Subalgebras of the Universal Algebra. Lattices of Subalgebras

Ewa Burakowska Warsaw University Białystok

Summary. Introduces a definition of a subalgebra of a universal algebra. A notion of similar algebras and basic operations on subalgebras such as a subalgebra generated by a set, the intersection and the sum of two subalgebras were introduced. Some basic facts concerning the above notions have been proved. The article also contains the definition of a lattice of subalgebras of a universal algebra.

MML Identifier: UNIALG_2.

WWW: http://mizar.org/JFM/Vol5/unialg_2.html

The articles [9], [5], [10], [11], [3], [1], [8], [4], [6], [12], [2], and [7] provide the notation and terminology for this paper.

One can prove the following propositions:

- (1) For every natural number n and for every non empty set D and for every non empty subset D_1 of D holds $D^n \cap D_1^n = D_1^n$.
- (2) For every non empty set D and for every homogeneous quasi total non empty partial function h from D^* to D holds dom $h = D^{arity h}$.

We follow the rules: U_0 , U_1 , U_2 , U_3 are universal algebras, n is a natural number, and x is a set. Let D be a non empty set. A non empty set is called a set of universal functions on D if:

(Def. 1) Every element of it is a homogeneous quasi total non empty partial function from D^* to D.

Let D be a non empty set and let P be a set of universal functions on D. We see that the element of P is a homogeneous quasi total non empty partial function from D^* to D.

Let us consider U_1 . A set of universal functions on U_1 is a set of universal functions on the carrier of U_1 .

Let U_1 be a universal algebra structure. A partial function on U_1 is a partial function from (the carrier of U_1)* to the carrier of U_1 .

Let us consider U_1 , U_2 . We say that U_1 and U_2 are similar if and only if:

(Def. 2) signature U_1 = signature U_2 .

Let us notice that the predicate U_1 and U_2 are similar is reflexive and symmetric.

Next we state three propositions:

- (3) If U_1 and U_2 are similar, then len (the characteristic of U_1) = len (the characteristic of U_2).
- (4) If U_1 and U_2 are similar and U_2 and U_3 are similar, then U_1 and U_3 are similar.

(5) rng (the characteristic of U_0) is a non empty subset of (the carrier of U_0)* \rightarrow the carrier of U_0 .

Let us consider U_0 . The functor Operations (U_0) yielding a set of universal functions on U_0 is defined as follows:

(Def. 3) Operations $(U_0) = \text{rng}$ (the characteristic of U_0).

Let us consider U_1 . An operation of U_1 is an element of Operations (U_1) . In the sequel A is a non empty subset of U_0 and o is an operation of U_0 .

We now state the proposition

(6) For every set n such that $n \in \text{dom}$ (the characteristic of U_0) holds (the characteristic of U_0)(n) is an operation of U_0 .

Let U_0 be a universal algebra, let A be a subset of U_0 , and let o be an operation of U_0 . We say that A is closed on o if and only if:

(Def. 4) For every finite sequence s of elements of A such that len $s = \text{arity } o \text{ holds } o(s) \in A$.

Let U_0 be a universal algebra and let A be a subset of U_0 . We say that A is operations closed if and only if:

(Def. 5) For every operation o of U_0 holds A is closed on o.

Let us consider U_0 , A, o. Let us assume that A is closed on o. The functor o_A yielding a homogeneous quasi total non empty partial function from A^* to A is defined as follows:

(Def. 6) $o_A = o \upharpoonright A^{\text{arity } o}$.

Let us consider U_0 , A. The functor Opers (U_0, A) yields a finite sequence of operational functions of A and is defined by the conditions (Def. 7).

- (Def. 7)(i) dom Opers (U_0, A) = dom (the characteristic of U_0), and
 - (ii) for every set n and for every o such that $n \in \text{dom Opers}(U_0, A)$ and $o = \text{(the characteristic of } U_0)(n) \text{ holds } (\text{Opers}(U_0, A))(n) = o_A.$

One can prove the following propositions:

- (7) For every non empty subset B of U_0 such that B = the carrier of U_0 holds B is operations closed and for every o holds $o_B = o$.
- (8) Let U_1 be a universal algebra, A be a non empty subset of U_1 , and o be an operation of U_1 . If A is closed on o, then arity $(o_A) = \text{arity } o$.

Let us consider U_0 . A universal algebra is said to be a subalgebra of U_0 if it satisfies the conditions (Def. 8).

