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Summary. The article is the second part of a paper proving the fundamental Urysohn
Theorem concerning the existence of a real valued continuous function on a normal topologi-
cal space. The paper is divided into two parts. In the first part, we introduce some definitions
and theorems concerning properties of intervals; in the second we prove some of properties of
dyadic numbers used in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

WWW: http://mizar.org/JFM/Vol13/urysohn2.html

The articles [11], [13], [1], [8], [12], [9], [2], [3], [4], [5], [6], [10], and [7] provide the notation and
terminology for this paper.

One can prove the following propositions:

(1) For every intervalA such thatA 6= /0 holds if infA < supA, then vol(A) = supA− inf A and
if supA = inf A, then vol(A) = 0R.

(2) For every subsetA of R and for every real numberx such thatx 6= 0 holdsx−1 · (x·A) = A.

(3) For every real numberx such thatx 6= 0 and for every subsetA of R such thatA = R holds
x ·A = A.

(4) For every subsetA of R such thatA 6= /0 holds 0·A = {0}.

(5) For every real numberx holdsx · /0 = /0.

(6) Let a, b be extended real numbers. Supposea≤ b. Thena =−∞ andb =−∞ or a =−∞
andb∈ R or a =−∞ andb = +∞ or a∈ R andb∈ R or a∈ R andb = +∞ or a = +∞ and
b = +∞.

(7) For every extended real numberx holds[x,x] is an interval.

(8) For every intervalA holds 0·A is an interval.

(9) LetA be an interval andx be a real number. Ifx 6= 0, then ifA is open interval, thenx ·A is
open interval.

(10) LetA be an interval andx be a real number. Ifx 6= 0, then if A is closed interval, thenx ·A
is closed interval.

(11) LetA be an interval andx be a real number. Suppose 0< x. If A is right open interval, then
x ·A is right open interval.

(12) LetA be an interval andx be a real number. Supposex < 0. If A is right open interval, then
x ·A is left open interval.
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(13) LetA be an interval andx be a real number. Suppose 0< x. If A is left open interval, then
x ·A is left open interval.

(14) LetA be an interval andx be a real number. Supposex < 0. If A is left open interval, then
x ·A is right open interval.

(15) LetA be an interval. SupposeA 6= /0. Let x be a real number. Suppose 0< x. Let B be an
interval. SupposeB = x·A. SupposeA = [inf A,supA]. ThenB = [inf B,supB] and for all real
numberss, t such thats= inf A andt = supA holds infB = x ·s and supB = x · t.

(16) LetA be an interval. SupposeA 6= /0. Let x be a real number. Suppose 0< x. Let B be an
interval. SupposeB = x·A. SupposeA = ]inf A,supA]. ThenB = ]inf B,supB] and for all real
numberss, t such thats= inf A andt = supA holds infB = x ·s and supB = x · t.

(17) LetA be an interval. SupposeA 6= /0. Let x be a real number. Suppose 0< x. Let B be an
interval. SupposeB = x·A. SupposeA = ]inf A,supA[. ThenB = ]inf B,supB[ and for all real
numberss, t such thats= inf A andt = supA holds infB = x ·s and supB = x · t.

(18) LetA be an interval. SupposeA 6= /0. Let x be a real number. Suppose 0< x. Let B be an
interval. SupposeB = x·A. SupposeA = [inf A,supA[. ThenB = [inf B,supB[ and for all real
numberss, t such thats= inf A andt = supA holds infB = x ·s and supB = x · t.

(19) For every intervalA and for every real numberx holdsx ·A is an interval.

Let A be an interval and letx be a real number. Note thatx ·A is interval.
One can prove the following propositions:

(20) LetA be an interval andx be a real number. If 0≤ x, then for every real numbery such that
y = vol(A) holdsx ·y = vol(x ·A).

(23)1 For every real numbere1 such that 0< e1 there exists a natural numbern such that 1<
2n ·e1.

(24) For all real numbersa, b such that 0≤ a and 1< b−a there exists a natural numbern such
thata < n andn < b.

(27)2 For every natural numbern holds dyadic(n)⊆ DYADIC .

(28) For all real numbersa, b such thata < b and 0≤ a andb≤ 1 there exists a real numberc
such thatc∈ DYADIC anda < c andc < b.

(29) For all real numbersa, b such thata < b there exists a real numberc such thatc∈ DOM
anda < c andc < b.

(30) For every non empty subsetAof R and for all extended real numbersa, bsuch thatA⊆ [a,b]
holdsa≤ inf A and supA≤ b.

(31) 0∈ DYADIC and 1∈ DYADIC .

(32) For all extended real numbersa, b such thata = 0 andb = 1 holds DYADIC⊆ [a,b].

(33) For all natural numbersn, k such thatn≤ k holds dyadic(n)⊆ dyadic(k).

(34) For all real numbersa, b, c, d such thata < c and c < b and a < d and d < b holds
|d−c|< b−a.

(35) Lete1 be a real number. Suppose 0< e1. Let d be a real number. Suppose 0< d andd≤ 1.
Then there exist real numbersr1, r2 such thatr1 ∈ DYADIC ∪R>1 andr2 ∈ DYADIC ∪R>1

and 0< r1 andr1 < d andd < r2 andr2− r1 < e1.

1 The propositions (21) and (22) have been removed.
2 The propositions (25) and (26) have been removed.
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