Operations on Subspaces in Vector Space ## Wojciech A. Trybulec Warsaw University **Summary.** Sum, direct sum and intersection of subspaces are introduced. We prove some theorems concerning those notions and the decomposition of vector onto two subspaces. Linear complement of a subspace is also defined. We prove theorems that belong rather to [4]. MML Identifier: VECTSP_5. WWW: http://mizar.org/JFM/Vol2/vectsp_5.html The articles [6], [3], [9], [1], [10], [2], [12], [11], [7], [4], [5], and [8] provide the notation and terminology for this paper. For simplicity, we use the following convention: G_1 denotes an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, M denotes an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , W, W_1 , W_2 , W_3 denote subspaces of M, u, v, v_1 , v_2 denote elements of M, and x denotes a set. Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . The functor $W_1 + W_2$ yielding a strict subspace of M is defined by: (Def. 1) The carrier of $W_1 + W_2 = \{v + u : v \in W_1 \land u \in W_2\}.$ Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . The functor $W_1 \cap W_2$ yields a strict subspace of M and is defined as follows: (Def. 2) The carrier of $W_1 \cap W_2 =$ (the carrier of W_1) \cap (the carrier of W_2). Let us note that the functor $W_1 \cap W_2$ is commutative. The following propositions are true: - $(5)^1$ $x \in W_1 + W_2$ iff there exist v_1, v_2 such that $v_1 \in W_1$ and $v_2 \in W_2$ and $x = v_1 + v_2$. - (6) If $v \in W_1$ or $v \in W_2$, then $v \in W_1 + W_2$. - (7) $x \in W_1 \cap W_2 \text{ iff } x \in W_1 \text{ and } x \in W_2.$ - (8) For every strict subspace W of M holds W + W = W. - $(9) \quad W_1 + W_2 = W_2 + W_1.$ - (10) $W_1 + (W_2 + W_3) = (W_1 + W_2) + W_3$. - (11) W_1 is a subspace of $W_1 + W_2$ and W_2 is a subspace of $W_1 + W_2$. - (12) For every strict subspace W_2 of M holds W_1 is a subspace of W_2 iff $W_1 + W_2 = W_2$. ¹ The propositions (1)–(4) have been removed. - (13) For every strict subspace W of M holds $\mathbf{0}_M + W = W$ and $W + \mathbf{0}_M = W$. - (14) $\mathbf{0}_M + \Omega_M =$ the vector space structure of M and $\Omega_M + \mathbf{0}_M =$ the vector space structure of M. - (15) $\Omega_M + W =$ the vector space structure of M and $W + \Omega_M =$ the vector space structure of M. - (16) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $\Omega_M + \Omega_M = M$. - (17) For every strict subspace W of M holds $W \cap W = W$. - (18) $W_1 \cap W_2 = W_2 \cap W_1$. - $(19) \quad W_1 \cap (W_2 \cap W_3) = (W_1 \cap W_2) \cap W_3.$ - (20) $W_1 \cap W_2$ is a subspace of W_1 and $W_1 \cap W_2$ is a subspace of W_2 . - (21)(i) For every strict subspace W_1 of M such that W_1 is a subspace of W_2 holds $W_1 \cap W_2 = W_1$, - (ii) for every W_1 such that $W_1 \cap W_2 = W_1$ holds W_1 is a subspace of W_2 . - (22) If W_1 is a subspace of W_2 , then $W_1 \cap W_3$ is a subspace of $W_2 \cap W_3$. - (23) If W_1 is a subspace of W_3 , then $W_1 \cap W_2$ is a subspace of W_3 . - (24) If W_1 is a subspace of W_2 and a subspace of W_3 , then W_1 is a subspace of $W_2 \cap W_3$. - (25) $\mathbf{0}_M \cap W = \mathbf{0}_M$ and $W \cap \mathbf{0}_M = \mathbf{0}_M$. - (27)² For every strict subspace W of M holds $\Omega_M \cap W = W$ and $W \cap \Omega_M = W$. - (28) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $\Omega_M \cap \Omega_M = M$. - (29) $W_1 \cap W_2$ is a subspace of $W_1 + W_2$. - (30) For every strict subspace W_2 of M holds $W_1 \cap W_2 + W_2 = W_2$. - (31) For every strict subspace W_1 of M holds $W_1 \cap (W_1 + W_2) = W_1$. - (32) $W_1 \cap W_2 + W_2 \cap W_3$ is a subspace of $W_2 \cap (W_1 + W_3)$. - (33) If W_1 is a subspace of W_2 , then $W_2 \cap (W_1 + W_3) = W_1 \cap W_2 + W_2 \cap W_3$. - (34) $W_2 + W_1 \cap W_3$ is a subspace of $(W_1 + W_2) \cap (W_2 + W_3)$. - (35) If W_1 is a subspace of W_2 , then $W_2 + W_1 \cap W_3 = (W_1 + W_2) \cap (W_2 + W_3)$. - (36) For every strict subspace W_1 of M such that W_1 is a subspace of W_3 holds $W_1 + W_2 \cap W_3 = (W_1 + W_2) \cap W_3$. - (37) For all strict subspaces W_1 , W_2 of M holds $W_1 + W_2 = W_2$ iff $W_1 \cap W_2 = W_1$. - (38) For all strict subspaces W_2 , W_3 of M such that W_1 is a subspace of W_2 holds $W_1 + W_3$ is a subspace of $W_2 + W_3$. - (39) If W_1 is a subspace of W_2 , then W_1 is a subspace of $W_2 + W_3$. - (40) If W_1 is a subspace of W_3 and W_2 is a subspace of W_3 , then $W_1 + W_2$ is a subspace of W_3 . - (41) There exists W such that the carrier of W = (the carrier of W_1) \cup (the carrier of W_2) if and only if W_1 is a subspace of W_2 or W_2 is a subspace of W_1 . ² The proposition (26) has been removed. Let us consider G_1 and let us consider M. The functor Subspaces M yields a set and is defined as follows: (Def. 3) For every x holds $x \in \text{Subspaces } M$ iff there exists a strict subspace W of M such that W = x. Let us consider G_1 and let us consider M. One can check that Subspaces M is non empty. We now state the proposition (44)³ Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $M \in \text{Subspaces } M$. Let us consider G_1 , let us consider M, and let us consider W_1 , W_2 . We say that M is the direct sum of W_1 and W_2 if and only if: (Def. 4) The vector space structure of $M = W_1 + W_2$ and $W_1 \cap W_2 = \mathbf{0}_M$. In the sequel F is a field, V is a vector space over F, and W is a subspace of V. Let us consider F, V, W. A subspace of V is called a linear complement of W if: (Def. 5) V is the direct sum of it and W. In the sequel W, W_1 , W_2 denote subspaces of V. One can prove the following four propositions: - $(47)^4$ If V is the direct sum of W_1 and W_2 , then W_2 is a linear complement of W_1 . - (48) For every linear complement L of W holds V is the direct sum of L and W and the direct sum of W and L. - (49) Let L be a linear complement of W. Then W + L = the vector space structure of V and L + W = the vector space structure of V. - (50) For every linear complement *L* of *W* holds $W \cap L = \mathbf{0}_V$ and $L \cap W = \mathbf{0}_V$. In the sequel W_1 , W_2 are subspaces of M. The following two propositions are true: - (51) If M is the direct sum of W_1 and W_2 , then M is the direct sum of W_2 and W_1 . - (52) M is the direct sum of $\mathbf{0}_M$ and Ω_M and the direct sum of Ω_M and $\mathbf{0}_M$. In the sequel W is a subspace of V. Next we state two propositions: - (53) For every linear complement L of W holds W is a linear complement of L. - (54) $\mathbf{0}_V$ is a linear complement of Ω_V and Ω_V is a linear complement of $\mathbf{0}_V$. For simplicity, we adopt the following rules: W_1 , W_2 denote subspaces of M, v denotes an element of M, C_1 denotes a coset of W_1 , and C_2 denotes a coset of W_2 . Next we state several propositions: - (55) If C_1 meets C_2 , then $C_1 \cap C_2$ is a coset of $W_1 \cap W_2$. - (56) M is the direct sum of W_1 and W_2 if and only if for every coset C_1 of W_1 and for every coset C_2 of W_2 there exists an element v of M such that $C_1 \cap C_2 = \{v\}$. - (57) Let M be a strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 and W_1 , W_2 be subspaces of M. Then $W_1 + W_2 = M$ if and only if for every element v of M there exist elements v_1 , v_2 of M such that $v_1 \in W_1$ and $v_2 \in W_2$ and $v = v_1 + v_2$. ³ The propositions (42) and (43) have been removed. ⁴ The propositions (45) and (46) have been removed. - (58) Let v, v_1 , v_2 , u_1 , u_2 be elements of M. Suppose M is the direct sum of W_1 and W_2 and $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$. Then $v_1 = u_1$ and $v_2 = u_2$. - (59) Suppose that - (i) $M = W_1 + W_2$, and - (ii) there