
JOURNAL OF FORMALIZED MATHEMATICS

Volume8, Released 1996, Published 2003

Inst. of Computer Science, Univ. of Białystok

2’s Complement Circuit

Katsumi Wasaki
National College of Technology

Nagano

Pauline N. Kawamoto
Shinshu University

Nagano

Summary. This article introduces various Boolean operators which are used in dis-
cussing the properties and stability of a 2’s complement circuit. We present the definitions
and related theorems for the following logical operators which include negative input/output:
’and2a’, ’or2a’, ’xor2a’ and ’nand2a’, ’nor2a’, etc. We formalize the concept of a 2’s comple-
ment circuit, define the structures of complementors/incrementors for binary operations, and
prove the stability of the circuit.

MML Identifier: TWOSCOMP.

WWW: http://mizar.org/JFM/Vol8/twoscomp.html

The articles [9], [11], [12], [2], [3], [13], [4], [8], [10], [6], [7], [5], and [1] provide the notation and
terminology for this paper.

1. BOOLEAN OPERATORS

Let Sbe an unsplit non void non empty many sorted signature, letA be a Boolean circuit ofS, let s
be a state ofA, and letv be a vertex ofS. Thens(v) is an element ofBoolean.

The function and2 from Boolean2 into Booleanis defined by:

(Def. 1) For all elementsx, y of Booleanholds and2(〈x,y〉) = x∧y.

The function and2a from Boolean2 into Booleanis defined as follows:

(Def. 2) For all elementsx, y of Booleanholds(and2a)(〈x,y〉) = ¬x∧y.

The function and2b from Boolean2 into Booleanis defined as follows:

(Def. 3) For all elementsx, y of Booleanholds(and2b)(〈x,y〉) = ¬x∧¬y.

The function nand2 from Boolean2 into Booleanis defined by:

(Def. 4) For all elementsx, y of Booleanholds nand2(〈x,y〉) = ¬(x∧y).

The function nand2a from Boolean2 into Booleanis defined by:

(Def. 5) For all elementsx, y of Booleanholds(nand2a)(〈x,y〉) = ¬(¬x∧y).

The function nand2b from Boolean2 into Booleanis defined by:

(Def. 6) For all elementsx, y of Booleanholds(nand2b)(〈x,y〉) = ¬(¬x∧¬y).

The function or2 from Boolean2 into Booleanis defined as follows:

(Def. 7) For all elementsx, y of Booleanholds or2(〈x,y〉) = x∨y.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol8/twoscomp.html


2’S COMPLEMENT CIRCUIT 2

The function or2a from Boolean2 into Booleanis defined by:

(Def. 8) For all elementsx, y of Booleanholds(or2a)(〈x,y〉) = ¬x∨y.

The function or2b from Boolean2 into Booleanis defined by:

(Def. 9) For all elementsx, y of Booleanholds(or2b)(〈x,y〉) = ¬x∨¬y.

The function nor2 from Boolean2 into Booleanis defined by:

(Def. 10) For all elementsx, y of Booleanholds nor2(〈x,y〉) = ¬(x∨y).

The function nor2a from Boolean2 into Booleanis defined by:

(Def. 11) For all elementsx, y of Booleanholds(nor2a)(〈x,y〉) = ¬(¬x∨y).

The function nor2b from Boolean2 into Booleanis defined as follows:

(Def. 12) For all elementsx, y of Booleanholds(nor2b)(〈x,y〉) = ¬(¬x∨¬y).

The function xor2 from Boolean2 into Booleanis defined as follows:

(Def. 13) For all elementsx, y of Booleanholds xor2(〈x,y〉) = x⊕y.

The function xor2a from Boolean2 into Booleanis defined as follows:

(Def. 14) For all elementsx, y of Booleanholds(xor2a)(〈x,y〉) = ¬x⊕y.

The function xor2b from Boolean2 into Booleanis defined by:

(Def. 15) For all elementsx, y of Booleanholds(xor2b)(〈x,y〉) = ¬x⊕¬y.

The following propositions are true:

(3)1 For all elementsx, y of Booleanholds and2(〈x,y〉) = x∧y and(and2a)(〈x,y〉) =¬x∧y and
(and2b)(〈x,y〉) = ¬x∧¬y.

(4) For all elementsx, y of Booleanholds nand2(〈x,y〉) = ¬(x∧ y) and (nand2a)(〈x,y〉) =
¬(¬x∧y) and(nand2b)(〈x,y〉) = ¬(¬x∧¬y).