- (Def. 8)(i) The carrier of it is a subset of U_0 , and
 - (ii) for every non empty subset B of U_0 such that B = the carrier of it holds the characteristic of it = Opers(U_0 , B) and B is operations closed.

Let U_0 be a universal algebra. One can verify that there exists a subalgebra of U_0 which is strict. One can prove the following propositions:

- (9) Let U_0 , U_1 be universal algebras, o_0 be an operation of U_0 , o_1 be an operation of U_1 , and n be a natural number. Suppose that
- (i) U_0 is a subalgebra of U_1 ,
- (ii) $n \in \text{dom}$ (the characteristic of U_0),
- (iii) $o_0 =$ (the characteristic of U_0)(n), and
- (iv) $o_1 =$ (the characteristic of U_1)(n).

Then arity $o_0 = \text{arity } o_1$.

- (10) If U_0 is a subalgebra of U_1 , then dom (the characteristic of U_0) = dom (the characteristic of U_1).
- (11) U_0 is a subalgebra of U_0 .
- (12) If U_0 is a subalgebra of U_1 and U_1 is a subalgebra of U_2 , then U_0 is a subalgebra of U_2 .
- (13) If U_1 is a strict subalgebra of U_2 and U_2 is a strict subalgebra of U_1 , then $U_1 = U_2$.
- (14) For all subalgebras U_1 , U_2 of U_0 such that the carrier of $U_1 \subseteq$ the carrier of U_2 holds U_1 is a subalgebra of U_2 .
- (15) For all strict subalgebras U_1 , U_2 of U_0 such that the carrier of U_1 = the carrier of U_2 holds $U_1 = U_2$.
- (16) If U_1 is a subalgebra of U_2 , then U_1 and U_2 are similar.
- (17) For every non empty subset A of U_0 holds $\langle A, \text{Opers}(U_0, A) \rangle$ is a strict universal algebra.

Let U_0 be a universal algebra and let A be a non empty subset of U_0 . Let us assume that A is operations closed. The functor $\langle A, \operatorname{Ops} \rangle$ yielding a strict subalgebra of U_0 is defined as follows:

(Def. 9) $\langle A, \operatorname{Ops} \rangle = \langle A, \operatorname{Opers}(U_0, A) \rangle$.

Let us consider U_0 and let U_1 , U_2 be subalgebras of U_0 . Let us assume that the carrier of U_1 meets the carrier of U_2 . The functor $U_1 \cap U_2$ yields a strict subalgebra of U_0 and is defined by the conditions (Def. 10).

- (Def. 10)(i) The carrier of $U_1 \cap U_2 =$ (the carrier of U_1) \cap (the carrier of U_2), and
 - (ii) for every non empty subset B of U_0 such that B = the carrier of $U_1 \cap U_2$ holds the characteristic of $U_1 \cap U_2 = \text{Opers}(U_0, B)$ and B is operations closed.

Let us consider U_0 . The functor Constants (U_0) yielding a subset of U_0 is defined by:

(Def. 11) Constants(U_0) = {a; a ranges over elements of U_0 : $\bigvee_{o:\text{operation of }U_0}$ (arity $o=0 \land a \in \text{rng }o$)}.

Let I_1 be a universal algebra. We say that I_1 has constants if and only if:

(Def. 12) There exists an operation o of I_1 such that arity o = 0.

One can check that there exists a universal algebra which is strict and has constants. Let U_0 be a universal algebra with constants. Note that Constants (U_0) is non empty. One can prove the following three propositions:

- (18) For every universal algebra U_0 and for every subalgebra U_1 of U_0 holds Constants (U_0) is a subset of U_1 .
- (19) For every universal algebra U_0 with constants and for every subalgebra U_1 of U_0 holds Constants (U_0) is a non empty subset of U_1 .
- (20) Let U_0 be a universal algebra with constants and U_1 , U_2 be subalgebras of U_0 . Then the carrier of U_1 meets the carrier of U_2 .

Let U_0 be a universal algebra and let A be a subset of U_0 . Let us assume that Constants $(U_0) \neq \emptyset$ or $A \neq \emptyset$. The functor $\text{Gen}^{\text{UA}}(A)$ yielding a strict subalgebra of U_0 is defined by the conditions (Def. 13).

- (Def. 13)(i) $A \subseteq \text{the carrier of Gen}^{UA}(A)$, and
 - (ii) for every subalgebra U_1 of U_0 such that $A \subseteq$ the carrier of U_1 holds $Gen^{UA}(A)$ is a subalgebra of U_1 .