exists v such that for all elements v_1 , v_2 , u_1 , u_2 of M such that $v = v_1 + v_2$ and $v = u_1 + u_2$ and $v_1 \in W_1$ and $u_1 \in W_1$ and $v_2 \in W_2$ and $u_2 \in W_2$ holds $v_1 = u_1$ and $v_2 = u_2$. Then M is the direct sum of W_1 and W_2 . Let us consider G_1 , M, v, W_1 , W_2 . Let us assume that M is the direct sum of W_1 and W_2 . The functor $v_{(W_1,W_2)}$ yields an element of [: the carrier of M, the carrier of M:] and is defined as follows: (Def. 6) $$v = (v_{\langle W_1, W_2 \rangle})_1 + (v_{\langle W_1, W_2 \rangle})_2$$ and $(v_{\langle W_1, W_2 \rangle})_1 \in W_1$ and $(v_{\langle W_1, W_2 \rangle})_2 \in W_2$. One can prove the following two propositions: - (64)⁵ If M is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_1 = (v_{\langle W_2, W_1 \rangle})_2$. - (65) If M is the direct sum of W_1 and W_2 , then $(v_{\langle W_1, W_2 \rangle})_2 = (v_{\langle W_2, W_1 \rangle})_1$. In the sequel W is a subspace of V. One can prove the following propositions: - (66) Let L be a linear complement of W, v be an element of V, and t be an element of [: the carrier of V, the carrier of V:]. If $t_1 + t_2 = v$ and $t_1 \in W$ and $t_2 \in L$, then $t = v_{\ell_W I}$. - (67) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 + (v_{\langle W,L \rangle})_2 = v$. - (68) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 \in W$ and $(v_{\langle W,L \rangle})_2 \in L$. - (69) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_1 = (v_{\langle L,W \rangle})_2$. - (70) For every linear complement L of W and for every element v of V holds $(v_{\langle W,L \rangle})_2 = (v_{\langle L,W \rangle})_1$. In the sequel A_1 , A_2 are elements of Subspaces M and W_1 , W_2 are subspaces of M. Let us consider G_1 and let us consider M. The functor SubJoin M yielding a binary operation on Subspaces M is defined as follows: (Def. 7) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubJoin M) $(A_1, A_2) = W_1 + W_2$. Let us consider G_1 and let us consider M. The functor SubMeet M yielding a binary operation on Subspaces M is defined as follows: (Def. 8) For all A_1 , A_2 , W_1 , W_2 such that $A_1 = W_1$ and $A_2 = W_2$ holds (SubMeetM) $(A_1, A_2) = W_1 \cap W_2$. We now state several propositions: $(75)^6$ (Subspaces M, SubJoin M, SubMeet M) is a lattice. ⁵ The propositions (60)–(63) have been removed. ⁶ The propositions (71)–(74) have been removed. - (76) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a lower bound lattice. - (77) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is an upper bound lattice. - (78) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a bound lattice. - (79) $\langle \text{Subspaces } M, \text{SubJoin } M, \text{SubMeet } M \rangle$ is a modular lattice. - (80) For every field F and for every vector space V over F holds $\langle Subspaces V, SubJoin V, SubMeet <math>V \rangle$ is a complemented lattice. ## REFERENCES - [1] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html. - [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html. - [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html. - [5] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/domain_1.html. - [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [7] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html. - [8] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/vectsp_4.html. - $[9] \ \ \textbf{Zinaida Trybulec. Properties of subsets.} \ \textit{Journal of Formalized Mathematics}, 1, 1989. \ \texttt{http://mizar.org/JFM/Vol1/subset_1.html}.$ - [10] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. - [11] Edmund Woronowicz. Relations defined on sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relset_1.html. - [12] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/lattices.html. Received July 27, 1990 Published January 2, 2004