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Summary. Introduces a definition of a subalgebra of a universal algebra. A notion of
similar algebras and basic operations on subalgebras such as a subalgebra generated by a set,
the intersection and the sum of two subalgebras were introduced. Some basic facts concerning
the above notions have been proved. The article also contains the definition of a lattice of
subalgebras of a universal algebra.

MML Identifier: UNIALG_2.

WWW: http://mizar.org/JFM/Vol5/unialg_2.html

The articles [9], [5], [10], [11], [3], [1], [8], [4], [6], [12], [2], and [7] provide the notation and
terminology for this paper.

One can prove the following propositions:

(1) For every natural numbern and for every non empty setD and for every non empty subset
D1 of D holdsDn∩D1

n = D1
n.

(2) For every non empty setD and for every homogeneous quasi total non empty partial func-
tion h from D∗ to D holds domh = Darityh.

We follow the rules:U0, U1, U2, U3 are universal algebras,n is a natural number, andx is a set.
Let D be a non empty set. A non empty set is called a set of universal functions onD if:

(Def. 1) Every element of it is a homogeneous quasi total non empty partial function fromD∗ to D.

Let D be a non empty set and letP be a set of universal functions onD. We see that the element
of P is a homogeneous quasi total non empty partial function fromD∗ to D.

Let us considerU1. A set of universal functions onU1 is a set of universal functions on the
carrier ofU1.

Let U1 be a universal algebra structure. A partial function onU1 is a partial function from
(the carrier ofU1)∗ to the carrier ofU1.

Let us considerU1, U2. We say thatU1 andU2 are similar if and only if:

(Def. 2) signatureU1 = signatureU2.

Let us notice that the predicateU1 andU2 are similar is reflexive and symmetric.
Next we state three propositions:

(3) If U1 andU2 are similar, then len(the characteristic ofU1) = len(the characteristic ofU2).

(4) If U1 andU2 are similar andU2 andU3 are similar, thenU1 andU3 are similar.
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(5) rng(the characteristic ofU0) is a non empty subset of (the carrier ofU0)∗→̇the carrier of
U0.

Let us considerU0. The functor Operations(U0) yielding a set of universal functions onU0 is
defined as follows:

(Def. 3) Operations(U0) = rng(the characteristic ofU0).

Let us considerU1. An operation ofU1 is an element of Operations(U1).
In the sequelA is a non empty subset ofU0 ando is an operation ofU0.
We now state the proposition

(6) For every setn such thatn ∈ dom(the characteristic ofU0) holds (the characteristic of
U0)(n) is an operation ofU0.

Let U0 be a universal algebra, letA be a subset ofU0, and leto be an operation ofU0. We say
thatA is closed ono if and only if:

(Def. 4) For every finite sequences of elements ofA such that lens= arityo holdso(s) ∈ A.

Let U0 be a universal algebra and letA be a subset ofU0. We say thatA is operations closed if
and only if:

(Def. 5) For every operationo of U0 holdsA is closed ono.

Let us considerU0, A, o. Let us assume thatA is closed ono. The functoroA yielding a
homogeneous quasi total non empty partial function fromA∗ to A is defined as follows:

(Def. 6) oA = o�Aarityo.

Let us considerU0, A. The functor Opers(U0,A) yields a finite sequence of operational functions
of A and is defined by the conditions (Def. 7).

(Def. 7)(i) domOpers(U0,A) = dom(the characteristic ofU0), and

(ii) for every setn and for everyo such thatn∈ domOpers(U0,A) ando = (the characteristic
of U0)(n) holds(Opers(U0,A))(n) = oA.

One can prove the following propositions:

(7) For every non empty subsetB of U0 such thatB = the carrier ofU0 holdsB is operations
closed and for everyo holdsoB = o.

(8) LetU1 be a universal algebra,A be a non empty subset ofU1, ando be an operation ofU1.
If A is closed ono, then arity(oA) = arityo.

Let us considerU0. A universal algebra is said to be a subalgebra ofU0 if it satisfies the condi-
tions (Def. 8).

(Def. 8)(i) The carrier of it is a subset ofU0, and

(ii) for every non empty subsetB of U0 such thatB = the carrier of it holds the characteristic
of it = Opers(U0,B) andB is operations closed.

LetU0 be a universal algebra. One can verify that there exists a subalgebra ofU0 which is strict.
One can prove the following propositions:

(9) LetU0, U1 be universal algebras,o0 be an operation ofU0, o1 be an operation ofU1, andn
be a natural number. Suppose that

(i) U0 is a subalgebra ofU1,

(ii) n∈ dom(the characteristic ofU0),

(iii) o0 = (the characteristic ofU0)(n), and

(iv) o1 = (the characteristic ofU1)(n).

Then arityo0 = arityo1.
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(10) If U0 is a subalgebra ofU1, then dom(the characteristic ofU0) = dom(the characteristic of
U1).

(11) U0 is a subalgebra ofU0.

(12) If U0 is a subalgebra ofU1 andU1 is a subalgebra ofU2, thenU0 is a subalgebra ofU2.

(13) If U1 is a strict subalgebra ofU2 andU2 is a strict subalgebra ofU1, thenU1 = U2.

(14) For all subalgebrasU1, U2 of U0 such that the carrier ofU1 ⊆ the carrier ofU2 holdsU1 is
a subalgebra ofU2.