The following two propositions are true:

- (21) For every strict universal algebra U_0 holds $\operatorname{Gen}^{\mathrm{UA}}(\Omega_{\mathrm{the\ carrier\ of\ }U_0}) = U_0$.
- (22) Let U_0 be a universal algebra, U_1 be a strict subalgebra of U_0 , and B be a non empty subset of U_0 . If B = the carrier of U_1 , then $Gen^{UA}(B) = U_1$.

Let U_0 be a universal algebra and let U_1 , U_2 be subalgebras of U_0 . The functor $U_1 \sqcup U_2$ yields a strict subalgebra of U_0 and is defined by:

(Def. 14) For every non empty subset A of U_0 such that A = (the carrier of U_1) \cup (the carrier of U_2) holds $U_1 \sqcup U_2 = \text{Gen}^{\text{UA}}(A)$.

One can prove the following four propositions:

- (23) Let U_0 be a universal algebra, U_1 be a subalgebra of U_0 , and A, B be subsets of U_0 . If $A \neq \emptyset$ or Constants $(U_0) \neq \emptyset$ and if $B = A \cup$ the carrier of U_1 , then $\text{Gen}^{\text{UA}}(A) \cup U_1 = \text{Gen}^{\text{UA}}(B)$.
- (24) For every universal algebra U_0 and for all subalgebras U_1 , U_2 of U_0 holds $U_1 \sqcup U_2 = U_2 \sqcup U_1$.
- (25) For every universal algebra U_0 with constants and for all strict subalgebras U_1 , U_2 of U_0 holds $U_1 \cap (U_1 \sqcup U_2) = U_1$.
- (26) For every universal algebra U_0 with constants and for all strict subalgebras U_1 , U_2 of U_0 holds $U_1 \cap U_2 \sqcup U_2 = U_2$.

Let U_0 be a universal algebra. The functor $Sub(U_0)$ yields a set and is defined as follows:

(Def. 15) For every x holds $x \in \text{Sub}(U_0)$ iff x is a strict subalgebra of U_0 .

Let U_0 be a universal algebra. Note that $Sub(U_0)$ is non empty.

Let U_0 be a universal algebra. The functor $\bigsqcup_{(U_0)}$ yielding a binary operation on $Sub(U_0)$ is defined as follows:

(Def. 16) For all elements x, y of $Sub(U_0)$ and for all strict subalgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds $\bigsqcup_{(U_0)}(x, y) = U_1 \sqcup U_2$.

Let U_0 be a universal algebra. The functor $\bigcap_{(U_0)}$ yields a binary operation on $Sub(U_0)$ and is defined as follows:

(Def. 17) For all elements x, y of $Sub(U_0)$ and for all strict subalgebras U_1 , U_2 of U_0 such that $x = U_1$ and $y = U_2$ holds $\bigcap_{(U_0)} (x, y) = U_1 \cap U_2$.

The following propositions are true:

- (27) $\bigsqcup_{(U_0)}$ is commutative.
- (28) $\bigsqcup_{(U_0)}$ is associative.
- (29) For every universal algebra U_0 with constants holds $\bigcap_{(U_0)}$ is commutative.
- (30) For every universal algebra U_0 with constants holds $\lceil \rceil_{(U_0)}$ is associative.

Let U_0 be a universal algebra with constants. The lattice of subalgebras of U_0 yielding a strict lattice is defined by:

(Def. 18) The lattice of subalgebras of $U_0 = \langle \operatorname{Sub}(U_0), \bigsqcup_{(U_0)}, \bigcap_{(U_0)} \rangle$.

REFERENCES

- [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html.
- [2] Czesław Byliński. Binary operations. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/binop_1.html.
- [3] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html.
- [4] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfunl.html.
- [5] Czesław Byliński. Some basic properties of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/zfmisc_1.html.
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html.
- [7] Jarosław Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. *Journal of Formalized Mathematics*, 4, 1992. http://mizar.org/JFM/Vol4/unialg_1.html.
- [8] Beata Padlewska. Families of sets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/setfam_1.html.
- [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html.
- [10] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html.
- [11] Edmund Woronowicz. Relations and their basic properties. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html.
- [12] Stanisław Żukowski. Introduction to lattice theory. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/lattices.html.

Received July 8, 1993

Published January 2, 2004