(5) For all elementsx, y of Booleanholds or2(〈x,y〉) = x∨ y and(or2a)(〈x,y〉) = ¬x∨ y and
(or2b)(〈x,y〉) = ¬x∨¬y.

(6) For all elementsx, y of Booleanholds nor2(〈x,y〉) = ¬(x∨y) and(nor2a)(〈x,y〉) = ¬(¬x∨
y) and(nor2b)(〈x,y〉) = ¬(¬x∨¬y).

(7) For all elementsx, y of Booleanholds xor2(〈x,y〉) = x⊕y and(xor2a)(〈x,y〉) = ¬x⊕y and
(xor2b)(〈x,y〉) = ¬x⊕¬y.

(8) For all elementsx, y of Booleanholds and2(〈x,y〉) = (nor2b)(〈x,y〉) and(and2a)(〈x,y〉) =
(nor2a)(〈y,x〉) and(and2b)(〈x,y〉) = nor2(〈x,y〉).

(9) For all elementsx, y of Booleanholds or2(〈x,y〉) = (nand2b)(〈x,y〉) and(or2a)(〈x,y〉) =
(nand2a)(〈y,x〉) and(or2b)(〈x,y〉) = nand2(〈x,y〉).

(10) For all elementsx, y of Booleanholds(xor2b)(〈x,y〉) = xor2(〈x,y〉).

(11) and2(〈0,0〉) = 0 and and2(〈0,1〉) = 0 and and2(〈1,0〉) = 0 and and2(〈1,1〉) = 1 and
(and2a)(〈0,0〉) = 0 and(and2a)(〈0,1〉) = 1 and(and2a)(〈1,0〉) = 0 and(and2a)(〈1,1〉) = 0
and (and2b)(〈0,0〉) = 1 and (and2b)(〈0,1〉) = 0 and (and2b)(〈1,0〉) = 0 and (and2b)(〈1,
1〉) = 0.

1 The propositions (1) and (2) have been removed.



2’S COMPLEMENT CIRCUIT 3

(12) or2(〈0,0〉) = 0 and or2(〈0,1〉) = 1 and or2(〈1,0〉) = 1 and or2(〈1,1〉) = 1 and(or2a)(〈0,
0〉) = 1 and(or2a)(〈0,1〉) = 1 and(or2a)(〈1,0〉) = 0 and(or2a)(〈1,1〉) = 1 and(or2b)(〈0,
0〉) = 1 and(or2b)(〈0,1〉) = 1 and(or2b)(〈1,0〉) = 1 and(or2b)(〈1,1〉) = 0.

(13) xor2(〈0,0〉) = 0 and xor2(〈0,1〉) = 1 and xor2(〈1,0〉) = 1 and xor2(〈1,1〉) = 0 and
(xor2a)(〈0,0〉) = 1 and(xor2a)(〈0,1〉) = 0 and(xor2a)(〈1,0〉) = 0 and(xor2a)(〈1,1〉) = 1.

The function and3 from Boolean3 into Booleanis defined as follows:

(Def. 16) For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = x∧y∧z.

The function and3a from Boolean3 into Booleanis defined by:

(Def. 17) For all elementsx, y, z of Booleanholds(and3a)(〈x,y,z〉) = ¬x∧y∧z.

The function and3b from Boolean3 into Booleanis defined by:

(Def. 18) For all elementsx, y, z of Booleanholds(and3b)(〈x,y,z〉) = ¬x∧¬y∧z.

The function and3c from Boolean3 into Booleanis defined as follows:

(Def. 19) For all elementsx, y, z of Booleanholds(and3c)(〈x,y,z〉) = ¬x∧¬y∧¬z.

The function nand3 from Boolean3 into Booleanis defined as follows:

(Def. 20) For all elementsx, y, z of Booleanholds nand3(〈x,y,z〉) = ¬(x∧y∧z).

The function nand3a from Boolean3 into Booleanis defined as follows:

(Def. 21) For all elementsx, y, z of Booleanholds(nand3a)(〈x,y,z〉) = ¬(¬x∧y∧z).

The function nand3b from Boolean3 into Booleanis defined by:

(Def. 22) For all elementsx, y, z of Booleanholds(nand3b)(〈x,y,z〉) = ¬(¬x∧¬y∧z).

