Subspaces and Cosets of Subspaces in Vector Space

Wojciech A. Trybulec Warsaw University

Summary. We introduce the notions of subspace of vector space and coset of a subspace. We prove a number of theorems concerning those notions. Some theorems that belong rather to [4] are proved.

MML Identifier: VECTSP_4.
WWW: http://mizar.org/JFM/Vol2/vectsp_4.html

The articles [6], [3], [8], [9], [1], [2], [5], [7], and [4] provide the notation and terminology for this paper.

In this paper *x* is a set.

Let G_1 be a non empty groupoid, let V be a non empty vector space structure over G_1 , and let V_1 be a subset of V. We say that V_1 is linearly closed if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For all elements v, u of V such that $v \in V_1$ and $u \in V_1$ holds $v + u \in V_1$, and

(ii) for every element *a* of G_1 and for every element *v* of *V* such that $v \in V_1$ holds $a \cdot v \in V_1$.

One can prove the following propositions:

- (4)¹ Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 be a subset of V. If $V_1 \neq \emptyset$ and V_1 is linearly closed, then $0_V \in V_1$.
- (5) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 be a subset of V. Suppose V_1 is linearly closed. Let v be an element of V. If $v \in V_1$, then $-v \in V_1$.
- (6) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 be a subset of V. Suppose V_1 is linearly closed. Let v, u be elements of V. If $v \in V_1$ and $u \in V_1$, then $v - u \in V_1$.
- (7) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Then $\{0_V\}$ is linearly closed.

¹ The propositions (1)–(3) have been removed.

- (8) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 be a subset of V. If the carrier of $V = V_1$, then V_1 is linearly closed.
- (9) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 , V_2 , V_3 be subsets of V. Suppose V_1 is linearly closed and V_2 is linearly closed and $V_3 = \{v + u; v \text{ ranges over elements of } V, u \text{ ranges over elements of } V: v \in V_1 \land u \in V_2\}$. Then V_3 is linearly closed.
- (10) Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , and V_1 , V_2 be subsets of V. Suppose V_1 is linearly closed and V_2 is linearly closed. Then $V_1 \cap V_2$ is linearly closed.

Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . An Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 is said to be a subspace of V if it satisfies the conditions (Def. 2).

(Def. 2)(i) The carrier of it \subseteq the carrier of *V*,

- (ii) the zero of it = the zero of V,
- (iii) the addition of it = (the addition of V) [: the carrier of it, the carrier of it:], and
- (iv) the left multiplication of it = (the left multiplication of V)[: the carrier of G_1 , the carrier of it:].

For simplicity, we use the following convention: G_1 is an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V, X, Y are Abelian add-associative right zeroed right complementable vector space-like non empty vector space structures over G_1 , a is an element of G_1 , u, v, v_1 , v_2 are elements of V, W, W_1 , W_2 are subspaces of V, V_1 is a subset of V, and w, w_1 , w_2 are elements of W.

We now state a number of propositions:

- (16)² If $x \in W_1$ and W_1 is a subspace of W_2 , then $x \in W_2$.
- (17) If $x \in W$, then $x \in V$.
- (18) w is an element of V.
- (19) $0_W = 0_V$.
- (20) $0_{(W_1)} = 0_{(W_2)}$.
- (21) If $w_1 = v$ and $w_2 = u$, then $w_1 + w_2 = v + u$.
- (22) If w = v, then $a \cdot w = a \cdot v$.
- (23) If w = v, then -v = -w.
- (24) If $w_1 = v$ and $w_2 = u$, then $w_1 w_2 = v u$.
- (25) $0_V \in W$.
- (26) $0_{(W_1)} \in W_2$.

² The propositions (11)–(15) have been removed.

- (27) $0_W \in V$.
- (28) If $u \in W$ and $v \in W$, then $u + v \in W$.
- (29) If $v \in W$, then $a \cdot v \in W$.
- (30) If $v \in W$, then $-v \in W$.
- (31) If $u \in W$ and $v \in W$, then $u v \in W$.
- (32) V is a subspace of V.
- (33) Let *X*, *V* be strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structures over G_1 . If *V* is a subspace of *X* and *X* is a subspace of *V*, then V = X.
- (34) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
- (35) If the carrier of $W_1 \subseteq$ the carrier of W_2 , then W_1 is a subspace of W_2 .
- (36) If for every *v* such that $v \in W_1$ holds $v \in W_2$, then W_1 is a subspace of W_2 .

Let G_1 be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 . Note that there exists a subspace of V which is strict.

Next we state several propositions:

- (37) For all strict subspaces W_1 , W_2 of V such that the carrier of W_1 = the carrier of W_2 holds $W_1 = W_2$.
- (38) For all strict subspaces W_1 , W_2 of V such that for every v holds $v \in W_1$ iff $v \in W_2$ holds $W_1 = W_2$.
- (39) Let *V* be a strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structure over G_1 and *W* be a strict subspace of *V*. If the carrier of W = the carrier of *V*, then W = V.
- (40) Let *V* be a strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structure over G_1 and *W* be a strict subspace of *V*. If for every element *v* of *V* holds $v \in W$, then W = V.
- (41) If the carrier of $W = V_1$, then V_1 is linearly closed.
- (42) If $V_1 \neq \emptyset$ and V_1 is linearly closed, then there exists a strict subspace W of V such that V_1 = the carrier of W.

Let us consider G_1 and let us consider V. The functor $\mathbf{0}_V$ yields a strict subspace of V and is defined by:

(Def. 3) The carrier of $\mathbf{0}_V = \{\mathbf{0}_V\}$.

