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Summary. We present a formalization of the factor theorem for univariate polynomi-
als, also called the (little) Bezout theorem: Letr belong to a commutative ringL andp(x) be
a polynomial overL. Thenx− r dividesp(x) iff p(r) = 0. We also prove some consequences
of this theorem like that any non zero polynomial of degreen over an algebraically closed
integral domain hasn (non necessarily distinct) roots.
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The articles [27], [37], [31], [8], [2], [26], [32], [15], [20], [38], [6], [7], [3], [9], [36], [33], [24],
[23], [11], [21], [16], [19], [17], [18], [1], [12], [34], [28], [22], [10], [35], [4], [25], [39], [13], [29],
[14], [30], and [5] provide the notation and terminology for this paper.

1. PRELIMINARIES

One can prove the following propositions:

(1) For every natural numbern holdsn is non empty iffn = 1 orn > 1.

(2) Let f be a finite sequence of elements ofN. Suppose that for every natural numberi such
that i ∈ dom f holds f (i) 6= 0. Then∑ f = len f if and only if f = len f 7→ 1.

The schemeIndFinSeq0deals with a finite sequenceA and a binary predicateP , and states that:
For every natural numberi such that 1≤ i andi ≤ lenA holdsP [i,A(i)]

provided the following conditions are met:
• P [1,A(1)], and
• For every natural numberi such that 1≤ i and i < lenA holds if P [i,A(i)], then

P [i +1,A(i +1)].
The following proposition is true

(3) Let L be an add-associative right zeroed right complementable non empty loop structure
andr be a finite sequence of elements ofL. Suppose lenr ≥ 2 and for every natural numberk
such that 2< k andk∈ domr holdsr(k) = 0L. Then∑ r = r1 + r2.

2. CANONICAL ORDERING OF AFINITE SET

Let A be a finite set. The functor canFS(A) yields a finite sequence of elements ofA and is defined
by the conditions (Def. 1).
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(Def. 1)(i) lencanFS(A) = cardA, and

(ii) there exists a finite sequencef such that lenf = cardA and f (1) = 〈〈choose(A), A \
{choose(A)}〉〉 or cardA = 0 and for every natural numberi such that 1≤ i and i < cardA
and for every setx such thatf (i) = x holds f (i + 1) = 〈〈choose(x2), x2 \ {choose(x2)}〉〉 and
for every natural numberi such thati ∈ domcanFS(A) holds(canFS(A))(i) = f (i)1.

Next we state four propositions:

(4) For every finite setA holds canFS(A) is one-to-one.

(5) For every finite setA holds rngcanFS(A) = A.

(6) For every seta holds canFS({a}) = 〈a〉.

(7) For every finite setA holds(canFS(A))−1 is a function fromA into SegcardA.

3. MORE ABOUT BAGS

Let X be a set, letSbe a finite subset ofX, and letn be a natural number. The functor(S,n)−bag
yielding an element of BagsX is defined by:

(Def. 2) (S,n)−bag= EmptyBagX+·(S 7−→ n).

The following propositions are true:

(8) LetX be a set,Sbe a finite subset ofX, n be a natural number, andi be a set. Ifi /∈ S, then
((S,n)−bag)(i) = 0.

(9) LetX be a set,Sbe a finite subset ofX, n be a natural number, andi be a set. Ifi ∈ S, then
((S,n)−bag)(i) = n.

(10) For every setX and for every finite subsetSof X and for every natural numbern such that
n 6= 0 holds support(S,n)−bag= S.

(11) LetX be a set,Sbe a finite subset ofX, andn be a natural number. IfS is empty orn = 0,
then(S,n)−bag= EmptyBagX.

(12) LetX be a set,S, T be finite subsets ofX, andn be a natural number. IfSmissesT, then
(S∪T,n)−bag= (S,n)−bag+(T,n)−bag.

Let A be a set and letb be a bag ofA. The functor degree(b) yielding a natural number is defined
as follows:

(Def. 3) There exists a finite sequencef of elements ofN such that degree(b) = ∑ f and f = b ·
canFS(supportb).

Next we state several propositions:

(13) For every setA and for every bagb of A holdsb = EmptyBagA iff degree(b) = 0.

(14) Let A be a set,S be a finite subset ofA, andb be a bag ofA. ThenS= supportb and
degree(b) = cardS if and only if b = (S,1)−bag.

(15) LetA be a set,Sbe a finite subset ofA, andb be a bag ofA. Suppose supportb⊆ S. Then
there exists a finite sequencef of elements ofN such thatf = b ·canFS(S) and degree(b) =
∑ f .

(16) For every setA and for all bagsb, b1, b2 of A such thatb = b1 + b2 holds degree(b) =
degree(b1)+degree(b2).

