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Summary. We introduce the notions of subspace of vector space and coset of a sub-
space. We prove a number of theorems concerning those notions. Some theorems that belong
rather to [4] are proved.
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The articles [6], [3], [8], [9], [1], [2], [5], [7], and [4] provide the notation and terminology for this
paper.

In this paperx is a set.
Let G1 be a non empty groupoid, letV be a non empty vector space structure overG1, and letV1

be a subset ofV. We say thatV1 is linearly closed if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) For all elementsv, u of V such thatv∈V1 andu∈V1 holdsv+u∈V1, and

(ii) for every elementa of G1 and for every elementv of V such thatv∈V1 holdsa·v∈V1.

One can prove the following propositions:

(4)1 Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1 be a subset ofV. If V1 6= /0 andV1 is linearly closed, then 0V ∈V1.

(5) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1 be a subset ofV. SupposeV1 is linearly closed. Letv be an element ofV. If v∈V1,
then−v∈V1.

(6) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1 be a subset ofV. SupposeV1 is linearly closed. Letv, u be elements ofV. If v∈V1

andu∈V1, thenv−u∈V1.

(7) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure andV be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1.
Then{0V} is linearly closed.

1 The propositions (1)–(3) have been removed.
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(8) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1 be a subset ofV. If the carrier ofV = V1, thenV1 is linearly closed.

(9) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1, V2, V3 be subsets ofV. SupposeV1 is linearly closed andV2 is linearly closed and
V3 = {v+ u;v ranges over elements ofV, u ranges over elements ofV: v ∈ V1 ∧ u ∈ V2}.
ThenV3 is linearly closed.

(10) Let G1 be an add-associative right zeroed right complementable Abelian associative left
unital distributive non empty double loop structure,V be an Abelian add-associative right
zeroed right complementable vector space-like non empty vector space structure overG1,
andV1, V2 be subsets ofV. SupposeV1 is linearly closed andV2 is linearly closed. Then
V1∩V2 is linearly closed.

Let G1 be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure and letV be an Abelian add-associative right zeroed
right complementable vector space-like non empty vector space structure overG1. An Abelian add-
associative right zeroed right complementable vector space-like non empty vector space structure
overG1 is said to be a subspace ofV if it satisfies the conditions (Def. 2).

(Def. 2)(i) The carrier of it⊆ the carrier ofV,

(ii) the zero of it= the zero ofV,

(iii) the addition of it= (the addition ofV)�[: the carrier of it, the carrier of it :], and

(iv) the left multiplication of it= (the left multiplication ofV)�[: the carrier ofG1, the carrier
of it :].

For simplicity, we use the following convention:G1 is an add-associative right zeroed right
complementable Abelian associative left unital distributive non empty double loop structure,V,
X, Y are Abelian add-associative right zeroed right complementable vector space-like non empty
vector space structures overG1, a is an element ofG1, u, v, v1, v2 are elements ofV, W, W1, W2 are
subspaces ofV, V1 is a subset ofV, andw, w1, w2 are elements ofW.

We now state a number of propositions:

(16)2 If x∈W1 andW1 is a subspace ofW2, thenx∈W2.

(17) If x∈W, thenx∈V.

(18) w is an element ofV.

(19) 0W = 0V .

(20) 0(W1) = 0(W2).

(21) If w1 = v andw2 = u, thenw1 +w2 = v+u.

(22) If w = v, thena·w = a·v.

(23) If w = v, then−v =−w.

(24) If w1 = v andw2 = u, thenw1−w2 = v−u.

(25) 0V ∈W.

(26) 0(W1) ∈W2.

2 The propositions (11)–(15) have been removed.
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(27) 0W ∈V.

(28) If u∈W andv∈W, thenu+v∈W.

(29) If v∈W, thena·v∈W.

(30) If v∈W, then−v∈W.

(31) If u∈W andv∈W, thenu−v∈W.

(32) V is a subspace ofV.

(33) LetX, V be strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structures overG1. If V is a subspace ofX andX is a subspace
of V, thenV = X.

(34) If V is a subspace ofX andX is a subspace ofY, thenV is a subspace ofY.

(35) If the carrier ofW1 ⊆ the carrier ofW2, thenW1 is a subspace ofW2.

(36) If for everyv such thatv∈W1 holdsv∈W2, thenW1 is a subspace ofW2.

Let G1 be an add-associative right zeroed right complementable Abelian associative left unital
distributive non empty double loop structure and letV be an Abelian add-associative right zeroed
right complementable vector space-like non empty vector space structure overG1. Note that there
exists a subspace ofV which is strict.

Next we state several propositions:

(37) For all strict subspacesW1, W2 of V such that the carrier ofW1 = the carrier ofW2 holds
W1 = W2.

(38) For all strict subspacesW1, W2 of V such that for everyv holdsv ∈W1 iff v ∈W2 holds
W1 = W2.

(39) LetV be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1 andW be a strict subspace ofV. If the carrier
of W = the carrier ofV, thenW = V.

