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Summary. Introduces a definition of a subalgebra of a universal algebra. A notion of
similar algebras and basic operations on subalgebras such as a subalgebra generated by a set,
the intersection and the sum of two subalgebras were introduced. Some basic facts concerning
the above notions have been proved. The article also contains the definition of a lattice of
subalgebras of a universal algebra.
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The articles|[9], [[5], [[10], [[14], [13], [T1], 8], [[4], [6], [12], [[2], and[[7] provide the notation and
terminology for this paper.
One can prove the following propositions:

(1) For every natural numberand for every non empty sétand for every non empty subset
D1 of D holdsD"N D" = D;".

(2) For every non empty s& and for every homogeneous quasi total non empty partial func-
tion h from D* to D holds donh = Dtyh,

We follow the rulesUp, U1, Uz, U3 are universal algebras,is a natural number, andis a set.
Let D be a non empty set. A non empty set is called a set of universal functioDsfon

(Def. 1) Every element of it is a homogeneous quasi total non empty partial functiortaoD.

Let D be a non empty set and [Btbe a set of universal functions @ We see that the element
of P is a homogeneous quasi total non empty partial function fdorto D.

Let us considetJ;. A set of universal functions od; is a set of universal functions on the
carrier ofU;.

Let U1 be a universal algebra structure. A partial functionlbnis a partial function from
(the carrier olU1)* to the carrier ot;.

Let us considet);, U,. We say thatl; andU, are similar if and only if:

(Def. 2) signaturtl; = signaturéJ,.

Let us notice that the predicdth andU, are similar is reflexive and symmetric.
Next we state three propositions:

(3) If U; andU, are similar, then len (the characteristid ) = len (the characteristic df,).

(4) If Uy andU; are similar andJ, andU3 are similar, thetJ; andUs are similar.
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(5) rng(the characteristic &fp) is a non empty subset of (the carriefdf)*—the carrier of
Uo.

Let us considely. The functor Operatioriblg) yielding a set of universal functions & is
defined as follows:

(Def. 3) OperationdJy) = rng (the characteristic dfp).

Let us considet;. An operation olJ; is an element of Operatiofid; ).
In the sequeh is a non empty subset bfy ando is an operation oflg.
We now state the proposition

(6) For every seh such thatn € dom(the characteristic dfp) holds (the characteristic of
Uo)(n) is an operation oflo.

Let Ug be a universal algebra, 18tbe a subset dfly, and leto be an operation dfly. We say
thatAis closed oro if and only if:

(Def. 4) For every finite sequens®f elements ofA such that les = arityo holdso(s) € A.

Let Up be a universal algebra and kte a subset dfly. We say tha# is operations closed if
and only if:

(Def. 5) For every operation of Uy holdsA is closed oro.

Let us considelJy, A, 0. Let us assume tha is closed ono. The functoroa yielding a
homogeneous quasi total non empty partial function f&no A is defined as follows:

(Def. 6) 0p = O] ARYO,

Let us considely, A. The functor OperdJp, A) yields a finite sequence of operational functions
of Aand is defined by the conditions (Def. 7).

(Def. 7)(i) domOperfJy,A) = dom (the characteristic &fp), and
(i) for every setn and for everyo such than € dom OperflJy, A) ando = (the characteristic
of Up)(n) holds(OpergUp,A))(n) = 0a.
One can prove the following propositions:

(7) For every non empty subsBtof Ug such thatB = the carrier oy holdsB is operations
closed and for everg holdsog = 0.

(8) LetU1 be a universal algebré be a non empty subset 0f;, ando be an operation dfl;.
If Ais closed orp, then arityfoa) = arityo.

Let us considet)yp. A universal algebra is said to be a subalgebrd®if it satisfies the condi-
tions (Def. 8).
(Def. 8)(() The carrier of it is a subset bk, and
(i) for every non empty subsé of Ug such thaB = the carrier of it holds the characteristic
of it = OpergUp, B) andB is operations closed.

LetUg be a universal algebra. One can verify that there exists a subalgdbgawbiich is strict.
One can prove the following propositions:

(9) LetUg, Uy be universal algebrasg be an operation dfly, 0; be an operation dfi;, andn
be a natural number. Suppose that
(i) Uopisasubalgebra df;,
(i)  ne dom(the characteristic &fp),
(iii)  0p = (the characteristic dflp)(n), and
(iv) 01 = (the characteristic dfi1)(n).
Then arityog = arityo;.
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(10) IfUpis a subalgebra df;, then dom (the characteristic df) = dom (the characteristic of
Uy).

(11) Ugis a subalgebra dfg.
(12) IfUgis a subalgebra df; andU, is a subalgebra df,, thenUy is a subalgebra df,.
(13) IfUqis a strict subalgebra &f, andUs is a strict subalgebra &f1, thenU; = U,.