(17) LetL be an associative commutative unital non empty groupoid,f , g be finite sequences of
elements ofL, andp be a permutation of domf . If g = f · p, then∏g = ∏ f .
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4. MORE ONPOLYNOMIALS

Let L be a non empty zero structure and letp be a polynomial ofL. We say thatp is non-zero if and
only if:

(Def. 4) p 6= 0.L.

The following proposition is true

(18) For every non empty zero structureL and for every polynomialp of L holdsp is non-zero
iff len p > 0.

Let L be a non trivial non empty zero structure. One can verify that there exists a polynomial of
L which is non-zero.

Let L be a non degenerated non empty multiplicative loop with zero structure and letx be an
element ofL. Observe that〈0x,1L〉 is non-zero.

We now state three propositions:

(19) For every non empty zero structureL and for every polynomialp of L such that lenp > 0
holdsp(lenp−′ 1) 6= 0L.

(20) LetL be a non empty zero structure andp be an algebraic sequence ofL. If len p = 1, then
p = 〈0p(0)〉 andp(0) 6= 0L.

(21) LetL be an add-associative right zeroed right complementable right distributive non empty
double loop structure andp be a polynomial ofL. Thenp∗0.L = 0.L.

One can verify that there exists a well unital non empty double loop structure which is algebraic-
closed, add-associative, right zeroed, right complementable, Abelian, commutative, associative,
distributive, integral domain-like, and non degenerated.

Next we state the proposition

(22) LetL be an add-associative right zeroed right complementable distributive integral domain-
like non empty double loop structure andp, qbe polynomials ofL. If p∗q= 0.L, thenp= 0.L
or q = 0.L.

Let L be an add-associative right zeroed right complementable distributive integral domain-like
non empty double loop structure. Note that Polynom-RingL is integral domain-like.

Let L be an integral domain and letp, q be non-zero polynomials ofL. Observe thatp∗q is
non-zero.

Next we state a number of propositions:

(23) For every non degenerated commutative ringL and for all polynomialsp, q of L holds
Rootsp∪Rootsq⊆ Roots(p∗q).

(24) For every integral domainL and for all polynomialsp, q of L holds Roots(p∗q) = Rootsp∪
Rootsq.

(25) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure,p be a polynomial ofL, andp1 be an element of Polynom-RingL. If p= p1,
then−p =−p1.

(26) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure,p, q be polynomials ofL, andp1, q1 be elements of Polynom-RingL. If
p = p1 andq = q1, thenp−q = p1−q1.

(27) Let L be an Abelian add-associative right zeroed right complementable distributive non
empty double loop structure andp, q, r be polynomials ofL. Thenp∗q− p∗ r = p∗ (q− r).

(28) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure andp, q be polynomials ofL. If p−q = 0.L, thenp = q.
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(29) LetL be an Abelian add-associative right zeroed right complementable distributive integral
domain-like non empty double loop structure andp, q, r be polynomials ofL. If p 6= 0.L and
p∗q = p∗ r, thenq = r.

(30) LetL be an integral domain,n be a natural number, andp be a polynomial ofL. If p 6= 0.L,
thenpn 6= 0.L.

(31) For every commutative ringL and for all natural numbersi, j and for every polynomialp
of L holdspi ∗ p j = pi+ j .

(32) For every non empty multiplicative loop with zero structureL holds1.L = 〈01L〉.

(33) LetL be an add-associative right zeroed right complementable right unital right distributive
non empty double loop structure andp be a polynomial ofL. Thenp∗ 〈01L〉= p.

(34) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure andp, q be polynomials ofL. If len p = 0 or lenq = 0, then len(p∗q) = 0.

(35) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure andp, q be polynomials ofL. If p∗q is non-zero, thenp is non-zero andq
is non-zero.

(36) Let L be an add-associative right zeroed right complementable distributive commutative
associative left unital non empty double loop structure andp, q be polynomials ofL. If
p(lenp−′ 1) ·q(lenq−′ 1) 6= 0L, then 0< len(p∗q).

(37) Let L be an add-associative right zeroed right complementable distributive commutative
associative left unital integral domain-like non empty double loop structure andp, q be poly-
nomials ofL. If 1 < lenp and 1< lenq, then lenp < len(p∗q).

(38) LetL be an add-associative right zeroed right complementable left distributive non empty
double loop structure,a, b be elements ofL, and p be a polynomial ofL. Then(〈0a,b〉 ∗
p)(0) = a· p(0) and for every natural numberi holds(〈0a,b〉∗ p)(i+1) = a· p(i+1)+b· p(i).

