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Summary. We introduce the notions of subspace of vector space and coset of a sub-
space. We prove a humber of theorems concerning those notions. Some theorems that belong
rather to[[4] are proved.

MML Identifier: VECTSP_ 4.

WWW: http://mizar.org/JFM/Vol2/vectsp_4.html

The articlesl[6],[3],18], 19], [1], [2], [5], [7], andl]4] provide the notation and terminology for this
paper.

In this paperxis a set.

Let G; be a non empty groupoid, le€tbe a non empty vector space structure dvgrand letv;
be a subset of . We say thaV is linearly closed if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For all elements, u of V such thaw € V; andu € V1 holdsv+u € Vi, and
(i) for every element of G; and for every elementof V such that € V; holdsa-v € V;.

One can prove the following propositions:

(4H Let G; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxé be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structu@; pver
andV; be a subset of . If Vi # 0 andV; is linearly closed, then\0e V;.

(5) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxébe an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structur@, pver
andV; be a subset 6f . Supposé/; is linearly closed. Let be an element of. If ve Vy,
then—v e V.

(6) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxé be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structut@; pver
andV; be a subset of. Supposé/; is linearly closed. Let, u be elements o¥. If veV;
andu e Vi, thenv—u e V;.

(7) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure &te an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structur@; over
Then{0y } is linearly closed.

1 The propositions (1)—(3) have been removed.
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(8) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxébe an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structuf@;pver
andV; be a subset of . If the carrier ofV =V;, thenV; is linearly closed.

(9) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxé be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structu@; pver
andVy, Vo, V3 be subsets of. Supposeé/; is linearly closed and; is linearly closed and
V3 = {v+u;v ranges over elements ®f, u ranges over elements ¥t veVy A ueVp}.
ThenVs is linearly closed.

(10) LetG; be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structuxé be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structu@, pver
andVi, V, be subsets of. Suppose/; is linearly closed and; is linearly closed. Then
V1NV, is linearly closed.

Let G1 be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure andJebe an Abelian add-associative right zeroed
right complementable vector space-like non empty vector space structur@owven Abelian add-
associative right zeroed right complementable vector space-like non empty vector space structure
overG; is said to be a subspaceVfif it satisfies the conditions (Def. 2).

(Def. 2)()) The carrier of itC the carrier ol,
(i) the zero of it=the zero ok,
(ili)  the addition of it= (the addition oWV ) [[:the carrier of it, the carrier of it:and

(iv) the left multiplication of it= (the left multiplication ofV)[[: the carrier ofG;, the carrier
of it:].

For simplicity, we use the following conventiorG; is an add-associative right zeroed right
complementable Abelian associative left unital distributive non empty double loop structure,
X, Y are Abelian add-associative right zeroed right complementable vector space-like hon empty
vector space structures ov8, a is an element 061, u, v, v1, vo are elements of , W, Wy, W, are
subspaces df, V1 is a subset o¥/, andw, w1, w, are elements diV.

We now state a number of propositions:

(16@ If x e Wy andW; is a subspace afb, thenx € Wo.
(A7) IfxeW,thenxeV.

(18) wis an element of.

(19) Qv =0v.

(20) Qwy) = Owy)-

(21) Ifwy =vandw, = u, thenw; +wp = v+u.
(22) Ifw=yv,thena-w=a-v.

(23) Ifw=yv,then—v=—w.

(24) Ifwy =vandw, = u, thenw; —wp =v—u.
(25) Gy eW.

(26) Qw,) EWa.

2 The propositions (11)—(15) have been removed.
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(27) Oy eV.

(28) IfueW andveW, thenu+veW.
(29) IfveW, thena-veW.

(30) IfveW, then—veW.

(31) IfueWandveW,thenu—veW.
(832) V isasubspace of.

(33) LetX,V be strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structures ofgr If V is a subspace of andX is a subspace
of V, thenV = X.

(34) IfVis asubspace of andX is a subspace of, thenV is a subspace of.
(35) If the carrier ofMy C the carrier of\,, thenW, is a subspace ofb.
(36) If for everyv such thay € Wy holdsv € W5, thenW, is a subspace afb.

Let G1 be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure andJebe an Abelian add-associative right zeroed
right complementable vector space-like non empty vector space structur&oviote that there
exists a subspace wfwhich is strict.

Next we state several propositions:

(37) For all strict subspacé¥;, W, of V such that the carrier aiy, = the carrier oM, holds

Wy =Wo.
(38) For all strict subspacé#, W, of V such that for every holdsv € W iff v € W, holds
Wy =Wo.

(39) LetV be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure o@randW be a strict subspace ®f. If the carrier
of W = the carrier oV, thenW = V.

