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Summary. For mappings from a metric space to a metric space, a notion of uniform
continuity is defined. If we introduce natural topologies to the metric spaces, a uniformly
continuous function becomes continuous. On the other hand, if the domain is compact, a
continuous function is uniformly continuous. For this proof, Lebesgue’s covering lemma is
also proved. An arc, which is homeomorphic to [0,1], can be divided into small segments, as
small as one wishes.

MML Identifier: UNIFORM1.

WWW: http://mizar.org/JFM/Vol9/uniform1.html

The articles [20], [24], [21], [16], [13], [1], [2], [22], [19], [18], [25], [3], [5], [6], [23], [11], [17],
[8], [7], [10], [9], [12], [14], [4], and [15] provide the notation and terminology for this paper.

1. LEBESGUE’ S COVERING LEMMA

We follow the rules:s, s1, s2, t, r, r1, r2 are real numbers andn, mare natural numbers.
We now state two propositions:

(1) t− r− (t−s) =−r +s andt− r− (t−s) = s− r.

(2) For everyr such thatr > 0 there exists a natural numbern such thatn > 0 and1
n < r.

Let X, Y be non empty metric structures and letf be a map fromX into Y. We say thatf is
uniformly continuous if and only if:

(Def. 1) For everyr such that 0< r there existss such that 0< s and for all elementsu1, u2 of X
such thatρ(u1,u2) < s holdsρ( fu1, fu2) < r.

We now state several propositions:

(3) Let X be a non empty topological space,M be a non empty metric space, andf be a map
from X into Mtop. Supposef is continuous. Letr be a real number,u be an element of the
carrier ofM, andP be a subset ofMtop. If P = Ball(u, r), then f−1(P) is open.

(4) Let N, M be non empty metric spaces andf be a map fromNtop into Mtop. Suppose that
for every real numberr and for every elementu of the carrier ofN and for every elementu1

of M such thatr > 0 andu1 = f (u) there exists a real numbers such thats> 0 and for every
elementw of N and for every elementw1 of M such thatw1 = f (w) andρ(u,w) < s holds
ρ(u1,w1) < r. Then f is continuous.
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(5) Let N, M be non empty metric spaces andf be a map fromNtop into Mtop. Supposef
is continuous. Letr be a real number,u be an element of the carrier ofN, andu1 be an
element ofM. Supposer > 0 andu1 = f (u). Then there existsssuch thats> 0 and for every
elementw of N and for every elementw1 of M such thatw1 = f (w) andρ(u,w) < s holds
ρ(u1,w1) < r.

(6) Let N, M be non empty metric spaces,f be a map fromN into M, andg be a map from
Ntop into Mtop. If f = g and f is uniformly continuous, theng is continuous.

(7) Let N be a non empty metric space andG be a family of subsets ofNtop. SupposeG is
a cover ofNtop and open andNtop is compact. Then there existsr such thatr > 0 and for
all elementsw1, w2 of N such thatρ(w1,w2) < r there exists a subsetG1 of Ntop such that
w1 ∈G1 andw2 ∈G1 andG1 ∈G.

2. UNIFORMITY OF CONTINUOUS FUNCTIONS ONCOMPACT SPACES

Next we state three propositions:

(8) Let N, M be non empty metric spaces,f be a map fromN into M, andg be a map from
Ntop into Mtop. Supposeg = f andNtop is compact andg is continuous. Thenf is uniformly
continuous.

(9) Letg be a map fromI into En
T and f be a map from[0, 1]M into En. If g is continuous and

f = g, then f is uniformly continuous.

(10) LetP be a subset ofEn
T, Q be a non empty subset ofEn, g be a map fromI into (En

T)�P,
and f be a map from[0, 1]M into En�Q. If P = Q andg is continuous andf = g, then f is
uniformly continuous.

3. SEGMENTATION OF ARCS

Next we state four propositions:

(11) For every mapg from I into En
T there exists a mapf from [0, 1]M into En such thatf = g.

(12) Let r be a real number. Supposer ≥ 0. Thendre ≥ 0 andbrc ≥ 0 anddre is a natural
number andbrc is a natural number.

(13) For allr, s holds|r−s|= |s− r|.

(14) For allr1, r2, s1, s2 such thatr1 ∈ [s1,s2] andr2 ∈ [s1,s2] holds|r1− r2| ≤ s2−s1.

Let I1 be a finite sequence of elements ofR. We say thatI1 is decreasing if and only if:

(Def. 2) For alln, msuch thatn∈ domI1 andm∈ domI1 andn < m holdsI1(n) > I1(m).

We now state two propositions:

(15) Lete be a real number,g be a map fromI into En
T, andp1, p2 be elements ofEn

T. Suppose
e> 0 andg is continuous and one-to-one andg(0) = p1 andg(1) = p2. Then there exists a
finite sequenceh of elements ofR such that

(i) h(1) = 0,

(ii) h(lenh) = 1,

(iii) 5 ≤ lenh,

(iv) rngh⊆ the carrier ofI,
(v) h is increasing, and

(vi) for every natural numberi and for every subsetQ of I and for every subsetW of En such
that 1≤ i andi < lenh andQ = [hi ,hi+1] andW = g◦Q holds ØW < e.
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(16) Lete be a real number,g be a map fromI into En
T, andp1, p2 be elements ofEn

T. Suppose
e> 0 andg is continuous and one-to-one andg(0) = p1 andg(1) = p2. Then there exists a
finite sequenceh of elements ofR such that

(i) h(1) = 1,

(ii) h(lenh) = 0,

(iii) 5 ≤ lenh,

(iv) rngh⊆ the carrier ofI,
(v) h is decreasing, and

(vi) for every natural numberi and for every subsetQ of I and for every subsetW of En such
that 1≤ i andi < lenh andQ = [hi+1,hi ] andW = g◦Q holds ØW < e.
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