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The articles [7], [4], [9], [3], [2], [8], [5], [6], and [1] provide the notation and terminology for this
paper.

In this paperF1 denotes a non empty double loop structure andF denotes a field.
Let I1 be a non empty multiplicative loop structure. We say thatI1 is well unital if and only if:

(Def. 2)1 For every elementx of I1 holdsx ·1(I1) = x and1(I1) ·x = x.

One can verify the following observations:

∗ every non empty multiplicative loop structure which is well unital is also left unital and
right unital,

∗ every non empty multiplicative loop structure which is left unital and right unital is also
well unital, and

∗ there exists a non empty double loop structure which is strict, Abelian, add-associative,
right zeroed, right complementable, well unital, and distributive.

The following proposition is true

(1) For all scalarsx, y, zof F1 holdsx+y= y+x and(x+y)+z= x+(y+z) andx+0(F1) = x
andx+−x = 0(F1) andx ·1(F1) = x and1(F1) ·x = x and(x ·y) ·z= x · (y ·z) andx · (y+z) =
x ·y+x ·z and(y+z) ·x = y·x+z·x if and only if F1 is a ring.

Let us note that there exists a ring which is strict.
Let us note that there exists a ring which is commutative.
A commutative ring is a commutative ring.
One can check that there exists a commutative ring which is strict.
Let I1 be a non empty multiplicative loop with zero structure. We say thatI1 is integral domain-

like if and only if:

(Def. 5)2 For all elementsx, y of I1 such thatx ·y = 0(I1) holdsx = 0(I1) or y = 0(I1).

1 The definition (Def. 1) has been removed.
2 The definitions (Def. 3) and (Def. 4) have been removed.

1 c© Association of Mizar Users
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One can check that there exists a commutative ring which is strict, non degenerated, and integral
domain-like.

An integral domain is an integral domain-like non degenerated commutative ring.
Next we state the proposition

(13)3 F is an integral domain.

Let us mention that there exists a ring which is non degenerated and field-like.
A skew field is a non degenerated field-like ring.
Let us mention that there exists a skew field which is strict.
In the sequelR is a ring.
The following propositions are true:

(16)4 Suppose that for every scalarx of R holds if x 6= 0R, then there exists a scalary of R such
thatx ·y = 1R and 0R 6= 1R. ThenR is a skew field.

(19)5 F is a skew field.

Let us note that every non empty multiplicative loop structure which is commutative and left
unital is also well unital and every non empty multiplicative loop structure which is commutative
and right unital is also well unital.

In the sequelRdenotes an Abelian add-associative right zeroed right complementable non empty
loop structure andx, y, z denote scalars ofR.

The following three propositions are true:

(22)6 x+y = z iff x = z−y andx+y = z iff y = z−x.

(34)7 Let R be an add-associative right zeroed right complementable non empty loop structure
andx be an element ofR. Thenx = 0R if and only if−x = 0R.

(38)8 Let R be an add-associative right zeroed Abelian right complementable non empty loop
structure andx, y be elements ofR. Then there exists an elementz of R such thatx = y+ z
andx = z+y.

In the sequelS1 denotes a skew field andx, y, z denote scalars ofS1.
The following propositions are true:

(39) LetF be an add-associative right zeroed right complementable distributive non degenerated
non empty double loop structure andx, y be elements ofF . If x · y = 1F , thenx 6= 0F and
y 6= 0F .

(40) LetS1 be a non degenerated field-like associative Abelian add-associative right zeroed right
complementable well unital distributive non empty double loop structure andx be an element
of S1. If x 6= 0(S1), then there exists an elementy of S1 such thaty·x = 1(S1).

(41) If x ·y = 1(S1), theny·x = 1(S1).

(42) Let S1 be a non degenerated field-like associative Abelian add-associative right zeroed
right complementable well unital distributive non empty double loop structure andx, y, z be
elements ofS1. If x ·y = x ·z andx 6= 0(S1), theny = z.

Let S1 be a non degenerated field-like associative Abelian add-associative right zeroed right
complementable well unital distributive non empty double loop structure and letx be an element of
S1. Let us assume thatx 6= 0(S1). The functorx−1 yielding a scalar ofS1 is defined as follows:

3 The propositions (2)–(12) have been removed.
4 The propositions (14) and (15) have been removed.
5 The propositions (17) and (18) have been removed.
6 The propositions (20) and (21) have been removed.
7 The propositions (23)–(33) have been removed.
8 The propositions (35)–(37) have been removed.
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(Def. 7)9 x ·x−1 = 1(S1).

