2's Complement Circuit Katsumi Wasaki National College of Technology Nagano Pauline N. Kawamoto Shinshu University Nagano **Summary.** This article introduces various Boolean operators which are used in discussing the properties and stability of a 2's complement circuit. We present the definitions and related theorems for the following logical operators which include negative input/output: 'and2a', 'or2a', 'xor2a' and 'nand2a', 'nor2a', etc. We formalize the concept of a 2's complement circuit, define the structures of complementors/incrementors for binary operations, and prove the stability of the circuit. MML Identifier: TWOSCOMP. WWW: http://mizar.org/JFM/Vol8/twoscomp.html The articles [9], [11], [12], [2], [3], [13], [4], [8], [10], [6], [7], [5], and [1] provide the notation and terminology for this paper. ## 1. BOOLEAN OPERATORS Let S be an unsplit non void non empty many sorted signature, let A be a Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v) is an element of Boolean. The function and₂ from *Boolean*² into *Boolean* is defined by: (Def. 1) For all elements x, y of *Boolean* holds and $2(\langle x, y \rangle) = x \wedge y$. The function and 2a from $Boolean^2$ into Boolean is defined as follows: (Def. 2) For all elements x, y of *Boolean* holds $(and_{2a})(\langle x,y\rangle) = \neg x \land y$. The function and_{2b} from $Boolean^2$ into Boolean is defined as follows: (Def. 3) For all elements x, y of Boolean holds $(and_{2b})(\langle x, y \rangle) = \neg x \land \neg y$. The function nand₂ from *Boolean*² into *Boolean* is defined by: (Def. 4) For all elements x, y of *Boolean* holds $\operatorname{nand}_2(\langle x, y \rangle) = \neg(x \land y)$. The function $nand_{2a}$ from $Boolean^2$ into Boolean is defined by: (Def. 5) For all elements x, y of *Boolean* holds $(\text{nand}_{2a})(\langle x, y \rangle) = \neg(\neg x \land y)$. The function $nand_{2b}$ from $Boolean^2$ into Boolean is defined by: (Def. 6) For all elements x, y of *Boolean* holds $(\text{nand}_{2b})(\langle x, y \rangle) = \neg(\neg x \land \neg y)$. The function or₂ from *Boolean*² into *Boolean* is defined as follows: (Def. 7) For all elements x, y of *Boolean* holds or₂($\langle x, y \rangle$) = $x \vee y$. The function or_{2a} from *Boolean*² into *Boolean* is defined by: - (Def. 8) For all elements x, y of Boolean holds $(or_{2a})(\langle x, y \rangle) = \neg x \lor y$. The function or_{2b} from $Boolean^2$ into Boolean is defined by: - (Def. 9) For all elements x, y of Boolean holds $(or_{2b})(\langle x, y \rangle) = \neg x \lor \neg y$. The function nor_2 from $Boolean^2$ into Boolean is defined by: - (Def. 10) For all elements x, y of *Boolean* holds $\text{nor}_2(\langle x, y \rangle) = \neg(x \lor y)$. The function nor_{2a} from *Boolean* into *Boolean* is defined by: - (Def. 11) For all elements x, y of Boolean holds $(nor_{2a})(\langle x, y \rangle) = \neg(\neg x \lor y)$. The function nor_{2b} from $Boolean^2$ into Boolean is defined as follows: - (Def. 12) For all elements x, y of Boolean holds $(nor_{2b})(\langle x, y \rangle) = \neg(\neg x \vee \neg y)$. The function xor_2 from $Boolean^2$ into Boolean is defined as follows: - (Def. 13) For all elements x, y of Boolean holds $xor_2(\langle