Subspaces and Cosets of Subspaces in Vector Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. We introduce the notions of subspace of vector space and coset of a subspace. We prove a number of theorems concerning those notions. Some theorems that belong rather to [4] are proved.

MML Identifier: VECTSP_4.
WWW: http://mizar.org/JFM/Vol2/vectsp_4.html

The articles [6], [3], [8], [9], [1], [2], [5], [7], and [4] provide the notation and terminology for this paper.

In this paper x is a set.
Let G_{1} be a non empty groupoid, let V be a non empty vector space structure over G_{1}, and let V_{1} be a subset of V. We say that V_{1} is linearly closed if and only if the conditions (Def. 1) are satisfied.
(Def. 1)(i) For all elements v, u of V such that $v \in V_{1}$ and $u \in V_{1}$ holds $v+u \in V_{1}$, and
(ii) for every element a of G_{1} and for every element v of V such that $v \in V_{1}$ holds $a \cdot v \in V_{1}$.

One can prove the following propositions:
(4) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1} be a subset of V. If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then $0_{V} \in V_{1}$.
(5) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1} be a subset of V. Suppose V_{1} is linearly closed. Let v be an element of V. If $v \in V_{1}$, then $-v \in V_{1}$.
(6) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1} be a subset of V. Suppose V_{1} is linearly closed. Let v, u be elements of V. If $v \in V_{1}$ and $u \in V_{1}$, then $v-u \in V_{1}$.
(7) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}. Then $\left\{0_{V}\right\}$ is linearly closed.

[^0](8) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1} be a subset of V. If the carrier of $V=V_{1}$, then V_{1} is linearly closed.
(9) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1}, V_{2}, V_{3} be subsets of V. Suppose V_{1} is linearly closed and V_{2} is linearly closed and $V_{3}=\left\{v+u ; v\right.$ ranges over elements of V, u ranges over elements of $\left.V: v \in V_{1} \wedge u \in V_{2}\right\}$. Then V_{3} is linearly closed.
(10) Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, and V_{1}, V_{2} be subsets of V. Suppose V_{1} is linearly closed and V_{2} is linearly closed. Then $V_{1} \cap V_{2}$ is linearly closed.

Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}. An Abelian addassociative right zeroed right complementable vector space-like non empty vector space structure over G_{1} is said to be a subspace of V if it satisfies the conditions (Def. 2).
(Def. 2)(i) The carrier of it \subseteq the carrier of V,
(ii) the zero of it $=$ the zero of V,
(iii) the addition of it $=($ the addition of $V) \upharpoonright$: the carrier of it, the carrier of it:], and
(iv) the left multiplication of it $=$ (the left multiplication of $V) \upharpoonright\left[\right.$: the carrier of G_{1}, the carrier of it:].

For simplicity, we use the following convention: G_{1} is an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure, V, X, Y are Abelian add-associative right zeroed right complementable vector space-like non empty vector space structures over G_{1}, a is an element of $G_{1}, u, v, v_{1}, v_{2}$ are elements of V, W, W_{1}, W_{2} are subspaces of V, V_{1} is a subset of V, and w, w_{1}, w_{2} are elements of W.

We now state a number of propositions:
$(16)^{2}$ If $x \in W_{1}$ and W_{1} is a subspace of W_{2}, then $x \in W_{2}$.
(17) If $x \in W$, then $x \in V$.
(18) w is an element of V.
(19) $\quad 0_{W}=0_{V}$.
(20) $\quad 0_{\left(W_{1}\right)}=0_{\left(W_{2}\right)}$.
(21) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}+w_{2}=v+u$.
(22) If $w=v$, then $a \cdot w=a \cdot v$.
(23) If $w=v$, then $-v=-w$.
(24) If $w_{1}=v$ and $w_{2}=u$, then $w_{1}-w_{2}=v-u$.
(25) $0_{V} \in W$.
(26) $\quad 0_{\left(W_{1}\right)} \in W_{2}$.

