Some Properties of Dyadic Numbers and Intervals

Józef Białas Łódź University Yatsuka Nakamura Shinshu University Nagano

Summary. The article is the second part of a paper proving the fundamental Urysohn Theorem concerning the existence of a real valued continuous function on a normal topological space. The paper is divided into two parts. In the first part, we introduce some definitions and theorems concerning properties of intervals; in the second we prove some of properties of dyadic numbers used in proving Urysohn Lemma.

MML Identifier: URYSOHN2.

WWW: http://mizar.org/JFM/Vol13/urysohn2.html

The articles [11], [13], [1], [8], [12], [9], [2], [3], [4], [5], [6], [10], and [7] provide the notation and terminology for this paper.

One can prove the following propositions:

- (1) For every interval A such that $A \neq \emptyset$ holds if $\inf A < \sup A$, then $\operatorname{vol}(A) = \sup A \inf A$ and if $\sup A = \inf A$, then $\operatorname{vol}(A) = 0_{\overline{\mathbb{D}}}$.
- (2) For every subset *A* of \mathbb{R} and for every real number *x* such that $x \neq 0$ holds $x^{-1} \cdot (x \cdot A) = A$.
- (3) For every real number x such that $x \neq 0$ and for every subset A of \mathbb{R} such that $A = \mathbb{R}$ holds $x \cdot A = A$
- (4) For every subset *A* of \mathbb{R} such that $A \neq \emptyset$ holds $0 \cdot A = \{0\}$.
- (5) For every real number x holds $x \cdot \emptyset = \emptyset$.
- (6) Let a,b be extended real numbers. Suppose $a \le b$. Then $a = -\infty$ and $b = -\infty$ or $a = -\infty$ and $b \in \mathbb{R}$ or $a = -\infty$ and $b \in \mathbb{R}$ or $a = -\infty$ and $b = +\infty$ or $a = +\infty$ and $b = +\infty$.
- (7) For every extended real number x holds [x,x] is an interval.
- (8) For every interval A holds $0 \cdot A$ is an interval.
- (9) Let A be an interval and x be a real number. If $x \neq 0$, then if A is open interval, then $x \cdot A$ is open interval.
- (10) Let *A* be an interval and *x* be a real number. If $x \neq 0$, then if *A* is closed interval, then $x \cdot A$ is closed interval.
- (11) Let *A* be an interval and *x* be a real number. Suppose 0 < x. If *A* is right open interval, then $x \cdot A$ is right open interval.
- (12) Let *A* be an interval and *x* be a real number. Suppose x < 0. If *A* is right open interval, then $x \cdot A$ is left open interval.

- (13) Let *A* be an interval and *x* be a real number. Suppose 0 < x. If *A* is left open interval, then $x \cdot A$ is left open interval.
- (14) Let *A* be an interval and *x* be a real number. Suppose x < 0. If *A* is left open interval, then $x \cdot A$ is right open interval.
- (15) Let *A* be an interval. Suppose $A \neq \emptyset$. Let *x* be a real number. Suppose 0 < x. Let *B* be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A]$. Then $B = [\inf B, \sup B]$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (16) Let *A* be an interval. Suppose $A \neq \emptyset$. Let *x* be a real number. Suppose 0 < x. Let *B* be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A]$. Then $B = [\inf B, \sup B]$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (17) Let A be an interval. Suppose $A \neq \emptyset$. Let x be a real number. Suppose 0 < x. Let B be an interval. Suppose $B = x \cdot A$. Suppose $A =]\inf A$, $\sup A[$. Then $B =]\inf B$, $\sup B[$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (18) Let *A* be an interval. Suppose $A \neq \emptyset$. Let *x* be a real number. Suppose 0 < x. Let *B* be an interval. Suppose $B = x \cdot A$. Suppose $A = [\inf A, \sup A[$. Then $B = [\inf B, \sup B[$ and for all real numbers s, t such that $s = \inf A$ and $t = \sup A$ holds $\inf B = x \cdot s$ and $\sup B = x \cdot t$.
- (19) For every interval A and for every real number x holds $x \cdot A$ is an interval.

Let *A* be an interval and let *x* be a real number. Note that $x \cdot A$ is interval. One can prove the following propositions:

- (20) Let *A* be an interval and *x* be a real number. If $0 \le x$, then for every real number *y* such that y = vol(A) holds $x \cdot y = \text{vol}(x \cdot A)$.
- (23)¹ For every real number e_1 such that $0 < e_1$ there exists a natural number n such that $1 < 2^n \cdot e_1$.
- (24) For all real numbers a, b such that $0 \le a$ and 1 < b a there exists a natural number n such that a < n and n < b.
- $(27)^2$ For every natural number *n* holds dyadic(*n*) \subseteq DYADIC.
- (28) For all real numbers a, b such that a < b and $0 \le a$ and $b \le 1$ there exists a real number c such that $c \in DYADIC$ and a < c and c < b.
- (29) For all real numbers a, b such that a < b there exists a real number c such that $c \in DOM$ and a < c and c < b.
- (30) For every non empty subset A of $\overline{\mathbb{R}}$ and for all extended real numbers a, b such that $A \subseteq [a, b]$ holds $a \le \inf A$ and $\sup A \le b$.
- (31) $0 \in DYADIC$ and $1 \in DYADIC$.
- (32) For all extended real numbers a, b such that a = 0 and b = 1 holds DYADIC $\subseteq [a, b]$.
- (33) For all natural numbers n, k such that $n \le k$ holds $dyadic(n) \subseteq dyadic(k)$.
- (34) For all real numbers a, b, c, d such that a < c and c < b and a < d and d < b holds |d-c| < b-a.
- (35) Let e_1 be a real number. Suppose $0 < e_1$. Let d be a real number. Suppose 0 < d and $d \le 1$. Then there exist real numbers r_1 , r_2 such that $r_1 \in \mathsf{DYADIC} \cup \mathbb{R}_{>1}$ and $r_2 \in \mathsf{DYADIC} \cup \mathbb{R}_{>1}$ and $0 < r_1$ and $r_1 < d$ and $d < r_2$ and $r_2 r_1 < e_1$.

¹ The propositions (21) and (22) have been removed.

² The propositions (25) and (26) have been removed.

REFERENCES

- [1] Grzegorz Bancerek. The ordinal numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/ordinal1.html.
- [2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_1.html.
- [3] Józef Białas. Series of positive real numbers. Measure theory. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/supinf_2.html.
- [4] Józef Białas. Properties of the intervals of real numbers. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/Vol5/measure5.html.
- [5] Józef Białas. Some properties of the intervals. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/measure6. html
- [6] Józef Białas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/urysohn1.html.
- [7] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. *Journal of Formalized Mathematics*, 11, 1999. http://mizar.org/JFM/Vol11/integra2.html.
- [8] Krzysztof Hryniewiecki. Basic properties of real numbers. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/real_1.html.
- [9] Rafał Kwiatek. Factorial and Newton coefficients. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vo12/newton.html.
- [10] Jan Popiotek. Some properties of functions modul and signum. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/ JFM/Voll/absvalue.html.
- [11] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [12] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html.
- $\textbf{[13]} \ \ \textbf{Zinaida Trybulec. Properties of subsets. } \textbf{\textit{Journal of Formalized Mathematics}, 1, 1989. } \texttt{http://mizar.org/JFM/Voll/subset_l.html.}$

Received February 16, 2001

Published January 2, 2004