Basic Notation of Universal Algebra Jarosław Kotowicz Warsaw University Białystok Beata Madras Warsaw University Białystok Małgorzata Korolkiewicz Warsaw University Białystok Summary. We present the basic notation of universal algebra. MML Identifier: UNIALG_1. WWW: http://mizar.org/JFM/Vol4/unialg_1.html The articles [5], [7], [6], [8], [2], [1], [4], and [3] provide the notation and terminology for this paper. For simplicity, we follow the rules: A denotes a set, x, y denote finite sequences of elements of A, h denotes a partial function from A^* to A, and n denotes a natural number. Let us consider A and let I_1 be a partial function from A^* to A. We say that I_1 is homogeneous if and only if: (Def. 1) For all x, y such that $x \in \text{dom } I_1$ and $y \in \text{dom } I_1$ holds len x = len y. Let us consider A and let I_1 be a partial function from A^* to A. We say that I_1 is quasi total if and only if: (Def. 2) For all x, y such that len x = len y and $x \in \text{dom } I_1$ holds $y \in \text{dom } I_1$. Let A be a non empty set. Observe that there exists a partial function from A^* to A which is homogeneous, quasi total, and non empty. We now state three propositions: - (1) h is non empty iff dom $h \neq 0$. - (2) Let A be a non empty set and a be an element of A. Then $\{\varepsilon_A\} \longmapsto a$ is a homogeneous quasi total non empty partial function from A^* to A. - (3) For every non empty set A and for every element a of A holds $\{\varepsilon_A\} \longmapsto a$ is an element of $A^* \xrightarrow{\cdot} A$. Let us consider A. A finite sequence of operational functions of A is a finite sequence of elements of $A^* \rightarrow A$. We introduce universal algebra structures which are extensions of 1-sorted structure and are systems ⟨ a carrier, a characteristic ⟩, where the carrier is a set and the characteristic is a finite sequence of operational functions of the carrier. Let us mention that there exists a universal algebra structure which is non empty and strict. Let D be a non empty set and let c be a finite sequence of operational functions of D. Note that $\langle D, c \rangle$ is non empty. Let us consider A and let I_1 be a finite sequence of operational functions of A. We say that I_1 is homogeneous if and only if: (Def. 4)¹ For all n, h such that $n \in \text{dom } I_1$ and $h = I_1(n)$ holds h is homogeneous. Let us consider A and let I_1 be a finite sequence of operational functions of A. We say that I_1 is quasi total if and only if: (Def. 5) For all n, h such that $n \in \text{dom } I_1$ and $h = I_1(n)$ holds h is quasi total. Let *F* be a function. Let us observe that *F* is non-empty if and only if: (Def. 6) For every set n such that $n \in \text{dom } F$ holds F(n) is non empty. Let A be a non empty set and let x be an element of $A^* \rightarrow A$. Then $\langle x \rangle$ is a finite sequence of operational functions of A. Let A be a non empty set. One can verify that there exists a finite sequence of operational functions of A which is homogeneous, quasi total, and non-empty. Let I_1 be a universal algebra structure. We say that I_1 is partial if and only if: (Def. 7) The characteristic of I_1 is homogeneous. We say that I_1 is quasi total if and only if: (Def. 8) The characteristic of I_1 is quasi total. We say that I_1 is non-empty if and only if: (Def. 9) The characteristic of $I_1 \neq \emptyset$ and the characteristic of I_1 is non-empty. In the sequel *A* denotes a non empty set and *x* denotes a finite sequence of elements of *A*. Next we state the proposition (4) For every element x of $A^* \rightarrow A$ such that $x = \{\varepsilon_A\} \longmapsto a$ holds $\langle x \rangle$ is homogeneous, quasi total, and non-empty. Let us note that there exists a universal algebra structure which is quasi total, partial, non-empty, strict, and non empty. Let U_1 be a partial universal algebra structure. Observe that the characteristic of U_1 is homogeneous. Let U_1 be a quasi total universal algebra structure. Note that the characteristic of U_1 is quasi total. Let U_1 be a non-empty universal algebra structure. Note that the characteristic of U_1 is non-empty and non empty. A universal algebra is a quasi total partial non-empty non empty universal algebra structure. In the sequel U_1 denotes a partial non-empty non empty universal algebra structure. Let us consider A and let f be a homogeneous non empty partial function from A^* to A. The functor arity f yielding a natural number is defined as follows: (Def. 10) If $x \in \text{dom } f$, then arity f = len x. Next we state the proposition (5) Let given U_1 and given n. Suppose $n \in \text{dom}$ (the characteristic of U_1). Then (the characteristic of U_1)(n) is a partial function from (the carrier of U_1)* to the carrier of U_1 . Let us consider U_1 . The functor signature U_1 yielding a finite sequence of elements of \mathbb{N} is defined by the conditions (Def. 11). (Def. 11)(i) len signature $U_1 = \text{len}$ (the characteristic of U_1), and (ii) for every n such that $n \in \text{dom signature } U_1$ and for every homogeneous non empty partial function h from (the carrier of U_1)* to the carrier of U_1 such that $h = \text{(the characteristic of } U_1)(n)$ holds (signature U_1)(n) = arity h. ¹ The definition (Def. 3) has been removed. ## REFERENCES - [1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Vol1/finseq_1.html. - [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/funct_1.html. - [3] Czesław Byliński. Partial functions. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/partfun1.html. - [4] Andrzej Trybulec. Binary operations applied to functions. *Journal of Formalized Mathematics*, 1, 1989. http://mizar.org/JFM/Voll/funcop 1.html. - [5] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [6] Andrzej Trybulec. Subsets of real numbers. Journal of Formalized Mathematics, Addenda, 2003. http://mizar.org/JFM/Addenda/numbers.html - [7] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [8] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/relat_1.html. Received December 29, 1992 Published January 2, 2004