Real Linear-Metric Space and Isometric Functions

Robert Milewski University of Białystok

MML Identifier: VECTMETR.

WWW: http://mizar.org/JFM/Vol10/vectmetr.html

The articles [19], [6], [27], [21], [20], [11], [1], [22], [28], [29], [16], [3], [18], [4], [5], [15], [17], [2], [7], [25], [8], [23], [13], [24], [26], [9], [14], [12], and [10] provide the notation and terminology for this paper.

1. Convex and Internal Metric Spaces

Let V be a non empty metric structure. We say that V is convex if and only if the condition (Def. 1) is satisfied.

(Def. 1) Let x, y be elements of V and r be a real number. Suppose $0 \le r$ and $r \le 1$. Then there exists an element z of V such that $\rho(x,z) = r \cdot \rho(x,y)$ and $\rho(z,y) = (1-r) \cdot \rho(x,y)$.

Let V be a non empty metric structure. We say that V is internal if and only if the condition (Def. 2) is satisfied.

- (Def. 2) Let x, y be elements of V and p, q be real numbers. Suppose p > 0 and q > 0. Then there exists a finite sequence f of elements of the carrier of V such that
 - (i) $f_1 = x$,
 - (ii) $f_{\text{len }f} = y$,
 - (iii) for every natural number i such that $1 \le i$ and $i \le \text{len } f 1$ holds $\rho(f_i, f_{i+1}) < p$, and
 - (iv) for every finite sequence F of elements of \mathbb{R} such that $\operatorname{len} F = \operatorname{len} f 1$ and for every natural number i such that $1 \le i$ and $i \le \operatorname{len} F$ holds $F_i = \rho(f_i, f_{i+1})$ holds $|\rho(x, y) \sum F| < q$.

The following proposition is true

- (1) Let V be a non empty metric space. Suppose V is convex. Let x, y be elements of V and p be a real number. Suppose p > 0. Then there exists a finite sequence f of elements of the carrier of V such that
- (i) $f_1 = x$,
- (ii) $f_{\text{len }f} = y$,
- (iii) for every natural number i such that $1 \le i$ and $i \le \text{len } f 1$ holds $\rho(f_i, f_{i+1}) < p$, and
- (iv) for every finite sequence F of elements of \mathbb{R} such that $\operatorname{len} F = \operatorname{len} f 1$ and for every natural number i such that $1 \le i$ and $i \le \operatorname{len} F$ holds $F_i = \rho(f_i, f_{i+1})$ holds $\rho(x, y) = \sum F$.

One can verify that every non empty metric space which is convex is also internal.

Let us note that there exists a non empty metric space which is convex.

A Geometry is a Reflexive discernible symmetric triangle internal non empty metric structure.

2. ISOMETRIC FUNCTIONS

Let V be a non empty metric structure and let f be a map from V into V. We say that f is isometric if and only if:

(Def. 3) rng f = the carrier of V and for all elements x, y of V holds $\rho(x,y) = \rho(f(x), f(y))$.

Let V be a non empty metric structure. The functor ISOMV yielding a set is defined as follows:

(Def. 4) For every set x holds $x \in ISOMV$ iff there exists a map f from V into V such that f = x and f is isometric.

Let V be a non empty metric structure. Then ISOM V is a subset of (the carrier of V)^{the carrier of V}. We now state the proposition

(2) Let V be a discernible Reflexive non empty metric structure and f be a map from V into V. If f is isometric, then f is one-to-one.

Let V be a discernible Reflexive non empty metric structure. Note that every map from V into V which is isometric is also one-to-one.

Let V be a non empty metric structure. One can verify that there exists a map from V into V which is isometric.

Next we state three propositions:

- (3) Let V be a discernible Reflexive non empty metric structure and f be an isometric map from V into V. Then f^{-1} is isometric.
- (4) For every non empty metric structure V and for all isometric maps f, g from V into V holds $f \cdot g$ is isometric.
- (5) For every non empty metric structure V holds id_V is isometric.

Let *V* be a non empty metric structure. One can verify that ISOM *V* is non empty.

3. REAL LINEAR-METRIC SPACES

We introduce RLSMetrStruct which are extensions of RLS structure and metric structure and are systems

⟨ a carrier, a distance, a zero, an addition, an external multiplication ⟩,

where the carrier is a set, the distance is a function from [: the carrier, the carrier:] into \mathbb{R} , the zero is an element of the carrier, the addition is a binary operation on the carrier, and the external multiplication is a function from [: \mathbb{R} , the carrier:] into the carrier.

One can verify that there exists a RLSMetrStruct which is non empty and strict.

Let X be a non empty set, let F be a function from [:X,X:] into \mathbb{R} , let O be an element of X, let B be a binary operation on X, and let G be a function from $[:\mathbb{R},X:]$ into X. Observe that $\langle X,F,O,B,G\rangle$ is non empty.

Let *V* be a non empty RLSMetrStruct. We say that *V* is homogeneous if and only if:

(Def. 5) For every real number r and for all elements v, w of V holds $\rho(r \cdot v, r \cdot w) = |r| \cdot \rho(v, w)$.

Let *V* be a non empty RLSMetrStruct. We say that *V* is translatible if and only if:

(Def. 6) For all elements u, w, v of V holds $\rho(v, w) = \rho(v + u, w + u)$.

