Basis of Vector Space

Wojciech A. Trybulec Warsaw University

Summary. We prove the existence of a basis of a vector space, i.e., a set of vectors that generates the vector space and is linearly independent. We also introduce the notion of a subspace generated by a set of vectors and linear independence of set of vectors.

MML Identifier: VECTSP_7. WWW: http://mizar.org/JFM/Vol2/vectsp_7.html

The articles [7], [4], [14], [15], [2], [3], [8], [5], [1], [9], [6], [10], [13], [12], and [11] provide the notation and terminology for this paper.

For simplicity, we use the following convention: x is a set, G_1 is a field, a, b are elements of G_1 , V is a vector space over G_1 , v, v_1 , v_2 are vectors of V, A, B are subsets of V, and l is a linear combination of A.

Let us consider G_1 , let us consider V, and let I_1 be a subset of V. We say that I_1 is linearly independent if and only if:

(Def. 1) For every linear combination l of I_1 such that $\sum l = 0_V$ holds the support of $l = \emptyset$.

We introduce I_1 is linearly dependent as an antonym of I_1 is linearly independent. The following propositions are true:

- $(2)^1$ If $A \subseteq B$ and B is linearly independent, then A is linearly independent.
- (3) If *A* is linearly independent, then $0_V \notin A$.
- (4) $\emptyset_{\text{the carrier of } V}$ is linearly independent.
- (5) $\{v\}$ is linearly independent iff $v \neq 0_V$.
- (6) If $\{v_1, v_2\}$ is linearly independent, then $v_1 \neq 0_V$ and $v_2 \neq 0_V$.
- (7) $\{v, 0_V\}$ is linearly dependent and $\{0_V, v\}$ is linearly dependent.
- (8) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent iff $v_2 \neq 0_V$ and for every *a* holds $v_1 \neq a \cdot v_2$.
- (9) $v_1 \neq v_2$ and $\{v_1, v_2\}$ is linearly independent iff for all a, b such that $a \cdot v_1 + b \cdot v_2 = 0_V$ holds $a = 0_{(G_1)}$ and $b = 0_{(G_1)}$.

Let us consider G_1 , let us consider V, and let us consider A. The functor Lin(A) yields a strict subspace of V and is defined as follows:

(Def. 2) The carrier of $Lin(A) = \{\sum l\}$.

The following propositions are true:

¹ The proposition (1) has been removed.

- $(12)^2$ $x \in \text{Lin}(A)$ iff there exists *l* such that $x = \sum l$.
- (13) If $x \in A$, then $x \in Lin(A)$.
- (14) $\operatorname{Lin}(\emptyset_{\operatorname{the carrier of } V}) = \mathbf{0}_V.$
- (15) If $Lin(A) = \mathbf{0}_V$, then $A = \emptyset$ or $A = \{0_V\}$.
- (16) For every strict subspace W of V such that A = the carrier of W holds Lin(A) = W.
- (17) For every strict vector space *V* over G_1 and for every subset *A* of *V* such that A = the carrier of *V* holds Lin(A) = V.
- (18) If $A \subseteq B$, then Lin(A) is a subspace of Lin(B).
- (19) For every strict vector space V over G_1 and for all subsets A, B of V such that Lin(A) = V and $A \subseteq B$ holds Lin(B) = V.
- (20) $\operatorname{Lin}(A \cup B) = \operatorname{Lin}(A) + \operatorname{Lin}(B).$
- (21) $\operatorname{Lin}(A \cap B)$ is a subspace of $\operatorname{Lin}(A) \cap \operatorname{Lin}(B)$.
- (22) Let *V* be a vector space over G_1 and *A* be a subset of *V*. Suppose *A* is linearly independent. Then there exists a subset *B* of *V* such that $A \subseteq B$ and *B* is linearly independent and Lin(B) = the vector space structure of *V*.
- (23) If Lin(A) = V, then there exists B such that $B \subseteq A$ and B is linearly independent and Lin(B) = V.

Let us consider G_1 and let V be a vector space over G_1 . A subset of V is called a basis of V if:

(Def. 3) It is linearly independent and Lin(it) = the vector space structure of V.

Next we state two propositions:

- $(27)^3$ Let V be a vector space over G_1 and A be a subset of V. If A is linearly independent, then there exists a basis I of V such that $A \subseteq I$.
- (28) For every vector space V over G_1 and for every subset A of V such that Lin(A) = V there exists a basis I of V such that $I \subseteq A$.

REFERENCES

- Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ordinall. html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [4] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ zfmisc_1.html.
- [5] Agata Darmochwał. Finite sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/finset_1.html.
- [6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [7] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [8] Andrzej Trybulec. Function domains and Frænkel operator. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/fraenkel.html.

 $^{^{2}}$ The propositions (10) and (11) have been removed.

³ The propositions (24)–(26) have been removed.

- [9] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_1.html.
- [10] Wojciech A. Trybulec. Linear combinations in real linear space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/rlvect_2.html.
- [11] Wojciech A. Trybulec. Linear combinations in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/ Vol2/vectsp_6.html.
- [12] Wojciech A. Trybulec. Operations on subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/ JFM/Vol2/vectsp_5.html.
- [13] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http: //mizar.org/JFM/Vol2/vectsp_4.html.
- [14] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [15] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received July 27, 1990

Published January 2, 2004