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Summary. For mappings from a metric space to a metric space, a notion of uniform
continuity is defined. If we introduce natural topologies to the metric spaces, a uniformly
continuous function becomes continuous. On the other hand, if the domain is compact, a
continuous function is uniformly continuous. For this proof, Lebesgue’s covering lemma is
also proved. An arc, which is homeomorphic to [0,1], can be divided into small segments, as
small as one wishes.

MML Identifier: UNIFORML.

WWW: http://mizar.org/JFM/Vol9/uniforml.html

The articles[[20],[[24],[1211],[[16], 23], 11],[12],.122],. 1191 128]/ [25] [ 13] L15],.16] . [23], [11] . [17],
[81, [7], [2Q], [9], [12], [14], [4], and [15] provide the notation and terminology for this paper.

1. LEBESGUES COVERING LEMMA

We follow the ruless, s, s, t, 1, r1, r2 are real numbers amg m are natural numbers.
We now state two propositions:

1) t—r—(t—s)=—-r+sandt—r—(t—s)=s—r.
(2) For everyr such thatr > 0 there exists a natural numbesuch than > 0 and% <T.

Let X, Y be non empty metric structures and febe a map fronX into Y. We say thatf is
uniformly continuous if and only if:

(Def. 1) For everyr such that O< r there exists such that O< s and for all elementsi;, up of X
such thap(uz, up) < sholdsp(fy,, fy,) <.

We now state several propositions:

(3) LetX be a non empty topological spadé,be a non empty metric space, ahdhe a map
from X into Myp. Supposef is continuous. Let be a real numbey be an element of the
carrier ofM, andP be a subset d¥op. If P = Ball(u,r), thenf~1(P) is open.

(4) LetN, M be non empty metric spaces ahde a map from\yp into Mgp. Suppose that
for every real number and for every element of the carrier ofN and for every elemeniy
of M such thatr > 0 anduy = f(u) there exists a real numbssuch thas > 0 and for every
elementw of N and for every element; of M such thatw; = f(w) andp(u,w) < s holds
p(uz,wq) < r. Thenf is continuous.
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(5) LetN, M be non empty metric spaces aficbe a map fromN\yop into Miop. Supposef
is continuous. Let be a real numben be an element of the carrier &f, andu; be an
element oM. Suppose > 0 andu; = f(u). Then there existssuch thas > 0 and for every
elementw of N and for every element; of M such thatw; = f(w) andp(u,w) < s holds
p(ug,w) <r.

(6) LetN, M be non empty metric spacekbe a map fronN into M, andg be a map from
Niop iNto Myep. If f = gandf is uniformly continuous, theg is continuous.

(7) LetN be a non empty metric space a@doe a family of subsets dflop. Supposes is
a cover ofNyp and open andNyp is compact. Then there existssuch thatr > 0 and for
all elementswy, w, of N such thatp(wg,w,) < r there exists a subs@ of Nyp such that
wi € G; andw, € G; andG; € G.

2. UNIFORMITY OF CONTINUOUS FUNCTIONS ONCOMPACT SPACES
Next we state three propositions:

(8) LetN, M be non empty metric spacekbe a map fronN into M, andg be a map from
Neop into Myop. Suppose = f andNyp is compact angj is continuous. Theri is uniformly
continuous.

(9) Letgbe amap froni into £7 and f be a map fronj0, 1) into £". If g is continuous and
f =g, thenf is uniformly continuous.

(10) LetP be a subset of, Q be a non empty subset @&", g be a map froni into (£7) [P,
and f be a map fronf0, 1]y into E"Q. If P = Q andg is continuous and = g, then f is
uniformly continuous.

3. SEGMENTATION OFARCS
Next we state four propositions:

(11) For every mag from I into £} there exists a map from [0, 1]y into £" such thatf = g.

(12) Letr be a real number. Suppose> 0. Then[r] > 0 and|r] > 0 and[r] is a natural
number andr | is a natural number.

(13) Forallr, sholds|r —s| = |s—r]|.
(14) Forallry, ra, s1, 52 such thary € [s1, 5] andrz € [s1,S] holds|ri —r2| < 5 — 5.
LetI1 be a finite sequence of elementdfafWe say that; is decreasing if and only if;
(Def. 2)  For alln, msuch than € doml; andm € doml; andn < mholdsly(n) > 11(m).
We now state two propositions:

(15) Letebe areal numbeg be a map froni into £7, andpz, p2 be elements of]. Suppose
e > 0 andg is continuous and one-to-one ag) = p; andg(1) = p2. Then there exists a
finite sequencé of elements o such that

() h(1)=0,
(i) h(lenh) =1,
(i) 5 <lenh,

(iv) rngh C the carrier ofl,
(v) hisincreasing, and

(vi) for every natural numberand for every subse of I and for every subs&V of £" such
that 1<i andi < lenh andQ = [h;, hi1] andW = g°Q holds @V < e.
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(16) Letebe areal numbeg be a map froni into £{, andpy, p2 be elements of]. Suppose
e > 0 andg is continuous and one-to-one ag() = p; andg(1) = p2. Then there exists a
finite sequencé of elements oRR such that

@) h1)=1,
(i)  h(lenh) =0,
(i) 5 <lenh,
(iv) rngh C the carrier ofl,
(v) hisdecreasing, and

(vi) for every natural numberand for every subse of I and for every subsé&V of £" such
that 1<i andi < lenh andQ = [h;;1,hj] andW = g°Q holds @V < e.
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