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Summary. Sum, direct sum and intersection of subspaces are introduced. We prove
some theorems concerning those notions and the decomposition of vector onto two subspaces.
Linear complement of a subspace is also defined. We prove theorems that belong rather to [4].
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The articles [6], [3], [9], [1], [10], [2], [12], [11], [7], [4], [5], and [8] provide the notation and
terminology for this paper.

For simplicity, we use the following convention:G1 denotes an add-associative right zeroed
right complementable Abelian associative left unital distributive non empty double loop structure,
M denotes an Abelian add-associative right zeroed right complementable vector space-like non
empty vector space structure overG1, W, W1, W2, W3 denote subspaces ofM, u, v, v1, v2 denote
elements ofM, andx denotes a set.

Let us considerG1, let us considerM, and let us considerW1, W2. The functorW1 +W2 yielding
a strict subspace ofM is defined by:

(Def. 1) The carrier ofW1 +W2 = {v+u : v∈W1 ∧ u∈W2}.

Let us considerG1, let us considerM, and let us considerW1, W2. The functorW1∩W2 yields a
strict subspace ofM and is defined as follows:

(Def. 2) The carrier ofW1∩W2 = (the carrier ofW1)∩ (the carrier ofW2).

Let us note that the functorW1∩W2 is commutative.
The following propositions are true:

(5)1 x∈W1 +W2 iff there existv1, v2 such thatv1 ∈W1 andv2 ∈W2 andx = v1 +v2.

(6) If v∈W1 or v∈W2, thenv∈W1 +W2.

(7) x∈W1∩W2 iff x∈W1 andx∈W2.

(8) For every strict subspaceW of M holdsW+W = W.

(9) W1 +W2 = W2 +W1.

(10) W1 +(W2 +W3) = (W1 +W2)+W3.

(11) W1 is a subspace ofW1 +W2 andW2 is a subspace ofW1 +W2.

(12) For every strict subspaceW2 of M holdsW1 is a subspace ofW2 iff W1 +W2 = W2.

1 The propositions (1)–(4) have been removed.
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(13) For every strict subspaceW of M holds0M +W = W andW+0M = W.

(14) 0M + ΩM = the vector space structure ofM andΩM + 0M = the vector space structure of
M.

(15) ΩM +W = the vector space structure ofM andW+ΩM = the vector space structure ofM.

(16) LetM be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1. ThenΩM +ΩM = M.

(17) For every strict subspaceW of M holdsW∩W = W.

(18) W1∩W2 = W2∩W1.

(19) W1∩ (W2∩W3) = (W1∩W2)∩W3.

(20) W1∩W2 is a subspace ofW1 andW1∩W2 is a subspace ofW2.

(21)(i) For every strict subspaceW1 of M such thatW1 is a subspace ofW2 holdsW1∩W2 =W1,
and

(ii) for everyW1 such thatW1∩W2 = W1 holdsW1 is a subspace ofW2.

(22) If W1 is a subspace ofW2, thenW1∩W3 is a subspace ofW2∩W3.

(23) If W1 is a subspace ofW3, thenW1∩W2 is a subspace ofW3.

(24) If W1 is a subspace ofW2 and a subspace ofW3, thenW1 is a subspace ofW2∩W3.

(25) 0M ∩W = 0M andW∩0M = 0M.

(27)2 For every strict subspaceW of M holdsΩM ∩W = W andW∩ΩM = W.

(28) LetM be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1. ThenΩM ∩ΩM = M.

(29) W1∩W2 is a subspace ofW1 +W2.

(30) For every strict subspaceW2 of M holdsW1∩W2 +W2 = W2.

(31) For every strict subspaceW1 of M holdsW1∩ (W1 +W2) = W1.

(32) W1∩W2 +W2∩W3 is a subspace ofW2∩ (W1 +W3).

(33) If W1 is a subspace ofW2, thenW2∩ (W1 +W3) = W1∩W2 +W2∩W3.

(34) W2 +W1∩W3 is a subspace of(W1 +W2)∩ (W2 +W3).

(35) If W1 is a subspace ofW2, thenW2 +W1∩W3 = (W1 +W2)∩ (W2 +W3).

(36) For every strict subspaceW1 of M such thatW1 is a subspace ofW3 holdsW1 +W2∩W3 =
(W1 +W2)∩W3.

(37) For all strict subspacesW1, W2 of M holdsW1 +W2 = W2 iff W1∩W2 = W1.

(38) For all strict subspacesW2, W3 of M such thatW1 is a subspace ofW2 holdsW1 +W3 is a
subspace ofW2 +W3.

(39) If W1 is a subspace ofW2, thenW1 is a subspace ofW2 +W3.

(40) If W1 is a subspace ofW3 andW2 is a subspace ofW3, thenW1 +W2 is a subspace ofW3.

(41) There existsW such that the carrier ofW = (the carrier ofW1)∪ (the carrier ofW2) if and
only if W1 is a subspace ofW2 or W2 is a subspace ofW1.

2 The proposition (26) has been removed.
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Let us considerG1 and let us considerM. The functor SubspacesM yields a set and is defined
as follows:

(Def. 3) For everyx holdsx∈SubspacesM iff there exists a strict subspaceW of M such thatW = x.

Let us considerG1 and let us considerM. One can check that SubspacesM is non empty.
We now state the proposition

(44)3 Let M be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1. ThenM ∈ SubspacesM.

Let us considerG1, let us considerM, and let us considerW1, W2. We say thatM is the direct
sum ofW1 andW2 if and only if:

(Def. 4) The vector space structure ofM = W1 +W2 andW1∩W2 = 0M.

In the sequelF is a field,V is a vector space overF , andW is a subspace ofV.
Let us considerF , V, W. A subspace ofV is called a linear complement ofW if:

(Def. 5) V is the direct sum of it andW.