(39) LetL be an add-associative right zeroed right complementable distributive well unital com-
mutative associative non degenerated non empty double loop structure,r be an element ofL,
andq be a non-zero polynomial ofL. Then len(〈0r,1L〉 ∗q) = lenq+1.

(40) Let L be a non degenerated commutative ring,x be an element ofL, and i be a natural
number. Then len(〈0x,1L〉i) = i +1.

Let L be a non degenerated commutative ring, letx be an element ofL, and letn be a natural
number. One can verify that〈0x,1L〉n is non-zero.

We now state two propositions:

(41) Let L be a non degenerated commutative ring,x be an element ofL, q be a non-zero
polynomial ofL, andi be a natural number. Then len(〈0x,1L〉i ∗q) = i + lenq.

(42) LetL be an add-associative right zeroed right complementable distributive well unital com-
mutative associative non degenerated non empty double loop structure,r be an element ofL,
andp, q be polynomials ofL. If p= 〈0r,1L〉∗q andp(lenp−′1) = 1L, thenq(lenq−′1) = 1L.

5. LITTLE BEZOUT THEOREM

Let L be a non empty zero structure, letp be a polynomial ofL, and letn be a natural number. The
functor polyshift(p,n) yielding a polynomial ofL is defined as follows:

(Def. 5) For every natural numberi holds(poly shift(p,n))(i) = p(n+ i).

One can prove the following propositions:
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(43) For every non empty zero structureL and for every polynomialp of L holds
poly shift(p,0) = p.

(44) LetL be a non empty zero structure,n be a natural number, andp be a polynomial ofL. If
n≥ lenp, then polyshift(p,n) = 0.L.

(45) LetL be a non degenerated non empty multiplicative loop with zero structure,n be a natural
number, andp be a polynomial ofL. If n≤ lenp, then lenpolyshift(p,n)+n = lenp.

(46) Let L be a non degenerated commutative ring,x be an element ofL, n be a natu-
ral number, andp be a polynomial ofL. If n < lenp, then eval(poly shift(p,n),x) =
x ·eval(poly shift(p,n+1),x)+ p(n).

(47) For every non degenerated commutative ringL and for every polynomialp of L such that
lenp = 1 holds Rootsp = /0.

Let L be a non degenerated commutative ring, letr be an element ofL, and letp be a polynomial
of L. Let us assume thatr is a root ofp. The functor polyquotient(p, r) yielding a polynomial ofL
is defined as follows:

(Def. 6)(i) lenpolyquotient(p, r)+1= lenpand for every natural numberi holds(poly quotient(p, r))(i)=
eval(poly shift(p, i +1), r) if len p > 0,

(ii) poly quotient(p, r) = 0.L, otherwise.

One can prove the following propositions:

(48) LetL be a non degenerated commutative ring,r be an element ofL, andp be a non-zero
polynomial ofL. If r is a root ofp, then lenpolyquotient(p, r) > 0.

(49) LetL be an add-associative right zeroed right complementable left distributive well unital
non empty double loop structure andx be an element ofL. Then Roots〈0−x,1L〉= {x}.

(50) LetL be a non trivial commutative ring,x be an element ofL, andp, q be polynomials of
L. If p = 〈0−x,1L〉 ∗q, thenx is a root ofp.

(51) LetL be a non degenerated commutative ring,r be an element ofL, andp be a polynomial
of L. If r is a root ofp, thenp = 〈0−r,1L〉 ∗poly quotient(p, r).

(52) LetL be a non degenerated commutative ring,r be an element ofL, andp, q be polynomials
of L. If p = 〈0−r,1L〉 ∗q, thenr is a root ofp.

6. POLYNOMIALS DEFINED BY ROOTS

Let L be an integral domain and letp be a non-zero polynomial ofL. Note that Rootsp is finite.
Let L be a non degenerated commutative ring, letx be an element ofL, and letp be a non-

zero polynomial ofL. The functor multiplicity(p,x) yields a natural number and is defined by the
condition (Def. 7).

(Def. 7) There exists a finite non empty subsetF of N such thatF = {k;k ranges over natural
numbers:

∨
q:polynomial ofL p = 〈0−x,1L〉k ∗q} and multiplicity(p,x) = maxF.

One can prove the following two propositions:

(53) LetL be a non degenerated commutative ring,p be a non-zero polynomial ofL, andx be
an element ofL. Thenx is a root ofp if and only if multiplicity(p,x)≥ 1.

(54) For every non degenerated commutative ringL and for every elementx of L holds
multiplicity(〈0−x,1L〉,x) = 1.