x, y \rangle) = x \oplus y$. The function xor_{2a} from $Boolean^2$ into Boolean is defined as follows: - (Def. 14) For all elements x, y of Boolean holds $(xor_{2a})(\langle x, y \rangle) = \neg x \oplus y$. The function xor_{2b} from $Boolean^2$ into Boolean is defined by: - (Def. 15) For all elements x, y of Boolean holds $(xor_{2b})(\langle x, y \rangle) = \neg x \oplus \neg y$. The following propositions are true: - (3)¹ For all elements x, y of *Boolean* holds and $2(\langle x, y \rangle) = x \wedge y$ and $(\text{and}_{2a})(\langle x, y \rangle) = \neg x \wedge y$ and $(and_{2h})(\langle x, y \rangle) = \neg x \wedge \neg y.$ - (4) For all elements x, y of *Boolean* holds $\operatorname{nand}_2(\langle x, y \rangle) = \neg(x \wedge y)$ and $(\operatorname{nand}_{2a})(\langle x, y \rangle) = \neg(\neg x \wedge y)$ and $(\operatorname{nand}_{2b})(\langle x, y \rangle) = \neg(\neg x \wedge \neg y)$. - (5) For all elements x, y of *Boolean* holds $\operatorname{or}_2(\langle x, y \rangle) = x \vee y$ and $(\operatorname{or}_{2a})(\langle x, y \rangle) = \neg x \vee y$ and $(\operatorname{or}_{2b})(\langle x, y \rangle) = \neg x \vee \neg y$. - (6) For all elements x, y of *Boolean* holds $\operatorname{nor}_2(\langle x, y \rangle) = \neg(x \vee y)$ and $(\operatorname{nor}_{2a})(\langle x, y \rangle) = \neg(\neg x \vee y)$ and $(\operatorname{nor}_{2b})(\langle x, y \rangle) = \neg(\neg x \vee \neg y)$. - (7) For all elements x, y of *Boolean* holds $xor_2(\langle x, y \rangle) = x \oplus y$ and $(xor_{2a})(\langle x, y \rangle) = \neg x \oplus y$ and $(xor_{2b})(\langle x, y \rangle) = \neg x \oplus \neg y$. - (8) For all elements x, y of Boolean holds $\operatorname{and}_2(\langle x, y \rangle) = (\operatorname{nor}_{2b})(\langle x, y \rangle)$ and $(\operatorname{and}_{2a})(\langle x, y \rangle) = (\operatorname{nor}_{2a})(\langle y, x \rangle)$ and $(\operatorname{and}_{2b})(\langle x, y \rangle) = \operatorname{nor}_2(\langle x, y \rangle)$. - (9) For all elements x, y of Boolean holds $or_2(\langle x, y \rangle) = (nand_{2b})(\langle x, y \rangle)$ and $(or_{2a})(\langle x, y \rangle) = (nand_{2a})(\langle y, x \rangle)$ and $(or_{2b})(\langle x, y \rangle) = nand_2(\langle x, y \rangle)$. - (10) For all elements x, y of *Boolean* holds $(xor_{2b})(\langle x, y \rangle) = xor_2(\langle x, y \rangle)$. - (11) $\operatorname{and}_2(\langle 0,0\rangle)=0$ and $\operatorname{and}_2(\langle 0,1\rangle)=0$ and $\operatorname{and}_2(\langle 1,0\rangle)=0$ and $\operatorname{and}_2(\langle 1,1\rangle)=1$ and $(\operatorname{and}_{2a})(\langle 0,0\rangle)=0$ and $(\operatorname{and}_{2a})(\langle 0,1\rangle)=1$ and $(\operatorname{and}_{2a})(\langle 1,0\rangle)=0$ and $(\operatorname{and}_{2a})(\langle 1,1\rangle)=0$ and $(\operatorname{and}_{2b})(\langle 0,0\rangle)=1$ and $(\operatorname{and}_{2b})(\langle 0,1\rangle)=0$ and $(\operatorname{and}_{2b})(\langle 1,0\rangle)=0$ and $(\operatorname{and}_{2b})(\langle 1,0\rangle)=0$ and $(\operatorname{and}_{2b})(\langle 1,0\rangle)=0$ and $(\operatorname{and}_{2b})(\langle 1,0\rangle)=0$. ¹ The propositions (1) and (2) have been removed. - (12) $\operatorname{or}_2(\langle 0,0\rangle) = 0$ and $\operatorname{or}_2(\langle 0,1\rangle) = 1$ and $\operatorname{or}_2(\langle 1,0\rangle) = 1$ and $\operatorname{or}_2(\langle 1,1\rangle) = 1$ and $(\operatorname{or}_{2a})(\langle 0,0\rangle) = 1$ and $(\operatorname{or}_{2a})(\langle 0,1\rangle) = 1$ and $(\operatorname{or}_{2a})(\langle 1,0\rangle) = 0$ and $(\operatorname{or}_{2a})(\langle 1,1\rangle) = 1$ and $(\operatorname{or}_{2b})(\langle 0,0\rangle) = 1$ and $(\operatorname{or}_{2b})(\langle 0,1\rangle) = 1$ and $(\operatorname{or}_{2b})(\langle 1,0\rangle) = 1$ and $(\operatorname{or}_{2b})(\langle 1,1\rangle) = 0$. - (13) $\operatorname{xor}_2(\langle 0,0\rangle) = 0$ and $\operatorname{xor}_2(\langle 0,1\rangle) = 1$ and $\operatorname{xor}_2(\langle 1,0\rangle) = 1$ and $\operatorname{xor}_2(\langle 1,1\rangle) = 0$ and $(\operatorname{xor}_{2a})(\langle 0,0\rangle) = 1$ and $(\operatorname{xor}_{2a})(\langle 0,1\rangle) = 0$ and $(\operatorname{xor}_{2a})(\langle 1,0\rangle) = 0$ and $(\operatorname{xor}_{2a})(\langle 1,1\rangle) = 1$. The function and₃ from *Boolean*³ into *Boolean* is defined as follows: - (Def. 16) For all elements x, y, z of *Boolean* holds and $_3(\langle x, y, z \rangle) = x \wedge y \wedge z$. The function and $_{3a}$ from *Boolean* into *Boolean* is defined by: - (Def. 17) For all elements x, y, z of *Boolean* holds $(\text{and}_{3a})(\langle x, y, z \rangle) = \neg x \land y \land z$. The function and_{3b} from Boolean^3 into Boolean is defined by: - (Def. 18) For all elements x, y, z of *Boolean* holds $(\text{and}_{3b})(\langle x, y, z \rangle) = \neg x \land \neg y \land z$. The function and_{3c} from *Boolean*³ into *Boolean* is defined as follows: - (Def. 19) For all elements x, y, z of *Boolean* holds $(\text{and}_{3c})(\langle x, y, z \rangle) = \neg x \land \neg y \land \neg z$. The function nand₃ from *Boolean*³ into *Boolean* is defined as follows: - (Def. 20) For all elements x, y, z of *Boolean* holds nand₃($\langle x, y, z \rangle$) = $\neg (x \land y \land z)$. The function nand_{3a} from *Boolean*³ into *Boolean* is defined as follows: - (Def. 21) For all elements x, y, z of *Boolean* holds $(\text{nand}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \land y \land z)$. The function nand_{3b} from $Boolean^3$ into Boolean is defined by: - (Def. 22) For all elements x, y, z of *Boolean* holds $(\text{nand}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \land \neg y \land z)$. The function nand_{3c} from *Boolean*³ into *Boolean* is defined by: - (Def. 23) For all elements x, y, z of *Boolean* holds $(\text{nand}_{3c})(\langle x, y, z \rangle) = \neg(\neg x \wedge \neg y \wedge \neg z)$. The function or₃ from *Boolean*³ into *Boolean* is defined by: - (Def. 24) For all elements x, y, z of *Boolean* holds or₃($\langle x, y, z \rangle$) = $x \lor y \lor z$. The function or_{3a} from *Boolean*³ into *Boolean* is defined as follows: - (Def. 25) For all elements x, y, z of *Boolean* holds $(\text{or}_{3a})(\langle x, y, z \rangle) = \neg x \lor y \lor z$. The function or_{3b} from *Boolean*³ into *Boolean* is defined by: - (Def. 26) For all elements x, y, z of *Boolean* holds $(or_{3b})(\langle x, y, z \rangle) = \neg x \lor \neg y \lor z$. The function or_{3c} from *Boolean*³ into *Boolean* is defined by: - (Def. 27) For all elements