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Summary. The article is the second part of a paper proving the fundamental Urysohn
Theorem concerning the existence of a real valued continuous function on a normal topologi-
cal space. The paper is divided into two parts. In the first part, we introduce some definitions
and theorems concerning properties of intervals; in the second we prove some of properties of
dyadic numbers used in proving Urysohn Lemma.
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The articles[[11],[[13],[[1],[[8],[12],18],[[2], 18], 4], 5], [6], [10], and 7] provide the notation and
terminology for this paper.
One can prove the following propositions:

(1) For every intervaR such thatA # 0 holds if infA < supA, then volA) = supA—infAand
if SupA =infA, then volA) = Og.

(2) For every subsek of R and for every real numbersuch thak # 0 holdsx - (x-A) = A.

(3) For every real numbersuch thai # 0 and for every subsét of R such thatA = R holds
xX-A=A

(4) For every subsek of R such thatA # 0 holds 0 A = {0}.
(5) For every real numbecholdsx-0 = 0.

(6) Leta, b be extended real numbers. Suppaseb. Thena= —o andb= —o ora= —o
andbe Rora= —oandb=+woracRandbeRorae R andb= +o ora= +o and

(7) For every extended real numbeholds|x, x| is an interval.
(8) For every intervahA holds 0 Ais an interval.

(9) LetAbe aninterval and be a real number. K # 0, then ifAis open interval, ther- Ais
open interval.

(10) LetAbe aninterval and be a real number. i # 0, then if Ais closed interval, ther- A
is closed interval.

(11) LetAbe aninterval and be a real number. SupposedX. If Ais right open interval, then
x-Ais right open interval.

(12) LetAbe aninterval and be a real number. Suppose: 0. If Ais right open interval, then
x-Ais left open interval.
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(13) LetAbe an interval and be a real number. Suppose<. If Ais left open interval, then
x-Ais left open interval.

(14) LetAbe an interval and be a real number. Supposec 0. If Ais left open interval, then
x-Ais right open interval.

(15) LetAbe an interval. Supposk+ 0. Let x be a real number. Suppose<x. Let B be an
interval. SupposB = x- A. SupposeA = [inf A, supA]. ThenB = [inf B,supB] and for all real
numberss, t such thas = inf A andt = supA holds infB = x-sand sufB = x-t.

(16) LetAbe an interval. Suppos®= 0. Let x be a real number. Suppose<. Let B be an
interval. Suppos8 = x- A. SupposeA = |inf A, supA]. ThenB = ]inf B,supB] and for all real
numberss, t such thas = inf A andt = supA holds infB = x-sand suB = x-t.

(17) LetAbe an interval. Supposk= 0. Let x be a real number. Suppose<. Let B be an
interval. Suppos8 = x- A. SupposeA = |inf A, supA|. ThenB = |inf B, supB[ and for all real
numberss, t such thas = inf A andt = supA holds infB = x-sand sufB = x-t.

(18) LetAbe an interval. Supposk+ 0. Let x be a real number. Suppose<. Let B be an
interval. SupposB = x- A. SupposeA = [inf A, supA[. ThenB = [inf B,supB[ and for all real
numberss, t such thas = inf A andt = supA holds infB = x-sand suB = x-t.

(19) For every intervah and for every real numberholdsx- A is an interval.

Let Abe an interval and let be a real number. Note thatA is interval.
One can prove the following propositions:

(20) LetAbe aninterval and be a real number. If & X, then for every real numbegrsuch that
y =Vvol(A) holdsx-y =vol(x-A).

(23E] For every real numbeg; such that O< e; there exists a natural numbersuch that 1<
2".e.

(24) For all real numbers, b such that 6< aand 1< b— athere exists a natural numbesuch
thata< nandn < b.

(27E] For every natural numberholds dyadi¢n) C DYADIC .

(28) For all real numbera, b such that < b and 0< aandb < 1 there exists a real number
such that € DYADIC anda < candc < b.

(29) For all real numbers, b such thaia < b there exists a real numbersuch thaic € DOM
anda< candc< b.

(30) For every non empty subsbf R and for all extended real numbexsb such thatA C [a, b]
holdsa < infAand suA < b.

(31) 0e DYADIC and 1€ DYADIC .
(32) For all extended real numbeasb such thaa = 0 andb = 1 holds DYADICC [a,b.
(33) For all natural numbers k such than < k holds dyadi¢n) C dyadidk).

(34) For all real numbers, b, ¢, d such thata < candc < b anda < d andd < b holds
[d—c|<b—a

(35) Lete; be areal number. Supposed@;. Letd be a real number. Suppose:@® andd < 1.
Then there exist real numbers ro such thatr; € DYADIC UR-; andro € DYADIC UR~1
and O<ryandr; <dandd <rzandro —rq < €y.

1 The propositions (21) and (22) have been removed.
2 The propositions (25) and (26) have been removed.
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