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Summary. This article is the third part of a paper proving the fundamental Urysohn
Theorem concerning the existence of a real valued continuous function on a normal topologi-
cal space. The paper is divided into two parts. In the first part, we describe the construction of
the function solving thesis of the Urysohn Lemma. The second part contains the proof of the
Urysohn Lemma in normal space and the proof of the same theorem for compact space.
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The articles([17],[[19],[[2],[118],[11],[[20],[18], 9], ([14],[[1R],[[1],[115],[123] [17],.[16], 1201, 13],
[4], [5], and [€] provide the notation and terminology for this paper.

Let D be a non empty subset B Observe that every elementDfis real.

One can prove the following proposition

(1) LetT be a non emptif, topological space ardl, B be closed subsets @f Supposeé\ # 0
andA missedB. Letn be a natural number. Then there exists a fundBdrom dyadign) into
2the carrier ofT g ch thatA C G(0) andB = Qt \ G(1) and for all elementsy, r, of dyadiqn)
such thatry < r holdsG(r1) is open ands(rz) is open ands(r1) C G(r2).

Let T be a non empty topological space, #6B be subsets of, and letn be a natural number.
Let us assume that is aTy space andh £ 0 andA is closed and® is closed andA missesB. A
function from dyadi¢n) into 2t carier ofT js sajd to be a drizzle d&, B, nif it satisfies the conditions
(Def. 1).

(Def. 1)(i) ACit(0),
(i) B=0Qr\it(1), and

(iii)  for all elementsr, rp of dyadidn) such that; < ry holds it{r1) is open and {fr,) is open
andit(r1) Cit(rp).

Next we state the proposition

(3H LetT be a non emptif, topological space anél, B be closed subsets ®f Supposé\ # 0
andA missesB. Letn be a natural number art@ be a drizzle oA, B, n. Then there exists a
drizzleF of A, B, n+ 1 such that for every elemenbf dyadiqn+ 1) if r € dyadiqn), then
F(r)=G(r).

Let A, B be non empty sets, I€t be a function fronN into A—B, and letn be a natural number.
ThenF (n) is a partial function fromA to B.
One can prove the following proposition

1 The proposition (2) has been removed.
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(4) LetT be a non empty topological spadg,B be subsets of, andn be a natural number.
Then every drizzle oA, B, nis an element of DYADIG-2the carier ofT
Let A, B be non empty sets, I€ be a function fronN into A—~B, and letn be a natural number.
ThenF (n) is an element oA—B.
We now state the proposition

(5) LetT be a non emptyl, topological space and, B be closed subsets df. Suppose
A# 0andA missesB. Then there exists a sequerfeef partial functions from DYADIC into
2the carrier ofT g;ch that for every natural numbeholds

F(n) is a drizzle ofA, B, n and for every elementof domF (n) holdsF (n)(r) = F(n+1)(r).
Let T be a non empty topological space andAeB be subsets of . Let us assume thdtis a
T4 space and\ # 0 andA is closed and is closed andh missesB. A sequence of partial functions
from DYADIC into 2the carier ofT 5 said to be a rain o, B if it satisfies the condition (Def. 2).
(Def. 2) Letn be a natural number. Ther(rii) is a drizzle ofA, B, n and for every element of
domit(n) holds itn)(r) = it(n+ 1)(r).
Let x be a real number. Let us assume that DYADIC . The functor InfDyadix yielding a
natural number is defined as follows:
(Def. 3) xe dyadiqO) iff InfDyadic x= 0 and for every natural numbeisuch thak € dyadiqn+1)
andx ¢ dyadigqn) holds InfDyadicx = n+ 1.
We now state several propositions:
(6) For every real numbersuch tha € DYADIC holds x € dyadiqInfDyadicx).

(7) For every real numbet such thatx € DYADIC and for every natural number such that
InfDyadicx < n holdsx € dyadiqn).

(8) For every real numbex and for every natural number such thatx € dyadign) holds
InfDyadicx < n.

(9) LetT be a non empty4 topological space and, B be closed subsets &f. Suppose # 0

andA missesB. Let G be a rain ofA, B andx be a real number. I € DYADIC, then for
every natural number holdsG(InfDyadicx)(x) = G(InfDyadicx+ n)(x).

(10) LetT be a non emptif; topological space anél, B be closed subsets @f Supposé = 0
andA missesB. Let G be a rain ofA, B andx be a real number. Suppoge DYADIC . Then
there exists an elemeybf 2ihe carier ofT g,ch that for every natural numbeif x € dyadiqn),

theny = G(n)(x).

(11) LetT be a non emptif, topological space anél, B be closed subsets @f Supposé = 0
andA missesB. Let G be a rain ofA, B. Then there exists a functidh from DOM into
2the carrier ot g ch that for every real numbrholds

() if xeRoo, thenF(x) =0,

(i) if xe R, thenF(x) = the carrier ofT, and
(i) if x € DYADIC, then for every natural numbersuch thatx € dyadiqn) holdsF(x) =
G(n)(x).

Let T be a non empty topological space andAeB be subsets of. Let us assume thatis aTy
space and # 0 andAis closed and® is closed and\ missesB. LetRbe a rain ofA, B. The functor
TempesRyielding a function from DOM into ¢ carier ofT 5 defined by the condition (Def. 4).