The function nand3c from Boolean3 into Booleanis defined by:

(Def. 23) For all elementsx, y, z of Booleanholds(nand3c)(〈x,y,z〉) = ¬(¬x∧¬y∧¬z).

The function or3 from Boolean3 into Booleanis defined by:

(Def. 24) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = x∨y∨z.

The function or3a from Boolean3 into Booleanis defined as follows:

(Def. 25) For all elementsx, y, z of Booleanholds(or3a)(〈x,y,z〉) = ¬x∨y∨z.

The function or3b from Boolean3 into Booleanis defined by:

(Def. 26) For all elementsx, y, z of Booleanholds(or3b)(〈x,y,z〉) = ¬x∨¬y∨z.

The function or3c from Boolean3 into Booleanis defined by:

(Def. 27) For all elementsx, y, z of Booleanholds(or3c)(〈x,y,z〉) = ¬x∨¬y∨¬z.

The function nor3 from Boolean3 into Booleanis defined as follows:

(Def. 28) For all elementsx, y, z of Booleanholds nor3(〈x,y,z〉) = ¬(x∨y∨z).

The function nor3a from Boolean3 into Booleanis defined by:

(Def. 29) For all elementsx, y, z of Booleanholds(nor3a)(〈x,y,z〉) = ¬(¬x∨y∨z).

The function nor3b from Boolean3 into Booleanis defined as follows:

(Def. 30) For all elementsx, y, z of Booleanholds(nor3b)(〈x,y,z〉) = ¬(¬x∨¬y∨z).

The function nor3c from Boolean3 into Booleanis defined as follows:



2’S COMPLEMENT CIRCUIT 4

(Def. 31) For all elementsx, y, z of Booleanholds(nor3c)(〈x,y,z〉) = ¬(¬x∨¬y∨¬z).

The function xor3 from Boolean3 into Booleanis defined by:

(Def. 32) For all elementsx, y, z of Booleanholds xor3(〈x,y,z〉) = x⊕y⊕z.

The following propositions are true:

(14) For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = x∧ y∧ z and(and3a)(〈x,y,z〉) =
¬x∧y∧z and(and3b)(〈x,y,z〉) = ¬x∧¬y∧z and(and3c)(〈x,y,z〉) = ¬x∧¬y∧¬z.

(15) Letx, y, z be elements ofBoolean. Then nand3(〈x,y,z〉) = ¬(x∧y∧z) and(nand3a)(〈x,y,
z〉) = ¬(¬x∧y∧z) and(nand3b)(〈x,y,z〉) = ¬(¬x∧¬y∧z) and(nand3c)(〈x,y,z〉) = ¬(¬x∧
¬y∧¬z).

(16) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = x∨ y∨ z and (or3a)(〈x,y,z〉) =
¬x∨y∨z and(or3b)(〈x,y,z〉) = ¬x∨¬y∨z and(or3c)(〈x,y,z〉) = ¬x∨¬y∨¬z.

(17) Letx, y, zbe elements ofBoolean. Then nor3(〈x,y,z〉) =¬(x∨y∨z) and(nor3a)(〈x,y,z〉) =
¬(¬x∨y∨z) and(nor3b)(〈x,y,z〉) = ¬(¬x∨¬y∨z) and(nor3c)(〈x,y,z〉) = ¬(¬x∨¬y∨¬z).

(19)2 For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = (nor3c)(〈x,y,z〉) and(and3a)(〈x,
y,z〉) = (nor3b)(〈z,y,x〉) and (and3b)(〈x,y,z〉) = (nor3a)(〈z,y,x〉) and (and3c)(〈x,y,z〉) =
nor3(〈x,y,z〉).

(20) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = (nand3c)(〈x,y,z〉) and(or3a)(〈x,
y,z〉) = (nand3b)(〈z,y,x〉) and (or3b)(〈x,y,z〉) = (nand3a)(〈z,y,x〉) and (or3c)(〈x,y,z〉) =
nand3(〈x,y,z〉).

(21) and3(〈0,0,0〉) = 0 and and3(〈0,0,1〉) = 0 and and3(〈0,1,0〉) = 0 and and3(〈0,1,1〉) = 0
and and3(〈1,0,0〉) = 0 and and3(〈1,0,1〉) = 0 and and3(〈1,1,0〉) = 0 and and3(〈1,1,1〉) = 1.