Let L be an integral domain and letp be a non-zero polynomial ofL. The functor BRoots(p)
yielding a bag of the carrier ofL is defined as follows:
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(Def. 8) supportBRoots(p) = Rootsp and for every elementx of L holds (BRoots(p))(x) =
multiplicity(p,x).

One can prove the following propositions:

(55) For every integral domainL and for every elementx of L holds BRoots(〈0−x,1L〉) =
({x},1)−bag.

(56) LetL be an integral domain,x be an element ofL, andp, q be non-zero polynomials ofL.
Then multiplicity(p∗q,x) = multiplicity(p,x)+multiplicity(q,x).

(57) For every integral domainL and for all non-zero polynomialsp, q of L holds BRoots(p∗
q) = BRoots(p)+BRoots(q).

(58) For every integral domainL and for every non-zero polynomialp of L such that lenp = 1
holds degree(BRoots(p)) = 0.

(59) For every integral domainL and for every elementx of L and for every natural numbern
holds degree(BRoots(〈0−x,1L〉n)) = n.

(60) For every algebraic-closed integral domainL and for every non-zero polynomialp of L
holds degree(BRoots(p)) = lenp−′ 1.

Let L be an add-associative right zeroed right complementable distributive non empty double
loop structure, letcbe an element ofL, and letnbe a natural number. The functor fpolymult root(c,n)
yields a finite sequence of elements of Polynom-RingL and is defined by:

(Def. 9) lenfpolymult root(c,n)= nand for every natural numberi such thati ∈domfpoly mult root(c,n)
holds(fpoly mult root(c,n))(i) = 〈0−c,1L〉.

Let L be an add-associative right zeroed right complementable distributive non empty double
loop structure and letb be a bag of the carrier ofL. The functor polywith roots(b) yielding a
polynomial ofL is defined by the condition (Def. 10).

(Def. 10) There exists a finite sequencef of elements of (the carrier of Polynom-RingL)∗ and
there exists a finite sequences of elements ofL such that lenf = cardsupportb and
s = canFS(supportb) and for every natural numberi such thati ∈ dom f holds f (i) =
fpoly mult root(si ,b(si)) and polywith roots(b) = ∏Flat( f ).

The following propositions are true:

(61) LetL be an Abelian add-associative right zeroed right complementable commutative dis-
tributive right unital non empty double loop structure. Then polywith roots(EmptyBag(the
carrier ofL)) = 〈01L〉.

(62) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure andcbe an element ofL. Then polywith roots(({c},1)−bag) = 〈0−c,1L〉.

(63) Let L be an add-associative right zeroed right complementable distributive non empty
double loop structure,b be a bag of the carrier ofL, f be a finite sequence of elements
of (the carrier of Polynom-RingL)∗, ands be a finite sequence of elements ofL. Suppose
len f = cardsupportb and s = canFS(supportb) and for every natural numberi such that
i ∈ dom f holds f (i) = fpoly mult root(si ,b(si)). Then lenFlat( f ) = degree(b).

(64) LetL be an add-associative right zeroed right complementable distributive non empty dou-
ble loop structure,b be a bag of the carrier ofL, f be a finite sequence of elements of
(the carrier of Polynom-RingL)∗, s be a finite sequence of elements ofL, andc be an ele-
ment of L such that lenf = cardsupportb and s = canFS(supportb) and for every natural
numberi such thati ∈ dom f holds f (i) = fpoly mult root(si ,b(si)). Then

(i) if c∈ supportb, then card(Flat( f )−1({〈0−c,1L〉})) = b(c), and

(ii) if c /∈ supportb, then card(Flat( f )−1({〈0−c,1L〉})) = 0.
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(65) For every commutative ringL and for all bagsb1, b2 of the carrier of L holds
poly with roots(b1 +b2) = poly with roots(b1)∗poly with roots(b2).

(66) Let L be an algebraic-closed integral domain andp be a non-zero polynomial ofL. If
p(lenp−′ 1) = 1L, thenp = poly with roots(BRoots(p)).

(67) LetL be a commutative ring,sbe a non empty finite subset ofL, and f be a finite sequence
of elements of Polynom-RingL. Suppose lenf = cardsand for every natural numberi and for
every elementc of L such thati ∈ dom f andc = (canFS(s))(i) holds f (i) = 〈0−c,1L〉. Then
poly with roots((s,1)−bag) = ∏ f .

(68) LetL be a non trivial commutative ring,sbe a non empty finite subset ofL, x be an element
of L, and f be a finite sequence of elements ofL. Suppose lenf = cards and for every
natural numberi and for every elementc of L such thati ∈ dom f andc= (canFS(s))(i) holds
f (i) = eval(〈0−c,1L〉,x). Then eval(poly with roots((s,1)−bag),x) = ∏ f .
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