Operations on Subspaces in Vector Space

Wojciech A. Trybulec Warsaw University

Summary. Sum, direct sum and intersection of subspaces are introduced. We prove some theorems concerning those notions and the decomposition of vector onto two subspaces. Linear complement of a subspace is also defined. We prove theorems that belong rather to [4].

MML Identifier: VECTSP_5.

WWW: http://mizar.org/JFM/Vol2/vectsp_5.html

The articles [6], [3], [9], [1], [10], [2], [12], [11], [7], [4], [5], and [8] provide the notation and terminology for this paper.

For simplicity, we use the following convention: G_1 denotes an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, M denotes an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , W, W_1 , W_2 , W_3 denote subspaces of M, u, v, v_1 , v_2 denote elements of M, and x denotes a set.

Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . The functor $W_1 + W_2$ yielding a strict subspace of M is defined by:

(Def. 1) The carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$

Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . The functor $W_1 \cap W_2$ yields a strict subspace of M and is defined as follows:

(Def. 2) The carrier of $W_1 \cap W_2 =$ (the carrier of W_1) \cap (the carrier of W_2).

Let us note that the functor $W_1 \cap W_2$ is commutative.

The following propositions are true:

- $(5)^1$ $x \in W_1 + W_2$ iff there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$.
- (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$.
- (7) $x \in W_1 \cap W_2 \text{ iff } x \in W_1 \text{ and } x \in W_2.$
- (8) For every strict subspace W of M holds W + W = W.
- $(9) \quad W_1 + W_2 = W_2 + W_1.$
- (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3$.
- (11) W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$.
- (12) For every strict subspace W_2 of M holds W_1 is a subspace of W_2 iff $W_1 + W_2 = W_2$.

¹ The propositions (1)–(4) have been removed.

- (13) For every strict subspace W of M holds $\mathbf{0}_M + W = W$ and $W + \mathbf{0}_M = W$.
- (14) $\mathbf{0}_M + \Omega_M =$ the vector space structure of M and $\Omega_M + \mathbf{0}_M =$ the vector space structure of M.
- (15) $\Omega_M + W =$ the vector space structure of M and $W + \Omega_M =$ the vector space structure of M.
- (16) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $\Omega_M + \Omega_M = M$.
- (17) For every strict subspace W of M holds $W \cap W = W$.
- (18) $W_1 \cap W_2 = W_2 \cap W_1$.
- $(19) \quad W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$
- (20) $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 .
- (21)(i) For every strict subspace W_1 of M such that W_1 is a subspace of W_2 holds $W_1 \cap W_2 = W_1$,
- (ii) for every W_1 such that $W_1 \cap W_2 = W_1$ holds W_1 is a subspace of W_2 .
- (22) If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$.
- (23) If W_1 is a subspace of W_3 , then $W_1 \cap W_2$ is a subspace of W_3 .
- (24) If W_1 is a subspace of W_2 and a subspace of W_3 , then W_1 is a subspace of $W_2 \cap W_3$.
- (25) $\mathbf{0}_M \cap W = \mathbf{0}_M$ and $W \cap \mathbf{0}_M = \mathbf{0}_M$.
- (27)² For every strict subspace W of M holds $\Omega_M \cap W = W$ and $W \cap \Omega_M = W$.
- (28) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $\Omega_M \cap \Omega_M = M$.
- (29) $W_1 \cap W_2$ is a subspace of $W_1 + W_2$.
- (30) For every strict subspace W_2 of M holds $W_1 \cap W_2 + W_2 = W_2$.
- (31) For every strict subspace W_1 of M holds $W_1 \cap (W_1 + W_2) = W_1$.
- (32) $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$.
- (33) If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$.
- (34) $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$.
- (35) If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$.
- (36) For every strict subspace W_1 of M such that W_1 is a subspace of W_3 holds $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$.
- (37) For all strict subspaces W_1 , W_2 of M holds $W_1 + W_2 = W_2$ iff $W_1 \cap W_2 = W_1$.
- (38) For all strict subspaces W_2 , W_3 of M such that W_1 is a subspace of W_2 holds $W_1 + W_3$ is a subspace of $W_2 + W_3$.
- (39) If W_1 is a subspace of W_2 , then W_1 is a subspace of $W_2 + W_3$.
- (40) If W_1 is a subspace of W_3 and W_2 is a subspace of W_3 , then $W_1 + W_2$ is a subspace of W_3 .
- (41) There exists W such that the carrier of W = (the carrier of W_1) \cup (the carrier of W_2) if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 .

² The proposition (26) has been removed.

Let us consider G_1 and let us consider M. The functor Subspaces M yields a set and is defined as follows:

(Def. 3) For every x holds $x \in \text{Subspaces } M$ iff there exists a strict subspace W of M such that W = x.

Let us consider G_1 and let us consider M. One can check that Subspaces M is non empty. We now state the proposition

(44)³ Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $M \in \text{Subspaces } M$.

Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . We say that M is the direct sum of W_1 and W_2 if and only if:

(Def. 4) The vector space structure of $M = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_M$.