[^1](27) $0_{W} \in V$.
(28) If $u \in W$ and $v \in W$, then $u+v \in W$.
(29) If $v \in W$, then $a \cdot v \in W$.
(30) If $v \in W$, then $-v \in W$.
(31) If $u \in W$ and $v \in W$, then $u-v \in W$.
(32) V is a subspace of V.
(33) Let X, V be strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structures over G_{1}. If V is a subspace of X and X is a subspace of V, then $V=X$.
(34) If V is a subspace of X and X is a subspace of Y, then V is a subspace of Y.
(35) If the carrier of $W_{1} \subseteq$ the carrier of W_{2}, then W_{1} is a subspace of W_{2}.
(36) If for every v such that $v \in W_{1}$ holds $v \in W_{2}$, then W_{1} is a subspace of W_{2}.

Let G_{1} be an add-associative right zeroed right complementable Abelian associative left unital distributive non empty double loop structure and let V be an Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure over G_{1}. Note that there exists a subspace of V which is strict.

Next we state several propositions:
(37) For all strict subspaces W_{1}, W_{2} of V such that the carrier of $W_{1}=$ the carrier of W_{2} holds $W_{1}=W_{2}$.
(38) For all strict subspaces W_{1}, W_{2} of V such that for every v holds $v \in W_{1}$ iff $v \in W_{2}$ holds $W_{1}=W_{2}$.
(39) Let V be a strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structure over G_{1} and W be a strict subspace of V. If the carrier of $W=$ the carrier of V, then $W=V$.
(40) Let V be a strict Abelian add-associative right zeroed right complementable vector spacelike non empty vector space structure over G_{1} and W be a strict subspace of V. If for every element v of V holds $v \in W$, then $W=V$.
(41) If the carrier of $W=V_{1}$, then V_{1} is linearly closed.
(42) If $V_{1} \neq \emptyset$ and V_{1} is linearly closed, then there exists a strict subspace W of V such that $V_{1}=$ the carrier of W.

Let us consider G_{1} and let us consider V. The functor $\mathbf{0}_{V}$ yields a strict subspace of V and is defined by:
(Def. 3) The carrier of $\mathbf{0}_{V}=\left\{0_{V}\right\}$.
Let us consider G_{1} and let us consider V. The functor Ω_{V} yielding a strict subspace of V is defined as follows:
(Def. 4) $\Omega_{V}=$ the vector space structure of V.
The following propositions are true:
(46周 $x \in \mathbf{0}_{V}$ iff $x=0_{V}$.
(47) $\mathbf{0}_{W}=\mathbf{0}_{V}$.

[^2](48) $\quad \mathbf{0}_{\left(W_{1}\right)}=\mathbf{0}_{\left(W_{2}\right)}$.
(49) $\quad \mathbf{0}_{W}$ is a subspace of V.
(50) $\quad \mathbf{0}_{V}$ is a subspace of W.
(51) $\quad \mathbf{0}_{\left(W_{1}\right)}$ is a subspace of W_{2}.
(53 $)^{4}$ Every strict Abelian add-associative right zeroed right complementable vector space-like non empty vector space structure V over G_{1} is a subspace of Ω_{V}.

Let us consider G_{1}, let us consider V, and let us consider v, W. The functor $v+W$ yielding a subset of V is defined by:
(Def. 5) $v+W=\{v+u: u \in W\}$.
Let us consider G_{1}, let us consider V, and let us consider W. A subset of V is called a coset of W if:
(Def. 6) There exists v such that $\mathrm{it}=v+W$.
In the sequel B, C denote cosets of W.
We now state a number of propositions:
$(57)^{5} x \in v+W$ iff there exists u such that $u \in W$ and $x=v+u$.
(58) $0_{V} \in v+W$ iff $v \in W$.
(59) $v \in v+W$.
(60) $0_{V}+W=$ the carrier of W.
(61) $v+\mathbf{0}_{V}=\{v\}$.
(62) $v+\Omega_{V}=$ the carrier of V.
(63) $0_{V} \in v+W$ iff $v+W=$ the carrier of W.
(64) $v \in W$ iff $v+W=$ the carrier of W.
(65) If $v \in W$, then $a \cdot v+W=$ the carrier of W.
(66) Let G_{1} be a field, V be a vector space over G_{1}, a be an element of G_{1}, v be an element of V, and W be a subspace of V. If $a \neq 0_{\left(G_{1}\right)}$ and $a \cdot v+W=$ the carrier of W, then $v \in W$.
(67) Let G_{1} be a field, V be a vector space over G_{1}, v be an element of V, and W be a subspace of V. Then $v \in W$ if and only if $-v+W=$ the carrier of W.
(68) $u \in W$ iff $v+W=v+u+W$.
(69) $u \in W$ iff $v+W=(v-u)+W$.
(70) $v \in u+W$ iff $u+W=v+W$.
(71) If $u \in v_{1}+W$ and $u \in v_{2}+W$, then $v_{1}+W=v_{2}+W$.
(72) Let G_{1} be a field, V be a vector space over G_{1}, a be an element of G_{1}, v be an element of V, and W be a subspace of V. If $a \neq \mathbf{1}_{\left(G_{1}\right)}$ and $a \cdot v \in v+W$, then $v \in W$.
(73) If $v \in W$, then $a \cdot v \in v+W$.
(74) If $v \in W$, then $-v \in v+W$.