(15) For all strict subalgebrasU1, U2 of U0 such that the carrier ofU1 = the carrier ofU2 holds
U1 = U2.

(16) If U1 is a subalgebra ofU2, thenU1 andU2 are similar.

(17) For every non empty subsetA of U0 holds〈A,Opers(U0,A)〉 is a strict universal algebra.

Let U0 be a universal algebra and letA be a non empty subset ofU0. Let us assume thatA is
operations closed. The functor〈A,Ops〉 yielding a strict subalgebra ofU0 is defined as follows:

(Def. 9) 〈A,Ops〉= 〈A,Opers(U0,A)〉.

Let us considerU0 and letU1, U2 be subalgebras ofU0. Let us assume that the carrier ofU1

meets the carrier ofU2. The functorU1∩U2 yields a strict subalgebra ofU0 and is defined by the
conditions (Def. 10).

(Def. 10)(i) The carrier ofU1∩U2 = (the carrier ofU1)∩ (the carrier ofU2), and

(ii) for every non empty subsetB of U0 such thatB = the carrier ofU1∩U2 holds the charac-
teristic ofU1∩U2 = Opers(U0,B) andB is operations closed.

Let us considerU0. The functor Constants(U0) yielding a subset ofU0 is defined by:

(Def. 11) Constants(U0) = {a;a ranges over elements ofU0:
∨

o:operation ofU0
(arityo = 0 ∧ a ∈

rngo)}.

Let I1 be a universal algebra. We say thatI1 has constants if and only if:

(Def. 12) There exists an operationo of I1 such that arityo = 0.

One can check that there exists a universal algebra which is strict and has constants.
Let U0 be a universal algebra with constants. Note that Constants(U0) is non empty.
One can prove the following three propositions:

(18) For every universal algebraU0 and for every subalgebraU1 of U0 holds Constants(U0) is a
subset ofU1.

(19) For every universal algebraU0 with constants and for every subalgebraU1 of U0 holds
Constants(U0) is a non empty subset ofU1.

(20) LetU0 be a universal algebra with constants andU1, U2 be subalgebras ofU0. Then the
carrier ofU1 meets the carrier ofU2.

LetU0 be a universal algebra and letA be a subset ofU0. Let us assume that Constants(U0) 6= /0
or A 6= /0. The functor GenUA(A) yielding a strict subalgebra ofU0 is defined by the conditions
(Def. 13).

(Def. 13)(i) A⊆ the carrier of GenUA(A), and

(ii) for every subalgebraU1 of U0 such thatA⊆ the carrier ofU1 holds GenUA(A) is a subal-
gebra ofU1.

The following two propositions are true:
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(21) For every strict universal algebraU0 holds GenUA(Ωthe carrier ofU0) = U0.

(22) LetU0 be a universal algebra,U1 be a strict subalgebra ofU0, andB be a non empty subset
of U0. If B = the carrier ofU1, then GenUA(B) = U1.

Let U0 be a universal algebra and letU1, U2 be subalgebras ofU0. The functorU1tU2 yields a
strict subalgebra ofU0 and is defined by:

(Def. 14) For every non empty subsetA of U0 such thatA = (the carrier ofU1)∪ (the carrier ofU2)
holdsU1tU2 = GenUA(A).

One can prove the following four propositions:

(23) LetU0 be a universal algebra,U1 be a subalgebra ofU0, andA, B be subsets ofU0. If A 6= /0
or Constants(U0) 6= /0 and ifB = A∪ the carrier ofU1, then GenUA(A)tU1 = GenUA(B).

(24) For every universal algebraU0 and for all subalgebrasU1,U2 of U0 holdsU1tU2 =U2tU1.

(25) For every universal algebraU0 with constants and for all strict subalgebrasU1, U2 of U0

holdsU1∩ (U1tU2) = U1.

(26) For every universal algebraU0 with constants and for all strict subalgebrasU1, U2 of U0

holdsU1∩U2tU2 = U2.

Let U0 be a universal algebra. The functor Sub(U0) yields a set and is defined as follows:

(Def. 15) For everyx holdsx∈ Sub(U0) iff x is a strict subalgebra ofU0.

Let U0 be a universal algebra. Note that Sub(U0) is non empty.
Let U0 be a universal algebra. The functor

⊔
(U0) yielding a binary operation on Sub(U0) is

defined as follows:

(Def. 16) For all elementsx, y of Sub(U0) and for all strict subalgebrasU1, U2 of U0 such thatx= U1

andy = U2 holds
⊔

(U0)(x, y) = U1tU2.

Let U0 be a universal algebra. The functord−e(U0) yields a binary operation on Sub(U0) and is
defined as follows:

(Def. 17) For all elementsx, y of Sub(U0) and for all strict subalgebrasU1, U2 of U0 such thatx= U1

andy = U2 holdsd−e(U0)(x, y) = U1∩U2.

The following propositions are true:

(27)
⊔

(U0) is commutative.

(28)
⊔

(U0) is associative.

(29) For every universal algebraU0 with constants holdsd−e(U0) is commutative.

(30) For every universal algebraU0 with constants holdsd−e(U0) is associative.

Let U0 be a universal algebra with constants. The lattice of subalgebras ofU0 yielding a strict
lattice is defined by:

(Def. 18) The lattice of subalgebras ofU0 = 〈Sub(U0),
⊔

(U0),d
−e(U0)〉.
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