Let us considerS1, x, y. The functorx
y yielding a scalar ofS1 is defined by:

(Def. 8) x
y = x ·y−1.

One can prove the following propositions:

(43) If x 6= 0(S1), thenx ·x−1 = 1(S1) andx−1 ·x = 1(S1).

(45)10 If x ·y = 1(S1), thenx = y−1 andy = x−1.

(46) If x 6= 0(S1) andy 6= 0(S1), thenx−1 ·y−1 = (y·x)−1.

(47) If x ·y = 0(S1), thenx = 0(S1) or y = 0(S1).

(48) If x 6= 0(S1), thenx−1 6= 0(S1).

(49) If x 6= 0(S1), then(x−1)−1 = x.

(50) If x 6= 0(S1), then
1(S1)

x = x−1 and
1(S1)

x−1 = x.

(51) If x 6= 0(S1), thenx ·
1(S1)

x = 1(S1) and
1(S1)

x ·x = 1(S1).

(52) If x 6= 0(S1), then x
x = 1(S1).

(53) If y 6= 0(S1) andz 6= 0(S1), then x
y = x·z

y·z.

(54) If y 6= 0(S1), then− x
y = −x

y and x
−y =− x

y.

(55) If z 6= 0(S1), then x
z + y

z = x+y
z and x

z −
y
z = x−y

z .

(56) If y 6= 0(S1) andz 6= 0(S1), then x
y
z

= x·z
y .

(57) If y 6= 0(S1), then x
y ·y = x.

Let F1 be a 1-sorted structure. We consider right module structures overF1 as extensions of loop
structure as systems

〈 a carrier, an addition, a zero, a right multiplication〉,
where the carrier is a set, the addition is a binary operation on the carrier, the zero is an element
of the carrier, and the right multiplication is a function from[: the carrier, the carrier ofF1 :] into the
carrier.

Let F1 be a 1-sorted structure. Observe that there exists a right module structure overF1 which
is non empty.

Let F1 be a 1-sorted structure, letA be a non empty set, leta be a binary operation onA, let Z be
an element ofA, and letr be a function from[:A, the carrier ofF1 :] into A. Note that〈A,a,Z, r〉 is
non empty.

Let us considerF1 and letR1 be a non empty right module structure overF1. A scalar ofR1 is
an element ofF1. A vector ofR1 is an element ofR1.

Let F2, F3 be 1-sorted structures. We introduce bimodule structures overF2, F3 which are
extensions of vector space structure overF2 and right module structure overF3 and are systems

〈 a carrier, an addition, a zero, a left multiplication, a right multiplication〉,
where the carrier is a set, the addition is a binary operation on the carrier, the zero is an element of
the carrier, the left multiplication is a function from[: the carrier ofF2, the carrier :] into the carrier,
and the right multiplication is a function from[: the carrier, the carrier ofF3 :] into the carrier.

Let F2, F3 be 1-sorted structures. Observe that there exists a bimodule structure overF2, F3

which is non empty.

9 The definition (Def. 6) has been removed.
10 The proposition (44) has been removed.
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Let F2, F3 be 1-sorted structures, letA be a non empty set, leta be a binary operation onA, let
Z be an element ofA, let l be a function from[: the carrier ofF2, A:] into A, and letr be a function
from [:A, the carrier ofF3 :] into A. Note that〈A,a,Z, l , r〉 is non empty.

In the sequelR, R2, R3 are rings.
Let R be an Abelian add-associative right zeroed right complementable non empty loop struc-

ture. The functor AbGr(R) yielding a strict Abelian group is defined as follows:

(Def. 9) AbGr(R) = 〈the carrier ofR, the addition ofR, the zero ofR〉.

Let us considerR. Note that there exists a non empty vector space structure overR which is
Abelian, add-associative, right zeroed, right complementable, and strict.

Let us considerR. The functor LeftMod(R) yielding an Abelian add-associative right zeroed
right complementable strict non empty vector space structure overR is defined as follows:

(Def. 11)11 LeftMod(R) = 〈the carrier ofR, the addition ofR, the zero ofR, the multiplication ofR〉.

Let us considerR. Note that there exists a non empty right module structure overR which is
Abelian, add-associative, right zeroed, right complementable, and strict.

Let us considerR. The functor RightMod(R) yields an Abelian add-associative right zeroed
right complementable strict non empty right module structure overRand is defined by:

(Def. 14)12 RightMod(R) = 〈the carrier ofR, the addition ofR, the zero ofR, the multiplication of
R〉.