(22) (and3a)(〈0,0,0〉) = 0 and(and3a)(〈0,0,1〉) = 0 and(and3a)(〈0,1,0〉) = 0 and(and3a)(〈0,
1,1〉) = 1 and(and3a)(〈1,0,0〉) = 0 and(and3a)(〈1,0,1〉) = 0 and(and3a)(〈1,1,0〉) = 0 and
(and3a)(〈1,1,1〉) = 0.

(23) (and3b)(〈0,0,0〉) = 0 and(and3b)(〈0,0,1〉) = 1 and(and3b)(〈0,1,0〉) = 0 and(and3b)(〈0,
1,1〉) = 0 and(and3b)(〈1,0,0〉) = 0 and(and3b)(〈1,0,1〉) = 0 and(and3b)(〈1,1,0〉) = 0 and
(and3b)(〈1,1,1〉) = 0.

(24) (and3c)(〈0,0,0〉) = 1 and(and3c)(〈0,0,1〉) = 0 and(and3c)(〈0,1,0〉) = 0 and(and3c)(〈0,
1,1〉) = 0 and(and3c)(〈1,0,0〉) = 0 and(and3c)(〈1,0,1〉) = 0 and(and3c)(〈1,1,0〉) = 0 and
(and3c)(〈1,1,1〉) = 0.

(25) or3(〈0,0,0〉) = 0 and or3(〈0,0,1〉) = 1 and or3(〈0,1,0〉) = 1 and or3(〈0,1,1〉) = 1 and
or3(〈1,0,0〉) = 1 and or3(〈1,0,1〉) = 1 and or3(〈1,1,0〉) = 1 and or3(〈1,1,1〉) = 1.

(26) (or3a)(〈0,0,0〉) = 1 and (or3a)(〈0,0,1〉) = 1 and (or3a)(〈0,1,0〉) = 1 and (or3a)(〈0,1,
1〉) = 1 and (or3a)(〈1,0,0〉) = 0 and (or3a)(〈1,0,1〉) = 1 and (or3a)(〈1,1,0〉) = 1 and
(or3a)(〈1,1,1〉) = 1.

(27) (or3b)(〈0,0,0〉) = 1 and (or3b)(〈0,0,1〉) = 1 and (or3b)(〈0,1,0〉) = 1 and (or3b)(〈0,1,
1〉) = 1 and (or3b)(〈1,0,0〉) = 1 and (or3b)(〈1,0,1〉) = 1 and (or3b)(〈1,1,0〉) = 0 and
(or3b)(〈1,1,1〉) = 1.

(28) (or3c)(〈0,0,0〉) = 1 and(or3c)(〈0,0,1〉) = 1 and(or3c)(〈0,1,0〉) = 1 and(or3c)(〈0,1,1〉) =
1 and(or3c)(〈1,0,0〉) = 1 and(or3c)(〈1,0,1〉) = 1 and(or3c)(〈1,1,0〉) = 1 and(or3c)(〈1,1,
1〉) = 0.

(29) xor3(〈0,0,0〉) = 0 and xor3(〈0,0,1〉) = 1 and xor3(〈0,1,0〉) = 1 and xor3(〈0,1,1〉) = 0
and xor3(〈1,0,0〉) = 1 and xor3(〈1,0,1〉) = 0 and xor3(〈1,1,0〉) = 0 and xor3(〈1,1,1〉) = 1.

2 The proposition (18) has been removed.



2’S COMPLEMENT CIRCUIT 5

2. 2’S COMPLEMENT CIRCUIT PROPERTIES

Let x, b be sets. The functor CompStr(x,b) yielding an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows:

(Def. 33) CompStr(x,b) = 1GateCircStr(〈x,b〉,xor2a).

Let x, b be sets. The functor CompCirc(x,b) yielding a strict Boolean circuit of CompStr(x,b)
with denotation held in gates is defined by:

(Def. 34) CompCirc(x,b) = 1GateCircuit(x,b,xor2a).

Letx, bbe sets. The functor CompOutput(x,b) yielding an element of InnerVertices(CompStr(x,b))
is defined by:

(Def. 35) CompOutput(x,b) = 〈〈〈x,b〉, xor2a 〉〉.

Let x, b be sets. The functor IncrementStr(x,b) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates is defined as
follows:

(Def. 36) IncrementStr(x,b) = 1GateCircStr(〈x,b〉,and2a).

