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Warsaw University

Białystok

Summary. The main purpose of the paper is to define the dimension of an abstract
vector space. The dimension of a finite-dimensional vector space is, by the most common
definition, the number of vectors in a basis. Obviously, each basis contains the same number
of vectors. We prove the Steinitz Theorem together with Exchange Lemma in the second
section. The Steinitz Theorem says that each linearly-independent subset of a vector space
has cardinality less than any subset that generates the space, moreover it can be extended to
a basis. Further we review some of the standard facts involving the dimension of a vector
space. Additionally, in the last section, we introduce two notions: the family of subspaces of
a fixed dimension and the pencil of subspaces. Both of them can be applied in the algebraic
representation of several geometries.

MML Identifier: VECTSP_9.
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The articles [10], [18], [11], [2], [19], [4], [5], [1], [6], [3], [16], [7], [12], [8], [17], [14], [15], [13],
and [9] provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following rules:G1 is a field,V is a vector space overG1, W is a
subspace ofV, x is a set, andn is a natural number.

Let Sbe a non empty 1-sorted structure. Note that there exists a subset ofSwhich is non empty.
One can prove the following proposition

(1) For every finite setX such thatn≤ X there exists a finite subsetA of X such thatA = n.

In the sequelf , g are functions.
One can prove the following propositions:

(2) For everyf such thatf is one-to-one holds ifx∈ rng f , then f−1({x}) = 1.

(3) For everyf such thatx /∈ rng f holds f−1({x}) = 0.

(4) For all f , g such that rngf = rngg and f is one-to-one andg is one-to-one holdsf andg
are fiberwise equipotent.

(5) Let L be a linear combination ofV, F , G be finite sequences of elements of the carrier of
V, andP be a permutation of domF. If G = F ·P, then∑(L F) = ∑(L G).
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(6) Let L be a linear combination ofV andF be a finite sequence of elements of the carrier of
V. If the support ofL misses rngF, then∑(L F) = 0V .

(7) Let F be a finite sequence of elements of the carrier ofV. SupposeF is one-to-one. LetL
be a linear combination ofV. If the support ofL⊆ rngF, then∑(L F) = ∑L.

(8) Let L be a linear combination ofV andF be a finite sequence of elements of the carrier of
V. Then there exists a linear combinationK of V such that the support ofK = rngF ∩ (the
support ofL) andL F = K F.

(9) Let L be a linear combination ofV, A be a subset ofV, andF be a finite sequence of
elements of the carrier ofV. Suppose rngF ⊆ the carrier of Lin(A). Then there exists a linear
combinationK of A such that∑(L F) = ∑K.

(10) LetL be a linear combination ofV andA be a subset ofV. Suppose the support ofL⊆ the
carrier of Lin(A). Then there exists a linear combinationK of A such that∑L = ∑K.

(11) Let L be a linear combination ofV. Suppose the support ofL ⊆ the carrier ofW. Let K
be a linear combination ofW. SupposeK = L�the carrier ofW. Then the support ofL = the
support ofK and∑L = ∑K.

(12) Let K be a linear combination ofW. Then there exists a linear combinationL of V such
that the support ofK = the support ofL and∑K = ∑L.

(13) Let L be a linear combination ofV. Suppose the support ofL ⊆ the carrier ofW. Then
there exists a linear combinationK of W such that the support ofK = the support ofL and
∑K = ∑L.

(14) For every basisI of V and for every vectorv of V holdsv∈ Lin(I).

(15) LetA be a subset ofW. SupposeA is linearly independent. Then there exists a subsetB of
V such thatB is linearly independent andB = A.

(16) LetA be a subset ofV. SupposeA is linearly independent andA⊆ the carrier ofW. Then
there exists a subsetB of W such thatB is linearly independent andB = A.

(17) For every basisA of W there exists a basisB of V such thatA⊆ B.

(18) LetA be a subset ofV. SupposeA is linearly independent. Letv be a vector ofV. If v∈ A,
then for every subsetB of V such thatB = A\{v} holdsv /∈ Lin(B).

