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Summary. We prove the existence of a basis of a vector space, i.e., a set of vectors
that generates the vector space and is linearly independent. We also introduce the notion of a
subspace generated by a set of vectors and linear independence of set of vectors.
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The articles [7], [4], [14], [15], [2], [3], [8], [5], [1], [9], [6], [10], [13], [12], and [11] provide the
notation and terminology for this paper.

For simplicity, we use the following convention:x is a set,G1 is a field,a, b are elements of
G1, V is a vector space overG1, v, v1, v2 are vectors ofV, A, B are subsets ofV, andl is a linear
combination ofA.

Let us considerG1, let us considerV, and letI1 be a subset ofV. We say thatI1 is linearly
independent if and only if:

(Def. 1) For every linear combinationl of I1 such that∑ l = 0V holds the support ofl = /0.

We introduceI1 is linearly dependent as an antonym ofI1 is linearly independent.
The following propositions are true:

(2)1 If A⊆ B andB is linearly independent, thenA is linearly independent.

(3) If A is linearly independent, then 0V /∈ A.

(4) /0the carrier ofV is linearly independent.

(5) {v} is linearly independent iffv 6= 0V .

(6) If {v1,v2} is linearly independent, thenv1 6= 0V andv2 6= 0V .

(7) {v,0V} is linearly dependent and{0V ,v} is linearly dependent.

(8) v1 6= v2 and{v1,v2} is linearly independent iffv2 6= 0V and for everya holdsv1 6= a·v2.

(9) v1 6= v2 and{v1,v2} is linearly independent iff for alla, b such thata·v1+b·v2 = 0V holds
a = 0(G1) andb = 0(G1).

Let us considerG1, let us considerV, and let us considerA. The functor Lin(A) yields a strict
subspace ofV and is defined as follows:

(Def. 2) The carrier of Lin(A) = {∑ l}.

The following propositions are true:

1 The proposition (1) has been removed.
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(12)2 x∈ Lin(A) iff there existsl such thatx = ∑ l .

(13) If x∈ A, thenx∈ Lin(A).

(14) Lin( /0the carrier ofV) = 0V .

(15) If Lin(A) = 0V , thenA = /0 or A = {0V}.

(16) For every strict subspaceW of V such thatA = the carrier ofW holds Lin(A) = W.

(17) For every strict vector spaceV overG1 and for every subsetA of V such thatA= the carrier
of V holds Lin(A) = V.

(18) If A⊆ B, then Lin(A) is a subspace of Lin(B).

(19) For every strict vector spaceV overG1 and for all subsetsA, B of V such that Lin(A) = V
andA⊆ B holds Lin(B) = V.

(20) Lin(A∪B) = Lin(A)+Lin(B).

(21) Lin(A∩B) is a subspace of Lin(A)∩Lin(B).

(22) LetV be a vector space overG1 andA be a subset ofV. SupposeA is linearly independent.
Then there exists a subsetB of V such thatA⊆ B andB is linearly independent and Lin(B) =
the vector space structure ofV.

(23) If Lin(A) = V, then there existsB such thatB ⊆ A and B is linearly independent and
Lin(B) = V.

Let us considerG1 and letV be a vector space overG1. A subset ofV is called a basis ofV if:

(Def. 3) It is linearly independent and Lin(it) = the vector space structure ofV.

Next we state two propositions:

(27)3 Let V be a vector space overG1 andA be a subset ofV. If A is linearly independent, then
there exists a basisI of V such thatA⊆ I .

(28) For every vector spaceV overG1 and for every subsetA of V such that Lin(A) = V there
exists a basisI of V such thatI ⊆ A.
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