Let us consider G_1 and let us consider V. The functor Ω_V yielding a strict subspace of V is defined as follows:

(Def. 4) Ω_V = the vector space structure of *V*.

The following propositions are true:

- $(46)^3$ $x \in \mathbf{0}_V$ iff $x = 0_V$.
- $(47) \quad \mathbf{0}_W = \mathbf{0}_V.$

³ The propositions (43)–(45) have been removed.

- (48) $\mathbf{0}_{(W_1)} = \mathbf{0}_{(W_2)}.$
- (49) $\mathbf{0}_W$ is a subspace of *V*.
- (50) $\mathbf{0}_V$ is a subspace of W.
- (51) $\mathbf{0}_{(W_1)}$ is a subspace of W_2 .
- (53)⁴ Every strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure V over G_1 is a subspace of Ω_V .

Let us consider G_1 , let us consider V, and let us consider v, W. The functor v + W yielding a subset of V is defined by:

(Def. 5) $v + W = \{v + u : u \in W\}.$

Let us consider G_1 , let us consider V, and let us consider W. A subset of V is called a coset of W if:

(Def. 6) There exists *v* such that it = v + W.

In the sequel *B*, *C* denote cosets of *W*. We now state a number of propositions:

- $(57)^5$ $x \in v + W$ iff there exists *u* such that $u \in W$ and x = v + u.
- (58) $0_V \in v + W$ iff $v \in W$.
- (59) $v \in v + W$.
- (60) $0_V + W =$ the carrier of W.
- (61) $v + \mathbf{0}_V = \{v\}.$
- (62) $v + \Omega_V$ = the carrier of *V*.
- (63) $0_V \in v + W$ iff v + W = the carrier of W.
- (64) $v \in W$ iff v + W = the carrier of W.
- (65) If $v \in W$, then $a \cdot v + W$ = the carrier of W.
- (66) Let G_1 be a field, V be a vector space over G_1 , a be an element of G_1 , v be an element of V, and W be a subspace of V. If $a \neq 0_{(G_1)}$ and $a \cdot v + W =$ the carrier of W, then $v \in W$.
- (67) Let G_1 be a field, V be a vector space over G_1 , v be an element of V, and W be a subspace of V. Then $v \in W$ if and only if -v + W = the carrier of W.
- (68) $u \in W$ iff v + W = v + u + W.
- (69) $u \in W$ iff v + W = (v u) + W.
- (70) $v \in u + W$ iff u + W = v + W.
- (71) If $u \in v_1 + W$ and $u \in v_2 + W$, then $v_1 + W = v_2 + W$.
- (72) Let G_1 be a field, V be a vector space over G_1 , a be an element of G_1 , v be an element of V, and W be a subspace of V. If $a \neq \mathbf{1}_{(G_1)}$ and $a \cdot v \in v + W$, then $v \in W$.
- (73) If $v \in W$, then $a \cdot v \in v + W$.
- (74) If $v \in W$, then $-v \in v + W$.

⁴ The proposition (52) has been removed.

⁵ The propositions (54)–(56) have been removed.

- (75) $u+v \in v+W$ iff $u \in W$.
- (76) $v-u \in v+W$ iff $u \in W$.
- (78)⁶ $u \in v + W$ iff there exists v_1 such that $v_1 \in W$ and $u = v v_1$.
- (79) There exists v such that $v_1 \in v + W$ and $v_2 \in v + W$ iff $v_1 v_2 \in W$.
- (80) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v + v_1 = u$.
- (81) If v + W = u + W, then there exists v_1 such that $v_1 \in W$ and $v v_1 = u$.
- (82) For all strict subspaces W_1 , W_2 of V holds $v + W_1 = v + W_2$ iff $W_1 = W_2$.
- (83) For all strict subspaces W_1 , W_2 of V such that $v + W_1 = u + W_2$ holds $W_1 = W_2$.
- (84) There exists *C* such that $v \in C$.
- (85) *C* is linearly closed iff C = the carrier of *W*.
- (86) For all strict subspaces W_1 , W_2 of V and for every coset C_1 of W_1 and for every coset C_2 of W_2 such that $C_1 = C_2$ holds $W_1 = W_2$.
- (87) $\{v\}$ is a coset of $\mathbf{0}_V$.
- (88) If V_1 is a coset of $\mathbf{0}_V$, then there exists v such that $V_1 = \{v\}$.
- (89) The carrier of W is a coset of W.
- (90) The carrier of V is a coset of Ω_V .
- (91) If V_1 is a coset of Ω_V , then V_1 = the carrier of V.
- (92) $0_V \in C$ iff C = the carrier of W.
- (93) $u \in C$ iff C = u + W.
- (94) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u + v_1 = v$.
- (95) If $u \in C$ and $v \in C$, then there exists v_1 such that $v_1 \in W$ and $u v_1 = v$.
- (96) There exists *C* such that $v_1 \in C$ and $v_2 \in C$ iff $v_1 v_2 \in W$.
- (97) If $u \in B$ and $u \in C$, then B = C.
- $(103)^7$ Let G_1 be an add-associative right zeroed right complementable Abelian commutative associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_1 , a, b be elements of G_1 , and v be an element of V. Then $(a-b) \cdot v = a \cdot v b \cdot v$.

REFERENCES

- Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ funct_1.html.
- [2] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_ 2.html.
- [3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_ 1.html.
- [4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/vectsp_1.html.
- [5] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ domain_l.html.

⁶ The proposition (77) has been removed.

⁷ The propositions (98)–(102) have been removed.

- [6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html.
- [7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/ rlvect_l.html.
- [8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/subset_1.html.
- [9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html.

Received July 27, 1990

Published January 2, 2004