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Basis of Vector Space
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Summary. We prove the existence of a basis of a vector space, i.e., a set of vectors
that generates the vector space and is linearly independent. We also introduce the notion of a
subspace generated by a set of vectors and linear independence of set of vectors.

MML Identifier: VECTSP_7.

WWW: http://mizar.org/JFM/Vol2/vectsp_7.html

The articles[[7],[4],[14],[[15],12], 131, 8], [[5], 1], [9], 6], [10], [13], [12], and [11] provide the
notation and terminology for this paper.

For simplicity, we use the following conventio:is a set,G; is a field,a, b are elements of
Gy, V is a vector space ovés,, v, vi, Vo are vectors oV, A, B are subsets of, andl is a linear
combination ofA.

Let us considelG,, let us conside¥, and letl; be a subset of. We say that; is linearly
independent if and only if:

(Def. 1) For every linear combinatidrof 11 such thaty | = Oy holds the support df= 0.

We introducd is linearly dependent as an antonyml ofs linearly independent.
The following propositions are true:

(ZH If AC BandBis linearly independent, thehis linearly independent.

(3) If Aislinearly independent, ther,G¢ A.

(4)  Oe carrier ofv 1S linearly independent.

(5) {v}islinearly independent if§ £ Oy.

(6) If {vi,v2} is linearly independent, then # Oy andvy # Oy.

(7) {v,0y} is linearly dependent anfDy, v} is linearly dependent.

(8) wvi1#wpand{vy, v} is linearly independent iff, # 0y and for everya holdsv; # a- va.

(9) wvi1#vyand{vy,Vv,} is linearly independent iff for aly, b such that-v; +b- v, = Oy holds
a= O(Gl) andb = O(Gl)~

Let us considefG, let us consideY, and let us considek. The functor LifA) yields a strict
subspace d¥ and is defined as follows:

(Def. 2) The carrier of LigA) = {3 | }.

The following propositions are true:

1 The proposition (1) has been removed.
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(12E] x € Lin(A) iff there existd such thak= S 1.

(13) Ifxe A thenxe Lin(A).

(14)  Lin(Qne carrier otv) = Oy

(15) IfLin(A) =0y, thenA=0orA={0y}.

(16) For every strict subspa®é of V such thatA = the carrier ofV holds Lin(A) =W.

(17) For every strict vector spaveoverG; and for every subsét of V such thatA = the carrier
of V holds Lin(A) = V.

(18) If AC B, then Lin(A) is a subspace of LiiB).

(19) For every strict vector spa¥eoverG; and for all subset8, B of V such that LifA) =V
andA C B holds Lin(B) = V.

(20) Lin(AUB) =Lin(A)+Lin(B).
(21) Lin(ANB) is a subspace of L) NLin(B).

(22) LetV be a vector space ov&; andA be a subset of . Suppose\ is linearly independent.
Then there exists a sub€gbf V such thath C B andB is linearly independent and L(B) =
the vector space structure\of

(23) If Lin(A) =V, then there exist® such thatB C A andB is linearly independent and
Lin(B) = V.

Let us consideG; and letV be a vector space ov€);. A subset ol is called a basis of if:
(Def. 3) ltis linearly independent and L(im) = the vector space structure \¢f

Next we state two propositions:

(27 LetV be a vector space ov&; andA be a subset df . If Ais linearly independent, then
there exists a baslsof V such thaiA C |.

(28) For every vector spaté over G, and for every subsek of V such that LitA) =V there
exists a basis of V such that C A.

REFERENCES

[1] Grzegorz Bancerek. The ordinal numbedsurnal of Formalized Mathematic&, 1989.http://mizar.org/JFM/Voll/ordinall.
htmll

[2] Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/
funct_1.html.

[3] Czestaw Bylnski. Functions from a set to a séburnal of Formalized Mathematic&, 1989/http://mizar.org/JFM/Voll/funct_|
2.htmll

[4] Czestaw Bylhski. Some basic properties of setdournal of Formalized Mathematicd, 1989. http://mizar.org/JFM/Voll/
zfmisc_1.html,

[5] Agata Darmochwat. Finite setdournal of Formalized Mathematics, 1989.http://mizar.org/JFM/Voll/finset_1.html,

[6] Eugeniusz Kusak, Wojciech Léozuk, and Michat Muzalewski. Abelian groups, fields and vector spadesrnal of Formalized
Mathematicsl1, 1989/http://mizar.orqg/JFM/Voll/vectsp_1.html.

[7] Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicé\xiomatics, 1989 http://mizar.org/JFM/
Axiomatics/tarski.htmll

[8] Andrzej Trybulec. Function domains and Fraenkel operalournal of Formalized Mathematicg, 1990.http://mizar.org/JFM/
Vol2/fraenkel.html,

2 The propositions (10) and (11) have been removed.
3 The propositions (24)-(26) have been removed.


http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/ordinal1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/zfmisc_1.html
http://mizar.org/JFM/Vol1/finset_1.html
http://mizar.org/JFM/Vol1/vectsp_1.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol2/fraenkel.html
http://mizar.org/JFM/Vol2/fraenkel.html

[

[10]

[11]

[12]

[13]

[14]

[15]

BASIS OF VECTOR SPACE 3

Wojciech A. Trybulec. Vectors in real linear spacdournal of Formalized Mathematicg, 1989. http://mizar.org/JFM/Voll/
rlvect_1.html}

Wojciech A. Trybulec. Linear combinations in real linear spadeurnal of Formalized Mathematic®, 1990.http://mizar.org/
JFM/Vol2/rlvect_2.htmll

Wojciech A. Trybulec. Linear combinations in vector spadeurnal of Formalized Mathematic&, 1990.http://mizar.org/JFM/
Vol2/vectsp_6.html,

Wojciech A. Trybulec. Operations on subspaces in vector spdmgrnal of Formalized Mathematicg, 1990.http://mizar.org/
JFM/Vol2/vectsp_5.html|

Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector spagmal of Formalized Mathematic®, 1990. [http:
//mizar.org/JFM/Vol2/vectsp_4.html.

Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http://mizar.org/JFM/Voll/subset_1.html.

Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematicg, 1989.http://mizar.org/JFM/
Voll/relat_1.htmll.

Received July 27, 1990

Published January 2, 2004


http://mizar.org/JFM/Vol1/rlvect_1.html
http://mizar.org/JFM/Vol1/rlvect_1.html
http://mizar.org/JFM/Vol2/rlvect_2.html
http://mizar.org/JFM/Vol2/rlvect_2.html
http://mizar.org/JFM/Vol2/vectsp_6.html
http://mizar.org/JFM/Vol2/vectsp_6.html
http://mizar.org/JFM/Vol2/vectsp_5.html
http://mizar.org/JFM/Vol2/vectsp_5.html
http://mizar.org/JFM/Vol2/vectsp_4.html
http://mizar.org/JFM/Vol2/vectsp_4.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

	basis of vector space By wojciech a. trybulec