Let x, b be sets. The functor IncrementCirc(x,b) yields a strict Boolean circuit of
IncrementStr(x,b) with denotation held in gates and is defined as follows:

(Def. 37) IncrementCirc(x,b) = 1GateCircuit(x,b,and2a).

Let x, b be sets. The functor IncrementOutput(x,b) yielding an element of
InnerVertices(IncrementStr(x,b)) is defined by:

(Def. 38) IncrementOutput(x,b) = 〈〈〈x,b〉, and2a 〉〉.

Let x, b be sets. The functor BitCompStr(x,b) yields an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates and is defined by:

(Def. 39) BitCompStr(x,b) = CompStr(x,b)+· IncrementStr(x,b).

Let x, b be sets. The functor BitCompCirc(x,b) yields a strict Boolean circuit of
BitCompStr(x,b) with denotation held in gates and is defined as follows:

(Def. 40) BitCompCirc(x,b) = CompCirc(x,b)+· IncrementCirc(x,b).

One can prove the following propositions:

(30) For all non pair setsx, b holds InnerVertices(CompStr(x,b)) is a binary relation.

(31) For all non pair setsx, b holds x ∈ the carrier of CompStr(x,b) and b ∈ the carrier of
CompStr(x,b) and〈〈〈x,b〉, xor2a 〉〉 ∈ the carrier of CompStr(x,b).

(32) For all non pair setsx, b holds the carrier of CompStr(x,b) = {x,b}∪{〈〈〈x,b〉, xor2a 〉〉}.

(33) For all non pair setsx, b holds InnerVertices(CompStr(x,b)) = {〈〈〈x,b〉, xor2a 〉〉}.

(34) For all non pair setsx, b holds〈〈〈x,b〉, xor2a 〉〉 ∈ InnerVertices(CompStr(x,b)).

(35) For all non pair setsx, b holds InputVertices(CompStr(x,b)) = {x,b}.

(36) For all non pair setsx, b holds x ∈ InputVertices(CompStr(x,b)) and b ∈
InputVertices(CompStr(x,b)).

(37) For all non pair setsx, b holds InputVertices(CompStr(x,b)) has no pairs.

(38) For all non pair setsx, b holds InnerVertices(IncrementStr(x,b)) is a binary relation.



2’S COMPLEMENT CIRCUIT 6

(39) For all non pair setsx, b holdsx∈ the carrier of IncrementStr(x,b) andb∈ the carrier of
IncrementStr(x,b) and〈〈〈x,b〉, and2a 〉〉 ∈ the carrier of IncrementStr(x,b).

(40) For all non pair setsx, b holds the carrier of IncrementStr(x,b) = {x,b}∪{〈〈〈x,b〉, and2a 〉〉}.

(41) For all non pair setsx, b holds InnerVertices(IncrementStr(x,b)) = {〈〈〈x,b〉, and2a 〉〉}.

(42) For all non pair setsx, b holds〈〈〈x,b〉, and2a 〉〉 ∈ InnerVertices(IncrementStr(x,b)).

(43) For all non pair setsx, b holds InputVertices(IncrementStr(x,b)) = {x,b}.

(44) For all non pair setsx, b holds x ∈ InputVertices(IncrementStr(x,b)) and b ∈
InputVertices(IncrementStr(x,b)).

(45) For all non pair setsx, b holds InputVertices(IncrementStr(x,b)) has no pairs.

(46) For all non pair setsx, b holds InnerVertices(BitCompStr(x,b)) is a binary relation.

(47) Letx, b be non pair sets. Then

(i) x∈ the carrier of BitCompStr(x,b),

(ii) b∈ the carrier of BitCompStr(x,b),

(iii) 〈〈〈x,b〉, xor2a 〉〉 ∈ the carrier of BitCompStr(x,b), and

(iv) 〈〈〈x,b〉, and2a 〉〉 ∈ the carrier of BitCompStr(x,b).

(48) For all non pair setsx, b holds the carrier of BitCompStr(x,b) = {x,b} ∪ {〈〈〈x,b〉,
xor2a 〉〉,〈〈〈x,b〉, and2a 〉〉}.

(49) For all non pair setsx, b holds InnerVertices(BitCompStr(x,b)) = {〈〈〈x,b〉, xor2a 〉〉,〈〈〈x,b〉,
and2a 〉〉}.