Let Rbe a non empty 1-sorted structure, letV be a non empty right module structure overR, let
x be an element ofR, and letv be an element ofV. The functorv · x yields an element ofV and is
defined as follows:

(Def. 15) v·x = (the right multiplication ofV)(v, x).

(Def. 17) op1 is a unary operation on{ /0}.

(Def. 18) op0 is an element of{ /0}.

Let us considerR2, R3. Note that there exists a non empty bimodule structure overR2, R3 which
is Abelian, add-associative, right zeroed, right complementable, and strict.

Let us considerR2, R3. The functor BiMod(R2,R3) yields an Abelian add-associative right
zeroed right complementable strict non empty bimodule structure overR2, R3 and is defined by:

(Def. 21)13 BiMod(R2,R3) = 〈{ /0},op2,op0,π2((the carrier ofR2)× { /0}),π1({ /0} × the carrier of
R3)〉.

One can prove the following proposition

(71)14 Let x, y be scalars ofR andv, w be vectors of LeftMod(R). Thenx · (v+w) = x ·v+x ·w
and(x+y) ·v = x ·v+y·v and(x ·y) ·v = x · (y·v) and1R ·v = v.

Let us considerR. One can check that there exists a non empty vector space structure overR
which is vector space-like, Abelian, add-associative, right zeroed, right complementable, and strict.

Let us considerR. A left module overR is an Abelian add-associative right zeroed right com-
plementable vector space-like non empty vector space structure overR.

Let us considerR. Observe that LeftMod(R) is Abelian, add-associative, right zeroed, right
complementable, strict, and vector space-like.

One can prove the following proposition

(77)15 Let x, y be scalars ofRandv, w be vectors of RightMod(R). Then(v+w) ·x= v·x+w·x
andv· (x+y) = v·x+v·y andv· (y·x) = (v·y) ·x andv·1R = v.

11 The definition (Def. 10) has been removed.
12 The definitions (Def. 12) and (Def. 13) have been removed.
13 The definitions (Def. 18)–(Def. 20) have been removed.
14 The propositions (58)–(70) have been removed.
15 The propositions (72)–(76) have been removed.
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Let R be a non empty double loop structure and letI1 be a non empty right module structure
overR. We say thatI1 is right module-like if and only if the condition (Def. 23) is satisfied.

(Def. 23)16 Let x, y be scalars ofR andv, w be vectors ofI1. Then(v+ w) · x = v · x+ w · x and
v· (x+y) = v·x+v·y andv· (y·x) = (v·y) ·x andv·1R = v.

Let us considerR. Observe that there exists a non empty right module structure overRwhich is
Abelian, add-associative, right zeroed, right complementable, right module-like, and strict.

Let us considerR. A right module overR is an Abelian add-associative right zeroed right
complementable right module-like non empty right module structure overR.

Let us considerR. One can verify that RightMod(R) is Abelian, add-associative, right zeroed,
right complementable, and right module-like.

Let us considerR2, R3 and letI1 be a non empty bimodule structure overR2, R3. We say thatI1
is bimodule-like if and only if:

(Def. 24) For every scalarx of R2 and for every scalarp of R3 and for every vectorv of I1 holds
x · (v· p) = (x ·v) · p.

Let us considerR2, R3. Note that there exists a non empty bimodule structure overR2, R3

which is Abelian, add-associative, right zeroed, right complementable, right module-like, vector
space-like, bimodule-like, and strict.

Let us considerR2, R3. A bimodule overR2 and R3 is an Abelian add-associative right ze-
roed right complementable right module-like vector space-like bimodule-like non empty bimodule
structure overR2, R3.

Next we state two propositions:

(83)17 Let V be a non empty bimodule structure overR2, R3. Then the following statements are
equivalent

(i) for all scalarsx, y of R2 and for all scalarsp, q of R3 and for all vectorsv, w of V holds
x· (v+w) = x·v+x·w and(x+y) ·v= x·v+y·v and(x·y) ·v= x· (y·v) and1(R2) ·v= v and
(v+w) · p = v· p+w· p andv· (p+q) = v· p+v·q andv· (q· p) = (v·q) · p andv·1(R3) = v
andx · (v· p) = (x ·v) · p,

(ii) V is right module-like, vector space-like, and bimodule-like.

(84) BiMod(R2,R3) is a bimodule overR2 andR3.

Let us considerR2, R3. One can verify that BiMod(R2,R3) is Abelian, add-associative, right
zeroed, right complementable, right module-like, vector space-like, and bimodule-like.
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