x, y, z of *Boolean* holds $(or_{3c})(\langle x, y, z \rangle) = \neg x \lor \neg y \lor \neg z$. The function nor_3 from *Boolean*³ into *Boolean* is defined as follows: - (Def. 28) For all elements x, y, z of *Boolean* holds $nor_3(\langle x, y, z \rangle) = \neg(x \lor y \lor z)$. The function nor_{3a} from *Boolean*³ into *Boolean* is defined by: - (Def. 29) For all elements x, y, z of *Boolean* holds $(nor_{3a})(\langle x, y, z \rangle) = \neg(\neg x \lor y \lor z)$. The function nor_{3b} from *Boolean*³ into *Boolean* is defined as follows: - (Def. 30) For all elements x, y, z of *Boolean* holds $(\text{nor}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor z)$. The function nor_{3c} from *Boolean*³ into *Boolean* is defined as follows: (Def. 31) For all elements x, y, z of *Boolean* holds $(nor_{3c})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor \neg z)$. The function xor₃ from *Boolean*³ into *Boolean* is defined by: (Def. 32) For all elements x, y, z of *Boolean* holds $xor_3(\langle x, y, z \rangle) = x \oplus y \oplus z$. The following propositions are true: - (14) For all elements x, y, z of *Boolean* holds and $3(\langle x, y, z \rangle) = x \land y \land z$ and $3a(\langle x, y, z \rangle) = \neg x \land y \land z$ and $3a(\langle x, y, z \rangle) = \neg x \land \neg y \land z$ and $3a(\langle x, y, z \rangle) = \neg x \land \neg y \land z$. - (15) Let x, y, z be elements of *Boolean*. Then $\operatorname{nand}_3(\langle x, y, z \rangle) = \neg(x \wedge y \wedge z)$ and $(\operatorname{nand}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \wedge y \wedge z)$ and $(\operatorname{nand}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \wedge \neg y \wedge z)$ and $(\operatorname{nand}_{3c})(\langle x, y, z \rangle) = \neg(\neg x \wedge \neg y \wedge z)$. - (16) For all elements x, y, z of *Boolean* holds $\operatorname{or}_3(\langle x, y, z \rangle) = x \vee y \vee z$ and $(\operatorname{or}_{3a})(\langle x, y, z \rangle) = \neg x \vee y \vee z$ and $(\operatorname{or}_{3b})(\langle x, y, z \rangle) = \neg x \vee \neg y \vee z$ and $(\operatorname{or}_{3c})(\langle x, y, z \rangle) = \neg x \vee \neg y \vee \neg z$. - (17) Let x, y, z be elements of *Boolean*. Then $\text{nor}_3(\langle x, y, z \rangle) = \neg(x \lor y \lor z)$ and $(\text{nor}_{3a})(\langle x, y, z \rangle) = \neg(\neg x \lor y \lor z)$ and $(\text{nor}_{3b})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor z)$ and $(\text{nor}_{3c})(\langle x, y, z \rangle) = \neg(\neg x \lor \neg y \lor \neg z)$. - (19)² For all elements x, y, z of Boolean holds and $and_3(\langle x, y, z \rangle) = (nor_{3c})(\langle x, y, z \rangle)$ and $and_{3a}(\langle x, y, z \rangle) = (nor_{3b})(\langle z, y, x \rangle)$ and $and_{3b}(\langle x, y, z \rangle) = (nor_{3a})(\langle z, y, x \rangle)$ and $and_{3c}(\langle x, y, z \rangle) = (nor_{3a})(\langle x, y, z \rangle)$. - (20) For all elements x, y, z of Boolean holds $\operatorname{or}_3(\langle x, y, z \rangle) = (\operatorname{nand}_{3c})(\langle x, y, z \rangle)$ and $(\operatorname{or}_{3a})(\langle x, y, z \rangle) = (\operatorname{nand}_{3b})(\langle z, y, x \rangle)$ and $(\operatorname{or}_{3b})(\langle x, y, z \rangle) = (\operatorname{nand}_{3a})(\langle