(40) LetV be a strict Abelian add-associative right zeroed right complementable vector space-
like non empty vector space structure overG1 andW be a strict subspace ofV. If for every
elementv of V holdsv∈W, thenW = V.

(41) If the carrier ofW = V1, thenV1 is linearly closed.

(42) If V1 6= /0 andV1 is linearly closed, then there exists a strict subspaceW of V such that
V1 = the carrier ofW.

Let us considerG1 and let us considerV. The functor0V yields a strict subspace ofV and is
defined by:

(Def. 3) The carrier of0V = {0V}.

Let us considerG1 and let us considerV. The functorΩV yielding a strict subspace ofV is
defined as follows:

(Def. 4) ΩV = the vector space structure ofV.

The following propositions are true:

(46)3 x∈ 0V iff x = 0V .

(47) 0W = 0V .

3 The propositions (43)–(45) have been removed.
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(48) 0(W1) = 0(W2).

(49) 0W is a subspace ofV.

(50) 0V is a subspace ofW.

(51) 0(W1) is a subspace ofW2.

(53)4 Every strict Abelian add-associative right zeroed right complementable vector space-like
non empty vector space structureV overG1 is a subspace ofΩV .

Let us considerG1, let us considerV, and let us considerv, W. The functorv+W yielding a
subset ofV is defined by:

(Def. 5) v+W = {v+u : u∈W}.

Let us considerG1, let us considerV, and let us considerW. A subset ofV is called a coset of
W if:

(Def. 6) There existsv such that it= v+W.

In the sequelB, C denote cosets ofW.
We now state a number of propositions:

(57)5 x∈ v+W iff there existsu such thatu∈W andx = v+u.

(58) 0V ∈ v+W iff v∈W.

(59) v∈ v+W.

(60) 0V +W = the carrier ofW.

(61) v+0V = {v}.

(62) v+ΩV = the carrier ofV.

(63) 0V ∈ v+W iff v+W = the carrier ofW.

(64) v∈W iff v+W = the carrier ofW.

(65) If v∈W, thena·v+W = the carrier ofW.

(66) LetG1 be a field,V be a vector space overG1, a be an element ofG1, v be an element of
V, andW be a subspace ofV. If a 6= 0(G1) anda·v+W = the carrier ofW, thenv∈W.

(67) LetG1 be a field,V be a vector space overG1, v be an element ofV, andW be a subspace
of V. Thenv∈W if and only if−v+W = the carrier ofW.

(68) u∈W iff v+W = v+u+W.

(69) u∈W iff v+W = (v−u)+W.

(70) v∈ u+W iff u+W = v+W.

(71) If u∈ v1 +W andu∈ v2 +W, thenv1 +W = v2 +W.

(72) LetG1 be a field,V be a vector space overG1, a be an element ofG1, v be an element of
V, andW be a subspace ofV. If a 6= 1(G1) anda·v∈ v+W, thenv∈W.

(73) If v∈W, thena·v∈ v+W.

(74) If v∈W, then−v∈ v+W.

4 The proposition (52) has been removed.
5 The propositions (54)–(56) have been removed.
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(75) u+v∈ v+W iff u∈W.

(76) v−u∈ v+W iff u∈W.

(78)6 u∈ v+W iff there existsv1 such thatv1 ∈W andu = v−v1.

(79) There existsv such thatv1 ∈ v+W andv2 ∈ v+W iff v1−v2 ∈W.

(80) If v+W = u+W, then there existsv1 such thatv1 ∈W andv+v1 = u.

(81) If v+W = u+W, then there existsv1 such thatv1 ∈W andv−v1 = u.

(82) For all strict subspacesW1, W2 of V holdsv+W1 = v+W2 iff W1 = W2.

(83) For all strict subspacesW1, W2 of V such thatv+W1 = u+W2 holdsW1 = W2.

(84) There existsC such thatv∈C.

(85) C is linearly closed iffC = the carrier ofW.

(86) For all strict subspacesW1, W2 of V and for every cosetC1 of W1 and for every cosetC2 of
W2 such thatC1 = C2 holdsW1 = W2.

(87) {v} is a coset of0V .

(88) If V1 is a coset of0V , then there existsv such thatV1 = {v}.

(89) The carrier ofW is a coset ofW.

(90) The carrier ofV is a coset ofΩV .

(91) If V1 is a coset ofΩV , thenV1 = the carrier ofV.

(92) 0V ∈C iff C = the carrier ofW.

(93) u∈C iff C = u+W.

(94) If u∈C andv∈C, then there existsv1 such thatv1 ∈W andu+v1 = v.

(95) If u∈C andv∈C, then there existsv1 such thatv1 ∈W andu−v1 = v.

(96) There existsC such thatv1 ∈C andv2 ∈C iff v1−v2 ∈W.

(97) If u∈ B andu∈C, thenB = C.

(103)7 Let G1 be an add-associative right zeroed right complementable Abelian commutative
associative left unital distributive non empty double loop structure,V be an Abelian add-
associative right zeroed right complementable vector space-like non empty vector space struc-
ture overG1, a, b be elements ofG1, andv be an element ofV. Then(a−b) ·v = a·v−b·v.
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