[^3](75) $u+v \in v+W$ iff $u \in W$.
(76) $v-u \in v+W$ iff $u \in W$.
$(78)^{6} u \in v+W$ iff there exists v_{1} such that $v_{1} \in W$ and $u=v-v_{1}$.
(79) There exists v such that $v_{1} \in v+W$ and $v_{2} \in v+W$ iff $v_{1}-v_{2} \in W$.
(80) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v+v_{1}=u$.
(81) If $v+W=u+W$, then there exists v_{1} such that $v_{1} \in W$ and $v-v_{1}=u$.
(82) For all strict subspaces W_{1}, W_{2} of V holds $v+W_{1}=v+W_{2}$ iff $W_{1}=W_{2}$.
(83) For all strict subspaces W_{1}, W_{2} of V such that $v+W_{1}=u+W_{2}$ holds $W_{1}=W_{2}$.
(84) There exists C such that $v \in C$.
(85) C is linearly closed iff $C=$ the carrier of W.
(86) For all strict subspaces W_{1}, W_{2} of V and for every $\operatorname{coset} C_{1}$ of W_{1} and for every coset C_{2} of W_{2} such that $C_{1}=C_{2}$ holds $W_{1}=W_{2}$.
(87) $\{v\}$ is a coset of $\mathbf{0}_{V}$.
(88) If V_{1} is a coset of $\mathbf{0}_{V}$, then there exists v such that $V_{1}=\{v\}$.
(89) The carrier of W is a coset of W.
(90) The carrier of V is a coset of Ω_{V}.
(91) If V_{1} is a coset of Ω_{V}, then $V_{1}=$ the carrier of V.
(92) $0_{V} \in C$ iff $C=$ the carrier of W.
(93) $u \in C$ iff $C=u+W$.
(94) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u+v_{1}=v$.
(95) If $u \in C$ and $v \in C$, then there exists v_{1} such that $v_{1} \in W$ and $u-v_{1}=v$.
(96) There exists C such that $v_{1} \in C$ and $v_{2} \in C$ iff $v_{1}-v_{2} \in W$.
(97) If $u \in B$ and $u \in C$, then $B=C$.
(103 \square^{7} Let G_{1} be an add-associative right zeroed right complementable Abelian commutative associative left unital distributive non empty double loop structure, V be an Abelian addassociative right zeroed right complementable vector space-like non empty vector space structure over G_{1}, a, b be elements of G_{1}, and v be an element of V. Then $(a-b) \cdot v=a \cdot v-b \cdot v$.

References

[1] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ funct_1.html
[2] Czesław Bylinski. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_ 2.html
[3] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/zfmisc_ 1.html
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html
[5] Andrzej Trybulec. Domains and their Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/. domain_1.html.

[^4][6] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/ Axiomatics/tarski.html
[7] Wojciech A. Trybulec. Vectors in real linear space. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ rlvect_1.html
[8] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html
[9] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/ Voll/relat_1.html

Received July 27, 1990
Published January 2, 2004

[^0]: ${ }^{1}$ The propositions (1)-(3) have been removed.

[^1]: ${ }^{2}$ The propositions (11)-(15) have been removed.

[^2]: ${ }^{3}$ The propositions (43)-(45) have been removed.

[^3]: ${ }^{4}$ The proposition (52) has been removed.
 ${ }^{5}$ The propositions (54)-(56) have been removed.

[^4]: ${ }^{6}$ The proposition (77) has been removed.
 ${ }^{7}$ The propositions (98)-(102) have been removed.