Let V be a non empty RLSMetrStruct and let v be an element of V. The functor Norm v yields a real number and is defined by:

(Def. 7) Norm $v = \rho(0_V, v)$.

One can check that there exists a non empty RLSMetrStruct which is strict, Abelian, add-associative, right zeroed, right complementable, real linear space-like, Reflexive, discernible, symmetric, triangle, homogeneous, and translatible.

A RealLinearMetrSpace is an Abelian add-associative right zeroed right complementable real linear space-like Reflexive discernible symmetric triangle homogeneous translatible non empty RLSMetrStruct.

Next we state three propositions:

- (6) Let V be a homogeneous Abelian add-associative right zeroed right complementable real linear space-like non empty RLSMetrStruct, r be a real number, and v be an element of V. Then $\text{Norm}(r \cdot v) = |r| \cdot \text{Norm} v$.
- (7) Let *V* be a translatible Abelian add-associative right zeroed right complementable triangle non empty RLSMetrStruct and v, w be elements of V. Then Norm(v+w) \leq Norm v+ Norm w.
- (8) Let V be a translatible add-associative right zeroed right complementable non empty RLSMetrStruct and v, w be elements of V. Then $\rho(v, w) = \text{Norm}(w v)$.

Let *n* be a natural number. The functor RLMSpace *n* yielding a strict RealLinearMetrSpace is defined by the conditions (Def. 8).

- (Def. 8)(i) The carrier of RLMSpace $n = \Re^n$,
 - (ii) the distance of RLMSpace $n = \rho^n$,
 - (iii) the zero of RLMSpace $n = \langle \underbrace{0, \dots, 0}_{n} \rangle$,
 - (iv) for all elements x, y of \mathcal{R}^n holds (the addition of RLMSpace n)(x, y) = x + y, and
 - (v) for every element x of \mathcal{R}^n and for every element r of \mathbb{R} holds (the external multiplication of RLMSpace n) $(r, x) = r \cdot x$.

The following proposition is true

(9) For every natural number n and for every isometric map f from RLMSpace n into RLMSpace n holds rng $f = \mathcal{R}^n$.

4. Groups of Isometric Functions

Let n be a natural number. The functor IsomGroup n yielding a strict groupoid is defined by the conditions (Def. 9).

- (Def. 9)(i) The carrier of IsomGroup n = ISOMRLMSpace n, and
 - (ii) for all functions f, g such that $f \in ISOMRLMSpace <math>n$ and $g \in ISOMRLMSpace <math>n$ holds (the multiplication of IsomGroup n) $(f,g) = f \cdot g$.

Let n be a natural number. Observe that IsomGroup n is non empty.

Let n be a natural number. One can check that IsomGroup n is associative and group-like.

The following propositions are true:

- (10) For every natural number n holds $1_{\text{IsomGroup }n} = \text{id}_{\text{RLMSpace }n}$.
- (11) Let n be a natural number, f be an element of IsomGroup n, and g be a map from RLMSpace n into RLMSpace n. If f = g, then $f^{-1} = g^{-1}$.

Let n be a natural number and let G be a subgroup of IsomGroup n. The functor SubIsomGroupRel G yielding a binary relation on the carrier of RLMSpace n is defined by the condition (Def. 10).

(Def. 10) Let A, B be elements of RLMSpace n. Then $\langle A, B \rangle \in \text{SubIsomGroupRel } G$ if and only if there exists a function f such that $f \in \text{the carrier of } G$ and f(A) = B.

Let n be a natural number and let G be a subgroup of IsomGroup n. One can verify that SubIsomGroupRel G is total, symmetric, and transitive.

REFERENCES

- Grzegorz Bancerek. The fundamental properties of natural numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/nat_1.html.
- [2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/finseg_1.html.
- [3] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [4] Czesław Byliński. Functions and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [5] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html.
- [6] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc 1.html.
- [7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/rvsum_1.html.
- [9] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/tops_2.html.
- [10] Agata Darmochwał. The Euclidean space. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/euclid.html.
- [11] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/real_1.html.
- [12] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/metric_1.html.
- [13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/vectsp_1.html.
- [14] Michał Muzalewski. Categories of groups. Journal of Formalized Mathematics, 3, 1991. http://mizar.org/JFM/Vol3/grcat_1.
- [15] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/pre_topo.html.
- [16] Jan Popiolek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Vol1/absvalue.html.
- [17] Andrzej Trybulec. Binary operations applied to functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funcop_1.html.
- [18] Andrzej Trybulec. Domains and their Cartesian products. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/domain_1.html.
- [19] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [20] Andrzej Trybulec. Tuples, projections and Cartesian products. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/mcart_1.html.
- [21] Andrzej Trybulec. Subsets of real numbers. *Journal of Formalized Mathematics*, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html
- [22] Michał J. Trybulec. Integers. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/int_1.html.
- [23] Wojciech A. Trybulec. Vectors in real linear space. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/rlvect_1.html.
- [24] Wojciech A. Trybulec. Groups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_1.html.
- [25] Wojciech A. Trybulec. Pigeon hole principle. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_4.html.
- [26] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/group_2.html.
- [27] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [28] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.

[29] Edmund Woronowicz. Relations defined on sets. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relset_l.html.

Received November 3, 1998

Published January 2, 2004