(14) For all subalgebrdd;, U, of Up such that the carrier af; C the carrier ol holdsUjs is
a subalgebra df,.

(15) For all strict subalgebras;, U, of Ug such that the carrier &§; = the carrier olJ, holds
Ui =U,.

(16) IfUq is a subalgebra df,, thenU; andU, are similar.

(17) For every non empty subskbf Ug holds(A,OpergUg, A)) is a strict universal algebra.

Let Ug be a universal algebra and latbe a non empty subset bfy. Let us assume th& is
operations closed. The functoh Ops yielding a strict subalgebra &fy is defined as follows:

(Def. 9) (A, Ops = (A, OpergUp,A)).

Let us considet)y and letU1, U, be subalgebras @fy. Let us assume that the carrierldf
meets the carrier dfl,. The functorlU; NU, yields a strict subalgebra tfy and is defined by the
conditions (Def. 10).

(Def. 10)()) The carrier oy NU, = (the carrier olJ;) N (the carrier olJy), and

(i) for every non empty subs& of Ug such thaB = the carrier olU; NU, holds the charac-
teristic ofU; NU, = OpergUp, B) andB is operations closed.

Let us considety. The functor Constanflsp) yielding a subset dflg is defined by:

(Def. 11) Constanttlo) = {a;a ranges over elements &fo: Vo gperation oy, (Ay0o =0 A a€
rngo)}.

Letl; be a universal algebra. We say thahas constants if and only if:
(Def. 12) There exists an operatiorof |1 such that aritp = 0.

One can check that there exists a universal algebra which is strict and has constants.
LetUp be a universal algebra with constants. Note that Constagtss non empty.
One can prove the following three propositions:

(18) For every universal algebtly and for every subalgebtdy of Uy holds Constantt)p) is a
subset ofJ;.

(19) For every universal algebtd, with constants and for every subalgelia of Ug holds
Constantdlp) is a non empty subset of;.

(20) LetUp be a universal algebra with constants &ahd U, be subalgebras djo. Then the
carrier ofU; meets the carrier df,.

LetUp be a universal algebra and kebe a subset dfiy. Let us assume that Constaftlg) # 0
or A # 0. The functor GeH*(A) yielding a strict subalgebra ddy is defined by the conditions
(Def. 13).

(Def. 13)(i) A C the carrier of Gel*(A), and

(i)  for every subalgebrd); of Up such thatA C the carrier olJ; holds GeN”(A) is a subal-
gebra ofU;.

The following two propositions are true:
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(21) For every strict universal algebldg holds GeN* (Qne carier ofuy) = Uo-

(22) LetUg be a universal algebrbl; be a strict subalgebra bk, andB be a non empty subset
of U. If B = the carrier olJ;, then GeN” (B) = Uj.

LetUp be a universal algebra and ¢, U, be subalgebras &fy. The functotJ; LIU> yields a
strict subalgebra dflp and is defined by:

(Def. 14) For every non empty subskbf Uy such thatA = (the carrier olU;) U (the carrier olUy)
holdsU; LIU, = GerPA (A).

One can prove the following four propositions:

(23) LetUg be a universal algebrbl; be a subalgebra &fy, andA, B be subsets dfy. If A~ 0
or ConstantdJy) # 0 and ifB = AUthe carrier olJ;, then GeH” (A) LU, = GerP’A(B).

(24) For every universal algeblly and for all subalgebrdd;, U, of Ug holdsU1 LU, = U, LIU;.

(25) For every universal algebtdy with constants and for all strict subalgebtags U, of Ug
holdsU1 N (Ul |_|U2) =Us.

(26) For every universal algebt# with constants and for all strict subalgebtas U, of Ug
holdsU; NU, LIU, = Us.

LetUp be a universal algebra. The functor $p) yields a set and is defined as follows:
(Def. 15) For every holdsx € SubUp) iff x is a strict subalgebra &fp.

LetUp be a universal algebra. Note that $up) is non empty.

Let U be a universal algebra. The funclofy, yielding a binary operation on Sdly) is
defined as follows:

(Def. 16) For all elements, y of Sub(Up) and for all strict subalgebras;, U, of Ug such thakk = U;
andy = U, holds|_|(UO) (x,y) =U1UUa.

Let Up be a universal algebra. The functof,, yields a binary operation on S(lly) and is
defined as follows:

(Def. 17) For all elements, y of Sub(Ug) and for all strict subalgebras;, U, of Ug such thak = U
andy = U, holds[ ) (X, y) =U1NU>.

The following propositions are true:
(27) U, is commutative.
(28) L, is associative.
(29) For every universal algebtdy with constants holdﬁ(u(,) is commutative.

(30) For every universal algebty with constants holdﬂ(u(,) is associative.

Let Up be a universal algebra with constants. The lattice of subalgebtag yi€lding a strict
lattice is defined by:

(Def. 18) The lattice of subalgebras\d§ = (Sub(Uo), L) [ lug))-
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