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Summary. This article is the first part of a paper proving the fundamental Urysohn’s
Theorem concerning the existence of a real valued continuous function on a normal topolog-
ical space. The paper is divided into four parts. In the first part, we prove some auxiliary
theorems concerning properties of natural numbers and prove two useful schemes about re-
currently defined functions; in the second part, we define a special set of rational numbers,
which we call dyadic, and prove some of its properties. The next part of the paper contains the
definitions of T1 space and normal space, and we prove related theorems used in later parts of
the paper. The final part of this work is developed for proving the theorem about the existence
of some special family of subsets of a topological space. This theorem is essential in proving
Urysohn’s Lemma.
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The articles [13], [6], [15], [14], [12], [4], [5], [9], [3], [1], [8], [7], [11], [2], and [10] provide the
notation and terminology for this paper.

1. DYADIC NUMBERS

The subsetR<0 of R is defined as follows:

(Def. 1) For every real numberx holdsx∈ R<0 iff x < 0.

The subsetR>1 of R is defined by:

(Def. 2) For every real numberx holdsx∈ R>1 iff 1 < x.

Let n be a natural number. The functor dyadic(n) yields a subset ofR and is defined as follows:

(Def. 3) For every real numberx holdsx ∈ dyadic(n) iff there exists a natural numberi such that
0≤ i andi ≤ 2n andx = i

2n .

The subset DYADIC ofR is defined as follows:

(Def. 4) For every real numbera holdsa∈ DYADIC iff there exists a natural numbern such that
a∈ dyadic(n).

The subset DOM ofR is defined as follows:

(Def. 5) DOM= R<0∪DYADIC ∪R>1.

Let T be a topological space, letA be a non empty subset ofR, let F be a function fromA into
2the carrier ofT , and letr be an element ofA. ThenF(r) is a subset ofT.

Next we state three propositions:

(5)1 For every natural numbern and for every real numberx such thatx∈ dyadic(n) holds 0≤ x
1 The propositions (1)–(4) have been removed.
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andx≤ 1.

(6) dyadic(0) = {0,1}.

(7) dyadic(1) = {0, 1
2,1}.

Let n be a natural number. Observe that dyadic(n) is non empty.
We now state two propositions:

(8) For all natural numbersx, n holdsxn is a natural number.

(9) Let n be a natural number. Then there exists a finite sequenceF1 such that domF1 =
Seg(2n +1) and for every natural numberi such thati ∈ domF1 holdsF1(i) = i−1

2n .

Let n be a natural number. The functor dyad(n) yielding a finite sequence is defined by:

(Def. 6) domdyad(n) = Seg(2n+1) and for every natural numberi such thati ∈ domdyad(n) holds
(dyad(n))(i) = i−1

2n .

We now state the proposition

(10) For every natural numbern holds domdyad(n) = Seg(2n+1) and rngdyad(n) = dyadic(n).

Let us observe that DYADIC is non empty.
Let us mention that DOM is non empty.
The following propositions are true:

(11) For every natural numbern holds dyadic(n)⊆ dyadic(n+1).

(12) For every natural numbern holds 0∈ dyadic(n) and 1∈ dyadic(n).

(13) For all natural numbersn, i such that 0< i and i ≤ 2n holds i·2−1
2n+1 ∈ dyadic(n+ 1) \

dyadic(n).

(14) For all natural numbersn, i such that 0≤ i and i < 2n holds i·2+1
2n+1 ∈ dyadic(n+ 1) \

dyadic(n).

(15) For every natural numbern holds 1
2n+1 ∈ dyadic(n+1)\dyadic(n).

Let n be a natural number and letx be an element of dyadic(n). The functor axis(x,n) yields a
natural number and is defined as follows:

(Def. 7) x = axis(x,n)
2n .

Next we state several propositions:

(16) For every natural numbern and for every elementx of dyadic(n) holdsx = axis(x,n)
2n and

0≤ axis(x,n) and axis(x,n)≤ 2n.

(17) For every natural numbern and for every elementx of dyadic(n) holds axis(x,n)−1
2n < x and

x < axis(x,n)+1
2n .

(18) For every natural numbern and for every elementx of dyadic(n) holds axis(x,n)−1
2n <

axis(x,n)+1
2n .

(20)2 Let n be a natural number andx be an element of dyadic(n+ 1). If x /∈ dyadic(n), then
axis(x,n+1)−1

2n+1 ∈ dyadic(n) and axis(x,n+1)+1
2n+1 ∈ dyadic(n).