(50) For all non pair setsx, b holds〈〈〈x,b〉, xor2a 〉〉 ∈ InnerVertices(BitCompStr(x,b)) and〈〈〈x,
b〉, and2a 〉〉 ∈ InnerVertices(BitCompStr(x,b)).

(51) For all non pair setsx, b holds InputVertices(BitCompStr(x,b)) = {x,b}.

(52) For all non pair setsx, b holds x ∈ InputVertices(BitCompStr(x,b)) and b ∈
InputVertices(BitCompStr(x,b)).

(53) For all non pair setsx, b holds InputVertices(BitCompStr(x,b)) has no pairs.

(54) For all non pair setsx, b and for every states of CompCirc(x,b) holds
(Following(s))(CompOutput(x,b)) = (xor2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(55) Let x, b be non pair sets,s be a state of CompCirc(x,b), and a1, a2 be elements of
Boolean. If a1 = s(x) and a2 = s(b), then (Following(s))(CompOutput(x,b)) = ¬a1⊕ a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(56) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds
(Following(s))(CompOutput(x,b)) = (xor2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(57) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(CompOutput(x,b)) = ¬a1⊕a2 and
(Following(s))(x) = a1 and(Following(s))(b) = a2.

(58) For all non pair setsx, b and for every states of IncrementCirc(x,b) holds
(Following(s))(IncrementOutput(x,b)) = (and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x)
and(Following(s))(b) = s(b).



2’S COMPLEMENT CIRCUIT 7

(59) Let x, b be non pair sets,s be a state of IncrementCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(IncrementOutput(x,b)) = ¬a1∧a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(60) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds
(Following(s))(IncrementOutput(x,b)) = (and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x)
and(Following(s))(b) = s(b).

(61) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(IncrementOutput(x,b)) = ¬a1∧a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(62) Let x, b be non pair sets ands be a state of BitCompCirc(x,b). Then
(Following(s))(CompOutput(x,b))= (xor2a)(〈s(x),s(b)〉) and(Following(s))(IncrementOutput(x,b))=
(and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and(Following(s))(b) = s(b).

(63) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. Supposea1 = s(x) anda2 = s(b). Then(Following(s))(CompOutput(x,b)) =¬a1⊕
a2 and (Following(s))(IncrementOutput(x,b)) = ¬a1∧ a2 and (Following(s))(x) = a1 and
(Following(s))(b) = a2.

(64) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds Following(s) is
stable.

REFERENCES

[1] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I.Journal of Formalized Mathematics, 7, 1995.http://mizar.
org/JFM/Vol7/facirc_1.html.

[2] Czesław Bylínski. Functions and their basic properties.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/
funct_1.html.

[3] Czesław Bylínski. Functions from a set to a set.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/funct_
2.html.

[4] Czesław Bylínski. Finite sequences and tuples of elements of a non-empty sets.Journal of Formalized Mathematics, 2, 1990.http:
//mizar.org/JFM/Vol2/finseq_2.html.

[5] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits.Journal of Formalized Mathematics, 7, 1995.http://mizar.org/
JFM/Vol7/circcomb.html.

[6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II.Journal of Formalized
Mathematics, 6, 1994.http://mizar.org/JFM/Vol6/msafree2.html.

[7] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II.Journal of Formalized
Mathematics, 7, 1995.http://mizar.org/JFM/Vol7/circuit2.html.

[8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics.Journal of Formalized Mathematics, 5, 1993.http://mizar.org/JFM/
Vol5/binarith.html.

[9] Andrzej Trybulec. Tarski Grothendieck set theory.Journal of Formalized Mathematics, Axiomatics, 1989.http://mizar.org/JFM/
Axiomatics/tarski.html.

[10] Andrzej Trybulec. Many sorted algebras.Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1.
html.

[11] Zinaida Trybulec. Properties of subsets.Journal of Formalized Mathematics, 1, 1989.http://mizar.org/JFM/Vol1/subset_1.html.

[12] Edmund Woronowicz. Relations and their basic properties.Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/
Vol1/relat_1.html.

http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol6/msafree2.html
http://mizar.org/JFM/Vol7/circuit2.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html


2’S COMPLEMENT CIRCUIT 8

[13] Edmund Woronowicz. Many-argument relations.Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/
margrel1.html.

Received October 25, 1996

Published January 2, 2004

http://mizar.org/JFM/Vol2/margrel1.html
http://mizar.org/JFM/Vol2/margrel1.html

	2's complement circuit By katsumi wasaki and pauline n. kawamoto