(19) Let I be a basis ofV andA be a non empty subset ofV. SupposeA missesI . Let B be a
subset ofV. If B = I ∪A, thenB is linearly dependent.

(20) For every subsetA of V such thatA⊆ the carrier ofW holds Lin(A) is a subspace ofW.

(21) For every subsetA of V and for every subsetB of W such thatA= B holds Lin(A) = Lin(B).

2. THE STEINITZ THEOREM

One can prove the following propositions:

(22) Let A, B be finite subsets ofV andv be a vector ofV. Supposev ∈ Lin(A∪B) andv /∈
Lin(B). Then there exists a vectorw of V such thatw∈A andw∈ Lin(((A∪B)\{w})∪{v}).

(23) LetA, B be finite subsets ofV. Suppose the vector space structure ofV = Lin(A) andB is

linearly independent. ThenB ≤ A and there exists a finite subsetC of V such thatC⊆ A and
C = A− B and the vector space structure ofV = Lin(B∪C).
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3. FINITE-DIMENSIONAL VECTORSPACES

Let G1 be a field and letV be a vector space overG1. Let us observe thatV is finite dimensional if
and only if:

(Def. 1) There exists a finite subset ofV which is a basis ofV.

We now state several propositions:

(24) If V is finite dimensional, then every basis ofV is finite.

(25) If V is finite dimensional, then for every subsetA of V such thatA is linearly independent
holdsA is finite.

(26) If V is finite dimensional, then for all basesA, B of V holdsA = B.

(27) 0V is finite dimensional.

(28) If V is finite dimensional, thenW is finite dimensional.

Let G1 be a field and letV be a vector space overG1. One can check that there exists a subspace
of V which is strict and finite dimensional.

Let G1 be a field and letV be a finite dimensional vector space overG1. One can check that
every subspace ofV is finite dimensional.

Let G1 be a field and letV be a finite dimensional vector space overG1. Note that there exists a
subspace ofV which is strict.

4. THE DIMENSION OF A VECTORSPACE

Let G1 be a field and letV be a vector space overG1. Let us assume thatV is finite dimensional.
The functor dim(V) yields a natural number and is defined by:

(Def. 2) For every basisI of V holds dim(V) = I .

We adopt the following rules:V denotes a finite dimensional vector space overG1, W, W1, W2

denote subspaces ofV, andu, v denote vectors ofV.
Next we state a number of propositions:

(29) dim(W)≤ dim(V).

(30) For every subsetA of V such thatA is linearly independent holdsA = dim(Lin(A)).

(31) dim(V) = dim(ΩV).

(32) dim(V) = dim(W) iff ΩV = ΩW.

(33) dim(V) = 0 iff ΩV = 0V .

(34) dim(V) = 1 iff there existsv such thatv 6= 0V andΩV = Lin({v}).

(35) dim(V) = 2 iff there existu, v such thatu 6= v and{u,v} is linearly independent andΩV =
Lin({u,v}).

(36) dim(W1 +W2)+dim(W1∩W2) = dim(W1)+dim(W2).

(37) dim(W1∩W2)≥ (dim(W1)+dim(W2))−dim(V).

(38) If V is the direct sum ofW1 andW2, then dim(V) = dim(W1)+dim(W2).

(39) n≤ dim(V) iff there exists a strict subspaceW of V such that dim(W) = n.

Let G1 be a field, letV be a finite dimensional vector space overG1, and letn be a natural
number. The functor Subn(V) yields a set and is defined by:



THE STEINITZ THEOREM AND THE DIMENSION OF. . . 4

(Def. 3) x∈ Subn(V) iff there exists a strict subspaceW of V such thatW = x and dim(W) = n.

Next we state three propositions:

(40) If n≤ dim(V), then Subn(V) is non empty.

(41) If dim(V) < n, then Subn(V) = /0.

(42) Subn(W)⊆ Subn(V).
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