(40) LetV be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure o@randW be a strict subspace ®f. If for every
elementv of V holdsv € W, thenW = V.

(41) If the carrier oW = V4, thenV; is linearly closed.

(42) If V1 #£ 0 andV; is linearly closed, then there exists a strict subspéicef V such that
V1 = the carrier ofW.

Let us considefG1 and let us considey. The functorOy yields a strict subspace df and is
defined by:

(Def. 3) The carrier 0by = {0y }.

Let us considefs; and let us considev. The functorQy yielding a strict subspace &f is
defined as follows:

(Def. 4) Qv = the vector space structure \6f
The following propositions are true:
(46 xeoy iff x=0y.
(47) Ow=0v.

3 The propositions (43)—(45) have been removed.
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(48) Owy) = Opwy)-

(49) Ow is a subspace of.
(50) Oy is a subspace &.
(51) Oy, is a subspace okb.

(53@ Every strict Abelian add-associative right zeroed right complementable vector space-like
non empty vector space structiWeoverG; is a subspace @y .

Let us considef5;, let us conside¥, and let us consider, W. The functorv+W yielding a
subset oV is defined by:

(Def.5) v4+W ={v4+u:ueW}.

Let us considefy, let us consideY, and let us considal/. A subset oV is called a coset of
W if:

(Def. 6) There existg such that it=v+W.

In the sequeB, C denote cosets .
We now state a number of propositions:

(57F] x e v+W iff there existsu such thau € W andx = v+ u.
(58) Oy ev+Wiff ve W.

(59) vev+Ww.

(60) Oy +W = the carrier ofV.

(61) v+0y ={v}.

(62) v+ Qy =the carrier oiV.

(63) G/ e v+Wi iff v+W = the carrier ofW.

(64) veW iff v+W = the carrier ofV.

(65) Ifve W, thena-v+W = the carrier ofV.

(66) LetG; be a fieldV be a vector space ov€, a be an element of4, v be an element of
V, andW be a subspace . If a# Og,) anda-v+W = the carrier oW, thenv e W.

(67) LetG; be afieldV be a vector space ov&, v be an element df, andW be a subspace
of V. Thenv e W if and only if —v+W = the carrier oiW.

(68) ueWiff veW =v+u+W.

(69) ueWiff v+W = (v—u) +W.

(70) veu+Wiff u+W =v4+W.

(71) IKfuevi+Wandue vp+W, thenvy +W = v +W.

(72) LetG; be a fieldV be a vector space ov€l;, a be an element oB4, v be an element of
V, andW be a subspace . If a# 1) anda-ve v+W, thenve W.

(73) IfveW, thena-vev+W.
(74) IfveW, then—vev+W.

4 The proposition (52) has been removed.
5 The propositions (54)—(56) have been removed.
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ut+vev+Wiff uew.
v—uev+Wiff ue w.

(78@ u € v+ W iff there existsvy such that/; € W andu =v—vi.

(79)
(80)
(81)
(82)
(83)
(84)
(85)
(86)

There existy such that/; € v+W andv, € v+W iff vi —vo € W.

If vi+W = u+W, then there existg; such that; ¢ W andv+v; = u.

If vi+W = u+W, then there existg; such that; ¢ W andv—v; = u.

For all strict subspac&¥;, W, of V holdsv+W; = v+ W iff Wy =Wb.

For all strict subspac&¥;, W, of V such thaw +W; = u+W, holdsWy = Ws.
There exist€ such thaw € C.

C is linearly closed iffC = the carrier of\V.

For all strict subspacé¥;, W, of V and for every coset; of Wy and for every coset; of

W5 such thatC; = C; holdsWy, =Wb.

(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(99)
(96)
(97)

{v} is a coset oDy .

If V1 is a coset oby, then there existg such that; = {v}.

The carrier otV is a coset oWV.

The carrier oV is a coset o)y .

If V1 is a coset ofdy, thenV; = the carrier olV.

0, € Ciff C =the carrier ofW.

ueCiff C=u+W.

If ue C andv € C, then there existg; such that/; e W andu+vy = V.
If ue C andv € C, then there existg; such that; e W andu—vy = V.
There exist€ such that/; € C andv, € Ciff vi —v, € W.

Ifue Bandu e C, thenB=_C.

(103[] Let G; be an add-associative right zeroed right complementable Abelian commutative
associative left unital distributive non empty double loop structurdye an Abelian add-
associative right zeroed right complementable vector space-like non empty vector space struc-
ture overGy, a, b be elements o641, andv be an element of. Then(a—b)-v=a-v—b-v.
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