In the sequelW, W1, W2 denote subspaces ofV.
One can prove the following four propositions:

(47)4 If V is the direct sum ofW1 andW2, thenW2 is a linear complement ofW1.

(48) For every linear complementL of W holdsV is the direct sum ofL andW and the direct
sum ofW andL.

(49) Let L be a linear complement ofW. ThenW + L = the vector space structure ofV and
L+W = the vector space structure ofV.

(50) For every linear complementL of W holdsW∩L = 0V andL∩W = 0V .

In the sequelW1, W2 are subspaces ofM.
The following two propositions are true:

(51) If M is the direct sum ofW1 andW2, thenM is the direct sum ofW2 andW1.

(52) M is the direct sum of0M andΩM and the direct sum ofΩM and0M.

In the sequelW is a subspace ofV.
Next we state two propositions:

(53) For every linear complementL of W holdsW is a linear complement ofL.

(54) 0V is a linear complement ofΩV andΩV is a linear complement of0V .

For simplicity, we adopt the following rules:W1, W2 denote subspaces ofM, v denotes an
element ofM, C1 denotes a coset ofW1, andC2 denotes a coset ofW2.

Next we state several propositions:

(55) If C1 meetsC2, thenC1∩C2 is a coset ofW1∩W2.

(56) M is the direct sum ofW1 andW2 if and only if for every cosetC1 of W1 and for every coset
C2 of W2 there exists an elementv of M such thatC1∩C2 = {v}.

(57) LetM be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1 andW1,W2 be subspaces ofM. ThenW1+W2 =
M if and only if for every elementv of M there exist elementsv1, v2 of M such thatv1 ∈W1

andv2 ∈W2 andv = v1 +v2.

3 The propositions (42) and (43) have been removed.
4 The propositions (45) and (46) have been removed.
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(58) Let v, v1, v2, u1, u2 be elements ofM. SupposeM is the direct sum ofW1 andW2 and
v = v1 +v2 andv = u1 +u2 andv1 ∈W1 andu1 ∈W1 andv2 ∈W2 andu2 ∈W2. Thenv1 = u1

andv2 = u2.

(59) Suppose that

(i) M = W1 +W2, and

(ii) there existsv such that for all elementsv1, v2, u1, u2 of M such thatv = v1 + v2 and
v = u1 +u2 andv1 ∈W1 andu1 ∈W1 andv2 ∈W2 andu2 ∈W2 holdsv1 = u1 andv2 = u2.

ThenM is the direct sum ofW1 andW2.

Let us considerG1, M, v, W1, W2. Let us assume thatM is the direct sum ofW1 andW2. The
functorv〈〈W1,W2〉〉 yields an element of[: the carrier ofM, the carrier ofM :] and is defined as follows:

(Def. 6) v = (v〈〈W1,W2〉〉)1 +(v〈〈W1,W2〉〉)2 and(v〈〈W1,W2〉〉)1 ∈W1 and(v〈〈W1,W2〉〉)2 ∈W2.

One can prove the following two propositions:

(64)5 If M is the direct sum ofW1 andW2, then(v〈〈W1,W2〉〉)1 = (v〈〈W2,W1〉〉)2.

(65) If M is the direct sum ofW1 andW2, then(v〈〈W1,W2〉〉)2 = (v〈〈W2,W1〉〉)1.

In the sequelW is a subspace ofV.
One can prove the following propositions:

(66) Let L be a linear complement ofW, v be an element ofV, andt be an element of[: the
carrier ofV, the carrier ofV :]. If t1 + t2 = v andt1 ∈W andt2 ∈ L, thent = v〈〈W,L〉〉.

(67) For every linear complementL of W and for every elementv of V holds (v〈〈W,L〉〉)1 +
(v〈〈W,L〉〉)2 = v.

(68) For every linear complementL of W and for every elementv of V holds(v〈〈W,L〉〉)1 ∈W and

(v〈〈W,L〉〉)2 ∈ L.

(69) For every linear complementL of W and for every elementv of V holds (v〈〈W,L〉〉)1 =
(v〈〈L,W〉〉)2.

(70) For every linear complementL of W and for every elementv of V holds (v〈〈W,L〉〉)2 =
(v〈〈L,W〉〉)1.

In the sequelA1, A2 are elements of SubspacesM andW1, W2 are subspaces ofM.
Let us considerG1 and let us considerM. The functor SubJoinM yielding a binary operation on

SubspacesM is defined as follows:

(Def. 7) For allA1, A2, W1, W2 such thatA1 = W1 andA2 = W2 holds(SubJoinM)(A1, A2) = W1 +
W2.

Let us considerG1 and let us considerM. The functor SubMeetM yielding a binary operation
on SubspacesM is defined as follows:

(Def. 8) For allA1, A2, W1, W2 such thatA1 = W1 and A2 = W2 holds (SubMeetM)(A1, A2) =
W1∩W2.

We now state several propositions:

(75)6 〈SubspacesM,SubJoinM,SubMeetM〉 is a lattice.

5 The propositions (60)–(63) have been removed.
6 The propositions (71)–(74) have been removed.
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(76) 〈SubspacesM,SubJoinM,SubMeetM〉 is a lower bound lattice.

(77) 〈SubspacesM,SubJoinM,SubMeetM〉 is an upper bound lattice.

(78) 〈SubspacesM,SubJoinM,SubMeetM〉 is a bound lattice.

(79) 〈SubspacesM,SubJoinM,SubMeetM〉 is a modular lattice.

(80) For every fieldF and for every vector spaceV over F holds 〈SubspacesV,SubJoinV,
SubMeetV〉 is a complemented lattice.
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