On the Lattice of Subspaces of a Vector Space

Andrzej Iwaniuk Warsaw University Białystok

MML Identifier: VECTSP_8.

WWW: http://mizar.org/JFM/Vol7/vectsp_8.html

The articles [10], [5], [15], [6], [9], [11], [7], [17], [13], [1], [14], [16], [2], [4], [3], [12], and [8] provide the notation and terminology for this paper.

In this paper F is a field and V_1 is a strict vector space over F.

Let us consider F, V_1 . The functor $\mathbb{L}_{(V_1)}$ yields a strict bounded lattice and is defined as follows:

(Def. 1) $\mathbb{L}_{(V_1)} = \langle \text{Subspaces } V_1, \text{SubJoin } V_1, \text{SubMeet } V_1 \rangle$.

Let us consider F, V_1 . Family of subspaces of V_1 is defined by:

(Def. 2) For every set x such that $x \in \text{it holds } x$ is a subspace of V_1 .

Let us consider F, V_1 . Note that there exists a family of subspaces of V_1 which is non empty. Let us consider F, V_1 . Then Subspaces V_1 is a non empty family of subspaces of V_1 . Let X be a non empty family of subspaces of V_1 . We see that the element of X is a subspace of V_1 .

Let us consider F, V_1 and let x be an element of Subspaces V_1 . The functor \bar{x} yields a subset of V_1 and is defined as follows:

(Def. 3) There exists a subspace *X* of V_1 such that x = X and $\bar{x} =$ the carrier of *X*.

Let us consider F, V_1 . The functor $\overline{V_1}$ yielding a function from Subspaces V_1 into $2^{\text{the carrier of } V_1}$ is defined by:

(Def. 4) For every element h of Subspaces V_1 and for every subspace H of V_1 such that h = H holds $\overline{V_1}(h) =$ the carrier of H.

The following propositions are true:

- (1) For every strict vector space V_1 over F and for every non empty subset H of Subspaces V_1 holds $\overline{V_1}^{\circ}H$ is non empty.
- (2) For every strict vector space V_1 over F and for every strict subspace H of V_1 holds $0_{(V_1)} \in \overline{V_1}(H)$.

Let us consider F, V_1 and let G be a non empty subset of Subspaces V_1 . The functor $\bigcap G$ yielding a strict subspace of V_1 is defined as follows:

(Def. 5) The carrier of $\bigcap G = \bigcap (\overline{V_1}^{\circ} G)$.

We now state several propositions:

- (3) Subspaces V_1 = the carrier of $\mathbb{L}_{(V_1)}$.
- (4) The meet operation of $\mathbb{L}_{(V_1)} = \text{SubMeet } V_1$.
- (5) The join operation of $\mathbb{L}_{(V_1)} = \operatorname{SubJoin} V_1$.
- (6) Let V_1 be a strict vector space over F, p, q be elements of $\mathbb{L}_{(V_1)}$, and H_1 , H_2 be strict subspaces of V_1 . Suppose $p = H_1$ and $q = H_2$. Then $p \sqsubseteq q$ if and only if the carrier of $H_1 \subseteq$ the carrier of H_2 .
- (7) Let V_1 be a strict vector space over F, p, q be elements of $\mathbb{L}_{(V_1)}$, and H_1 , H_2 be subspaces of V_1 . If $p = H_1$ and $q = H_2$, then $p \sqcup q = H_1 + H_2$.
- (8) Let V_1 be a strict vector space over F, p, q be elements of $\mathbb{L}_{(V_1)}$, and H_1 , H_2 be subspaces of V_1 . If $p = H_1$ and $q = H_2$, then $p \sqcap q = H_1 \cap H_2$.

Let L be a non empty lattice structure. Let us observe that L is complete if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let X be a subset of L. Then there exists an element a of L such that $a \sqsubseteq X$ and for every element b of L such that $b \sqsubseteq X$ holds $b \sqsubseteq a$.

Next we state two propositions:

- (9) For every V_1 holds $\mathbb{L}_{(V_1)}$ is complete.
- (10) Let x be a set, V_1 be a strict vector space over F, and S be a subset of V_1 . If S is non empty and linearly closed, then if $x \in \text{Lin}(S)$, then $x \in S$.

Let F be a field, let A, B be strict vector spaces over F, and let f be a function from the carrier of A into the carrier of B. The functor FuncLatt(f) yields a function from the carrier of \mathbb{L}_A into the carrier of \mathbb{L}_B and is defined as follows:

(Def. 7) For every strict subspace S of A and for every subset B_0 of B such that $B_0 = f^{\circ}$ (the carrier of S) holds $(\operatorname{FuncLatt}(f))(S) = \operatorname{Lin}(B_0)$.

Let L_1 , L_2 be lattices. A function from the carrier of L_1 into the carrier of L_2 is said to be a lower homomorphism between L_1 and L_2 if:

(Def. 8) For all elements a, b of L_1 holds it($a \sqcap b$) = it(a) \sqcap it(b).

Let L_1 , L_2 be lattices. A function from the carrier of L_1 into the carrier of L_2 is said to be an upper homomorphism between L_1 and L_2 if:

(Def. 9) For all elements a, b of L_1 holds it($a \sqcup b$) = it(a) \sqcup it(b).

The following propositions are true:

- (11) Let L_1 , L_2 be lattices and f be a function from the carrier of L_1 into the carrier of L_2 . Then f is a homomorphism from L_1 to L_2 if and only if f is an upper homomorphism between L_1 and L_2 and a lower homomorphism between L_1 and L_2 .
- (12) Let F be a field, A, B be strict vector spaces over F, and f be a map from A into B. If f is linear, then FuncLatt(f) is an upper homomorphism between \mathbb{L}_A and \mathbb{L}_B .
- (13) Let F be a field, A, B be strict vector spaces over F, and f be a map from A into B. Suppose f is one-to-one and linear. Then FuncLatt(f) is a homomorphism from \mathbb{L}_A to \mathbb{L}_B .
- (14) Let A, B be strict vector spaces over F and f be a map from A into B. If f is linear and one-to-one, then FuncLatt(f) is one-to-one.
- (15) For every strict vector space A over F holds FuncLatt($id_{the carrier of A}$) = $id_{the carrier of L_A}$.

REFERENCES

- [1] Grzegorz Bancerek. Complete lattices. Journal of Formalized Mathematics, 4, 1992. http://mizar.org/JFM/Vol4/lattice3.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [6] Jolanta Kamieńska and Jarosław Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/lattice4.html.
- [7] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [8] Michał Muzalewski. Rings and modules part II. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/mod_ 2.html.
- [9] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [10] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [11] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/rlvect_1.html.
- [12] Wojciech A. Trybulec. Basis of vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_7.html.
- [13] Wojciech A. Trybulec. Operations on subspaces in vector space. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/ JFM/Vol2/vectsp_5.html.
- [14] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- [15] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [16] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat 1.html.
- [17] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received May 23, 1995

Published January 2, 2004