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Summary. We present the basic notation of universal algebra.

MML Identifier: UNIALG_1.

WWW: http://mizar.org/JFM/Vol4/unialg_1.html

The articles [5], [7], [6], [8], [2], [1], [4], and [3] provide the notation and terminology for this
paper.

For simplicity, we follow the rules:A denotes a set,x, y denote finite sequences of elements of
A, h denotes a partial function fromA∗ to A, andn denotes a natural number.

Let us considerA and letI1 be a partial function fromA∗ to A. We say thatI1 is homogeneous if
and only if:

(Def. 1) For allx, y such thatx∈ domI1 andy∈ domI1 holds lenx = leny.

Let us considerA and letI1 be a partial function fromA∗ to A. We say thatI1 is quasi total if and
only if:

(Def. 2) For allx, y such that lenx = leny andx∈ domI1 holdsy∈ domI1.

Let A be a non empty set. Observe that there exists a partial function fromA∗ to A which is
homogeneous, quasi total, and non empty.

We now state three propositions:

(1) h is non empty iff domh 6= /0.

(2) Let A be a non empty set anda be an element ofA. Then{εA} 7−→ a is a homogeneous
quasi total non empty partial function fromA∗ to A.

(3) For every non empty setA and for every elementa of A holds{εA} 7−→ a is an element of
A∗→̇A.

Let us considerA. A finite sequence of operational functions ofA is a finite sequence of elements
of A∗→̇A.

We introduce universal algebra structures which are extensions of 1-sorted structure and are
systems

〈 a carrier, a characteristic〉,
where the carrier is a set and the characteristic is a finite sequence of operational functions of the
carrier.

Let us mention that there exists a universal algebra structure which is non empty and strict.
Let D be a non empty set and letc be a finite sequence of operational functions ofD. Note that

〈D,c〉 is non empty.
Let us considerA and letI1 be a finite sequence of operational functions ofA. We say thatI1 is

homogeneous if and only if:
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(Def. 4)1 For alln, h such thatn∈ domI1 andh = I1(n) holdsh is homogeneous.

Let us considerA and letI1 be a finite sequence of operational functions ofA. We say thatI1 is
quasi total if and only if:

(Def. 5) For alln, h such thatn∈ domI1 andh = I1(n) holdsh is quasi total.

Let F be a function. Let us observe thatF is non-empty if and only if:

(Def. 6) For every setn such thatn∈ domF holdsF(n) is non empty.

Let A be a non empty set and letx be an element ofA∗→̇A. Then〈x〉 is a finite sequence of
operational functions ofA.

Let A be a non empty set. One can verify that there exists a finite sequence of operational
functions ofA which is homogeneous, quasi total, and non-empty.

Let I1 be a universal algebra structure. We say thatI1 is partial if and only if:

(Def. 7) The characteristic ofI1 is homogeneous.

We say thatI1 is quasi total if and only if:

(Def. 8) The characteristic ofI1 is quasi total.

We say thatI1 is non-empty if and only if:

(Def. 9) The characteristic ofI1 6= /0 and the characteristic ofI1 is non-empty.

In the sequelA denotes a non empty set andx denotes a finite sequence of elements ofA.
Next we state the proposition

(4) For every elementx of A∗→̇A such thatx = {εA} 7−→ a holds〈x〉 is homogeneous, quasi
total, and non-empty.

Let us note that there exists a universal algebra structure which is quasi total, partial, non-empty,
strict, and non empty.

Let U1 be a partial universal algebra structure. Observe that the characteristic ofU1 is homoge-
neous.

Let U1 be a quasi total universal algebra structure. Note that the characteristic ofU1 is quasi
total.

Let U1 be a non-empty universal algebra structure. Note that the characteristic ofU1 is non-
empty and non empty.

A universal algebra is a quasi total partial non-empty non empty universal algebra structure.
In the sequelU1 denotes a partial non-empty non empty universal algebra structure.
Let us considerA and let f be a homogeneous non empty partial function fromA∗ to A. The

functor arityf yielding a natural number is defined as follows:

(Def. 10) If x∈ dom f , then arityf = lenx.

Next we state the proposition

(5) Let givenU1 and givenn. Supposen∈ dom(the characteristic ofU1). Then (the character-
istic of U1)(n) is a partial function from (the carrier ofU1)∗ to the carrier ofU1.

Let us considerU1. The functor signatureU1 yielding a finite sequence of elements ofN is
defined by the conditions (Def. 11).

(Def. 11)(i) lensignatureU1 = len(the characteristic ofU1), and

(ii) for every n such thatn∈ domsignatureU1 and for every homogeneous non empty partial
function h from (the carrier ofU1)∗ to the carrier ofU1 such thath = (the characteristic of
U1)(n) holds(signatureU1)(n) = arityh.

1 The definition (Def. 3) has been removed.
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