In the sequel F is a field, V is a vector space over F, and W is a subspace of V. Let us consider F, V, W. A subspace of V is called a linear complement of W if:

(Def. 5) V is the direct sum of it and W.

In the sequel W, W_1 , W_2 denote subspaces of V. One can prove the following four propositions:

- $(47)^4$ If V is the direct sum of W_1 and W_2 , then W_2 is a linear complement of W_1 .
- (48) For every linear complement L of W holds V is the direct sum of L and W and the direct sum of W and L.
- (49) Let L be a linear complement of W. Then W + L = the vector space structure of V and L + W = the vector space structure of V.
- (50) For every linear complement *L* of *W* holds $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$.

In the sequel W_1 , W_2 are subspaces of M. The following two propositions are true:

- (51) If M is the direct sum of W_1 and W_2 , then M is the direct sum of W_2 and W_1 .
- (52) M is the direct sum of $\mathbf{0}_M$ and Ω_M and the direct sum of Ω_M and $\mathbf{0}_M$.

In the sequel W is a subspace of V.

Next we state two propositions:

- (53) For every linear complement L of W holds W is a linear complement of L.
- (54) $\mathbf{0}_V$ is a linear complement of Ω_V and Ω_V is a linear complement of $\mathbf{0}_V$.

For simplicity, we adopt the following rules: W_1 , W_2 denote subspaces of M, v denotes an element of M, C_1 denotes a coset of W_1 , and C_2 denotes a coset of W_2 .

Next we state several propositions:

- (55) If C_1 meets C_2 , then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$.
- (56) M is the direct sum of W_1 and W_2 if and only if for every coset C_1 of W_1 and for every coset C_2 of W_2 there exists an element v of M such that $C_1 \cap C_2 = \{v\}$.
- (57) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 and W_1 , W_2 be subspaces of M. Then $W_1 + W_2 = M$ if and only if for every element v of M there exist elements v_1 , v_2 of M such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$.

³ The propositions (42) and (43) have been removed.

⁴ The propositions (45) and (46) have been removed.

- (58) Let v, v_1 , v_2 , u_1 , u_2 be elements of M. Suppose M is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$. Then $v_1 = u_1$ and $v_2 = u_2$.
- (59) Suppose that
 - (i) $M = W_1 + W_2$, and
 - (ii) there exists v such that for all elements v_1 , v_2 , u_1 , u_2 of M such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then M is the direct sum of W_1 and W_2 .

Let us consider G_1 , M, v, W_1 , W_2 . Let us assume that M is the direct sum of W_1 and W_2 . The functor $v_{(W_1,W_2)}$ yields an element of [: the carrier of M, the carrier of M:] and is defined as follows:

(Def. 6)
$$v = (v_{\langle W_1, W_2 \rangle})_1 + (v_{\langle W_1, W_2 \rangle})_2$$
 and $(v_{\langle W_1, W_2 \rangle})_1 \in W_1$ and $(v_{\langle W_1, W_2 \rangle})_2 \in W_2$.

One can prove the following two propositions:

- (64)⁵ If M is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_1 = (v_{\langle W_2, W_1 \rangle})_2$.
- (65) If M is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_2 = (v_{\langle W_2, W_1 \rangle})_1$.

In the sequel W is a subspace of V.

One can prove the following propositions:

- (66) Let L be a linear complement of W, v be an element of V, and t be an element of [: the carrier of V, the carrier of V:]. If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v_{\ell_W I}$.
- (67) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 + (v_{\langle W,L \rangle})_2 = v$.
- (68) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 \in W$ and $(v_{\langle W,L \rangle})_2 \in L$.
- (69) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 = (v_{\langle L,W \rangle})_2$.
- (70) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_2 = (v_{\langle L,W \rangle})_1$.

In the sequel A_1 , A_2 are elements of Subspaces M and W_1 , W_2 are subspaces of M.

Let us consider G_1 and let us consider M. The functor SubJoin M yielding a binary operation on Subspaces M is defined as follows:

(Def. 7) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoin M) $(A_1, A_2) = W_1 + W_2$.

Let us consider G_1 and let us consider M. The functor SubMeet M yielding a binary operation on Subspaces M is defined as follows:

(Def. 8) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeetM) $(A_1, A_2) = W_1 \cap W_2$.

We now state several propositions:

 $(75)^6$ (Subspaces M, SubJoin M, SubMeet M) is a lattice.

⁵ The propositions (60)–(63) have been removed.

⁶ The propositions (71)–(74) have been removed.

- (76) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a lower bound lattice.
- (77) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is an upper bound lattice.
- (78) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a bound lattice.
- (79) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a modular lattice.
- (80) For every field F and for every vector space V over F holds $\langle Subspaces V, SubJoin V, SubMeet <math>V \rangle$ is a complemented lattice.

REFERENCES

- [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [5] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/domain_1.html.
- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [8] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html.
- $[9] \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$
- [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html.
- [12] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html.

Received July 27, 1990

Published January 2, 2004