(Def. 4) Letx be a real number such tilae DOM. Then
() if xeRcp, then(TempesR)(x) = 0,
(i) if xe R-1,then(TempesR)(x) = the carrier ofT, and
(i) if x € DYADIC, then for every natural numben such thatx € dyadidn) holds
(TempesR)(x) = R(n)(x).
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Let X be a non empty set, Ik be a topological space, I€t be a function fromX into
2the carrier ofT "and letx be an element ok. ThenF (x) is a subset of .
One can prove the following three propositions:
(12) LetT be a non emptif, topological space anél, B be closed subsets @f Supposé = 0
and A missesB. Let G be a rain ofA, B, r be a real number, and be a subset of . If
C = (Tempes6)(r) andr € DOM, thenC is open.
(13) LetT be a non emptyl; topological space ané, B be closed subsets df. Suppose

A # 0 andA missesB. Let G be a rain ofA, B andr, r» be real numbers. Supposge
DOM andr, € DOM andry < ry. Let C be a subset of. If C = (Tempes6)(r1), then

C C (Tempes6)(rz).

(14) LetT be a non empty topological spadg,B be subsets of, G be a rain ofA, B, andp
be a point ofT. Then there exists a subgebf R such that for every setholdsx € Rif and
only if the following conditions are satisfied:

(i) xeDYADIC, and
(i) for every real numbes such thas = x holdsp ¢ (Tempes6G)(s).

LetT be a non empty topological space, A¢tB be subsets of , letR be a rain ofA, B, and let
p be a point ofT. The functor Rainboyp, R) yielding a subset R is defined by:
(Def. 5) For every set holdsx € Rainbow(p,R) iff x € DYADIC and for every real numbessuch
thats= x holdsp ¢ (TempesR)(s).
Let T, Sbe non empty topological spaces, ketbe a function from the carrier of into the
carrier ofS, and letp be a point ofT. ThenF(p) is a point ofS.
We now state two propositions:
(15) LetT be a non empty topological spade,B be subsets of, G be a rain ofA, B, andp be
a point of T. Then Rainboyp,G) C DYADIC .
(16) LetT be a non empty topological spade B be subsets of, andR be a rain ofA, B. Then
there exists a map from T into R* such that for every poin of T holds
if Rainbow(p,R) = 0, thenF (p) = 0 and for every non empty subsebf R such thatS=
Rainbow( p, R) holdsF (p) = supS.

Let T be a non empty topological space,AeB be subsets of, and letR be a rain ofA, B. The
functor ThundeR yielding a map fronT into R is defined by the condition (Def. 6).

(Def. 6) Letp be a point ofT. Then if Rainbowp, R) = 0, then(ThundeR)(p) = 0 and for every
non empty subse® of R such thalS= Rainbow(p, R) holds(ThundeR)(p) = supS.

Let T be a non empty topological space, febe a map fronT into R%, and letp be a point of

T. ThenF(p) is a real number.
The following propositions are true:

(17) LetT be a non empty topological spadk, B be subsets of, G be a rain ofA, B, p be
a point of T, andS be a non empty subset &. Supposes= Rainbow(p,G). Let ¢1 be an

extended real number. §f = 1, then G; < supSand sufB < /5.

(18) LetT be a non emptif, topological space anél, B be closed subsets @f Supposé = 0
andA missesB. Let G be a rain ofA, B, r be an element of DOM, angd be a point ofT. If
(ThundeG)(p) < r, thenp € (TempesG)(r).

(19) LetT be a non empty4 topological space anél, B be closed subsets ®f Supposé # 0

andA missesB. Let G be a rain ofA, B andr be a real number. Suppose DYADIC UR-1
and O< r. Let p be a point ofT. If p € (Tempes6)(r), then(ThundeG)(p) <r.



THE URYSOHN LEMMA 4

(20) LetT be a non emptyl, topological space and, B be closed subsets df. Suppose

A # 0 andA missesB. Let G be a rain ofA, B, n be a natural number, armd be an element
of DOM. If 0 < rq, then for every pointp of T such thatr; < (ThundeiG)(p) holds p ¢
(Tempes6)(rq).

(21) LetT be a non emptif, topological space anél, B be closed subsets @f Supposeé = 0

andA missesB. Let G be a rain ofA, B. Then
(i) ThunderG is continuous, and

(i) for every pointx of T holds 0< (ThundeiG)(x) and(ThundeiG)(x) < 1 and ifx € A, then

(ThundeiG)(x) = 0 and ifx € B, then(ThundeG)(x) = 1.

(22) LetT be a non emptif, topological space anél, B be closed subsets @f Supposé = 0

andA missesB. Then there exists a mapfrom T into R* such that
(i) F iscontinuous, and

(i)  for every pointx of T holds 0< F(x) andF(x) <1 and ifx € A, thenF(x) = 0 and if

x € B, thenF (x) = 1.

(23) LetT be a non emptyl, topological space and, B be closed subsets df. SupposeA

missesB. Then there exists a mapfrom T into R such that
(i) F iscontinuous, and

(i)  for every pointx of T holds 0< F(x) andF(x) <1 and ifx € A, thenF(x) = 0 and if

x € B, thenF(x) = 1.

(24) LetT be a non emptyl, compact topological space aid B be closed subsets df.
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Supposed missesB. Then there exists a mapfrom T into R! such that
(i) F iscontinuous, and

(i)  for every pointx of T holds 0< F(x) andF(x) <1 and ifx € A, thenF(x) = 0 and if

x € B, thenF(x) = 1.
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