(21) For every natural numbern and for all elementsx1, x2 of dyadic(n) such thatx1 < x2 holds
axis(x1,n) < axis(x2,n).

(22) For every natural numbern and for all elementsx1, x2 of dyadic(n) such thatx1 < x2 holds

x1 ≤ axis(x2,n)−1
2n and axis(x1,n)+1

2n ≤ x2.

(23) Let n be a natural number andx1, x2 be elements of dyadic(n+ 1). If x1 < x2 andx1 /∈
dyadic(n) andx2 /∈ dyadic(n), then axis(x1,n+1)+1

2n+1 ≤ axis(x2,n+1)−1
2n+1 .

2 The proposition (19) has been removed.
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2. NORMAL SPACES

Let T be a non empty topological space and letx be a point ofT. Let us note that the neighbourhood
of x can be characterized by the following (equivalent) condition:

(Def. 8) There exists a subsetA of T such thatA is open andx∈ A andA⊆ it.

We introduce neighbourhood ofx in T as a synonym of neighbourhood ofx.
Next we state two propositions:

(24) LetT be a non empty topological space andA be a subset ofT. ThenA is open if and only
if for every pointx of T such thatx ∈ A there exists a neighbourhoodB of x in T such that
B⊆ A.

(26)3 Let T be a non empty topological space andA be a subset ofT. Suppose that for every
pointx of T such thatx∈ A holdsA is a neighbourhood ofx in T. ThenA is open.

Let T be a topological structure. We say thatT is T1 if and only if the condition (Def. 9) is
satisfied.

(Def. 9) Letp, q be points ofT. Supposep 6= q. Then there exist subsetsW, V of T such thatW is
open andV is open andp∈W andq /∈W andq∈V andp /∈V.

Next we state the proposition

(27) For every non empty topological spaceT holdsT is aT1 space iff for every pointp of T
holds{p} is closed.

Let T be a non empty topological space, letF be a map fromT into R1, and letx be a point of
T. ThenF(x) is a real number.

Next we state four propositions:

(28) LetT be a non empty topological space. SupposeT is aT4 space. LetA, B be open subsets
of T. SupposeA 6= /0 andA⊆ B. Then there exists a subsetC of T such thatC 6= /0 andC is
open andA⊆C andC⊆ B.

(29) LetT be a non empty topological space. ThenT is aT3 space if and only if for every open
subsetA of T and for every pointp of T such thatp∈ A there exists an open subsetB of T
such thatp∈ B andB⊆ A.

(30) LetT be a non empty topological space. SupposeT is aT4 space and aT1 space. LetA be
an open subset ofT. If A 6= /0, then there exists a subsetB of T such thatB 6= /0 andB⊆ A.

(31) LetT be a non empty topological space. SupposeT is aT4 space. LetA, B be subsets of
T. SupposeA is open andB is closed andB 6= /0 andB⊆ A. Then there exists a subsetC of T
such thatC is open andB⊆C andC⊆ A.

3. SOME INCREASINGFAMILY OF SETS IN NORMAL SPACE

Let T be a non empty topological space and letA, B be subsets ofT. Let us assume thatT is aT4

space andA 6= /0 andA is open andB is open andA⊆ B. A subset ofT is called a between ofA, B
if:

(Def. 10) It 6= /0 and it is open andA⊆ it andit ⊆ B.

One can prove the following proposition

3 The proposition (25) has been removed.
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(32) Let T be a non empty topological space. SupposeT is a T4 space. LetA, B be closed
subsets ofT. SupposeA 6= /0 andA missesB. Let n be a natural number andG be a function
from dyadic(n) into 2the carrier ofT . SupposeA⊆G(0) andB = ΩT \G(1) and for all elements
r1, r2 of dyadic(n) such thatr1 < r2 holdsG(r1) is open andG(r2) is open andG(r1)⊆G(r2).
Then there exists a functionF from dyadic(n+1) into 2the carrier ofT such that

(i) A⊆ F(0),

(ii) B = ΩT \F(1), and

(iii) for all elementsr1, r2, r of dyadic(n+1) such thatr1 < r2 holdsF(r1) is open andF(r2)
is open andF(r1)⊆ F(r2) and if r ∈ dyadic(n), thenF(r) = G(r).
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