngF, theny (LF) =3 L.

(8) LetL be alinear combination &f andF be a finite sequence of elements of the carrier of
V. Then there exists a linear combinatikinof V such that the support ¢ = rngF N (the
supportofL) andLF =K F.

(9) LetL be a linear combination of, A be a subset of/, andF be a finite sequence of
elements of the carrier 8. Suppose rng C the carrier of LifA). Then there exists a linear
combinatiorK of Asuchthag (LF) = S K.

(10) LetL be a linear combination &f andA be a subset df. Suppose the support bfC the
carrier of Lin(A). Then there exists a linear combinatidrof A such thaty L = 5 K.

(11) LetL be a linear combination of. Suppose the support &fC the carrier ofW. LetK
be a linear combination &. Suppos& = L [the carrier oW. Then the support df = the
support ofK andy L = 5 K.

(12) LetK be alinear combination ai/. Then there exists a linear combinatibrof V such
that the support ok = the support ot andy K =S L.

(13) LetL be a linear combination of. Suppose the support &fC the carrier oflW. Then
there exists a linear combinatidh of W such that the support & = the support oL and

SK=5L.

(14) For every basisof V and for every vectov of V holdsv € Lin(l).

(15) LetAbe asubset V. Suppose is linearly independent. Then there exists a suBgst
V such thaB is linearly independent arlsl= A.

(16) LetAbe a subset df. Suppose is linearly independent an@l C the carrier ofV. Then
there exists a subsBtof W such thaB is linearly independent ari8i= A.

(17) For every basié of W there exists a basB of V such thatA C B.

(18) LetAbe asubsetdf. Supposéis linearly independent. Letbe a vector oV/. If ve A
then for every subsd of V such thaB = A\ {v} holdsv ¢ Lin(B).

(19) Letl be a basis of andA be a non empty subset ¥f SupposeA missed. LetB be a
subset o¥/. If B=1UA, thenB is linearly dependent.

(20) For every subset of V such thatA C the carrier oW holds Lin(A) is a subspace a¥.
(21) Forevery subsétofV and for every subs& of W such thatA = B holds Lin(A) = Lin(B).

2. THE STEINITZ THEOREM
One can prove the following propositions:

(22) LetA, B be finite subsets df andv be a vector olV. Supposer € Lin(AUB) andv ¢
Lin(B). Then there exists a vectarof V such thatv e Aandw € Lin(((AUB) \ {w}) U{v}).

(23) LetA, B be finite subseti of . Suppose the vector space structur® of Lin(A) andB is
linearly independent. TheB < A and there exists a finite sub&2bfV such thaC C A and
C = A — B and the vector space structuréwt= Lin(BUC).
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3. FNITE-DIMENSIONAL VECTORSPACES

Let G; be a field and leV be a vector space ov&;. Let us observe that is finite dimensional if
and only if:

(Def. 1) There exists a finite subset\iwhich is a basis o¥.
We now state several propositions:
(24) IfV is finite dimensional, then every basis\bis finite.

(25) IfV is finite dimensional, then for every subgebfV such thatA is linearly independent
holdsA is finite.

(26) IfV is finite dimensional, then for all basésB of V holdsA = B.
(27) Oy is finite dimensional.
(28) If V is finite dimensional, theW is finite dimensional.

Let G; be a field and le¥ be a vector space ov&;. One can check that there exists a subspace
of V which is strict and finite dimensional.

Let G; be a field and leV be a finite dimensional vector space o@yr. One can check that
every subspace &f is finite dimensional.

Let G; be a field and le¥ be a finite dimensional vector space o@r Note that there exists a
subspace d¥ which is strict.

4, THE DIMENSION OF AVECTORSPACE

Let G; be a field and leV be a vector space ov&;. Let us assume that is finite dimensional.
The functor dinfV) yields a natural number and is defined by:

(Def. 2) For every basisof V holds dim{V) = T.

We adopt the following rules¥ denotes a finite dimensional vector space dvgrw/, Wy, Wo
denote subspaces df andu, v denote vectors of .
Next we state a number of propositions:

(29) dimw) <dim(V).

(30) For every subset of V such thatA is linearly independent hold& = dim(Lin(A)).
(31) dimV)=dim(Qy).

(32) dimV)=dim(W) iff Qy = Qw.

(33) dim\V)=0iff Qy =0y.

(34) dim(V) = 1iff there existss such thav # Oy andQy = Lin({v}).

(35) dim(V) = 2 iff there existu, v such thau # v and{u, v} is linearly independent ar@d, =
Lin({u,v}).

(36)  dimWy +Wb) + dim(Wi NWs) = dim(Wh) + dim(W).

(37) dimWiNWs) > (dim(Wy) 4+ dim(Ws)) — dim(V).

(38) IfVis the direct sum of\y andWs, then din{V) = dim(Wy) + dim(W.).
(39) n<dim(V) iff there exists a strict subspa®é of V such that diniw) = n.

Let G; be a field, letv be a finite dimensional vector space o¢&r, and letn be a natural
number. The functor SulV) yields a set and is defined by:



THE STEINITZ THEOREM AND THE DIMENSION OF. .. 4

(Def. 3) x e Suly(V) iff there exists a strict subspa®¢ of V such thaW = x and dimW) =n.

Next we state three propositions:
(40) Ifn<dim(V), then Suh(V) is non empty.
(41) 1fdim(V) < n, then SuR(V) = 0.
(42) SuB(W) C Sup(V).
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