x, y, z \rangle)$ and $(\operatorname{or}_{3c})(\langle x, y, z \rangle) = \operatorname{nand}_3(\langle x, y, z \rangle)$. - (22) $(\operatorname{and}_{3a})(\langle 0,0,0\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0,0,1\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1,0,0\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1,0,1\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1,1,0\rangle) = 0$ and $(\operatorname{and}_{3a})(\langle 1,1,1\rangle) = 0$. - (23) $(\operatorname{and}_{3b})(\langle 0,0,0\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 0,0,1\rangle) = 1$ and $(\operatorname{and}_{3b})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1,0,0\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1,0,1\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1,1,0\rangle) = 0$ and $(\operatorname{and}_{3b})(\langle 1,1,1\rangle) = 0$. - (24) $(\operatorname{and}_{3c})(\langle 0,0,0\rangle) = 1$ and $(\operatorname{and}_{3c})(\langle 0,0,1\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 0,1,0\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1,0,0\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1,0,1\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1,1,0\rangle) = 0$ and $(\operatorname{and}_{3c})(\langle 1,1,1\rangle) = 0$. - (25) $\operatorname{or}_3(\langle 0,0,0\rangle)=0$ and $\operatorname{or}_3(\langle 0,0,1\rangle)=1$ and $\operatorname{or}_3(\langle 0,1,0\rangle)=1$ and $\operatorname{or}_3(\langle 1,0,0\rangle)=1$ and $\operatorname{or}_3(\langle 1,0,0\rangle)=1$ and $\operatorname{or}_3(\langle 1,0,1\rangle)=1$ and $\operatorname{or}_3(\langle 1,1,0\rangle)=1$ and $\operatorname{or}_3(\langle 1,1,1\rangle)=1$. - (26) $(\text{or}_{3a})(\langle 0,0,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 0,0,1\rangle) = 1$ and $(\text{or}_{3a})(\langle 0,1,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 0,1,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 1,0,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 1,0,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 1,1,0\rangle) = 1$ and $(\text{or}_{3a})(\langle 1,1,1\rangle) = 1$. - (27) $(\text{or}_{3b})(\langle 0,0,0\rangle) = 1$ and $(\text{or}_{3b})(\langle 0,0,1\rangle) = 1$ and $(\text{or}_{3b})(\langle 0,1,0\rangle) = 1$ and $(\text{or}_{3b})(\langle 1,0,0\rangle) = 1$ and $(\text{or}_{3b})(\langle 1,0,0\rangle) = 1$ and $(\text{or}_{3b})(\langle 1,0,1\rangle) = 1$ and $(\text{or}_{3b})(\langle 1,1,0\rangle) = 0$ and $(\text{or}_{3b})(\langle 1,1,1\rangle) = 1$. - (28) $(or_{3c})(\langle 0,0,0\rangle) = 1$ and $(or_{3c})(\langle 0,0,1\rangle) = 1$ and $(or_{3c})(\langle 0,1,0\rangle) = 1$ and $(or_{3c})(\langle 0,1,1\rangle) = 1$ and $(or_{3c})(\langle 1,0,0\rangle) = 1$ and $(or_{3c})(\langle 1,0,1\rangle) = 1$ and $(or_{3c})(\langle 1,1,0\rangle) - (29) $\operatorname{xor}_3(\langle 0,0,0\rangle)=0$ and $\operatorname{xor}_3(\langle 0,0,1\rangle)=1$ and $\operatorname{xor}_3(\langle 0,1,0\rangle)=1$ and $\operatorname{xor}_3(\langle 0,1,1\rangle)=0$ and $\operatorname{xor}_3(\langle 1,0,0\rangle)=1$ and $\operatorname{xor}_3(\langle 1,0,1\rangle)=0$ and $\operatorname{xor}_3(\langle 1,1,0\rangle)=0$ and $\operatorname{xor}_3(\langle 1,1,1\rangle)=1$. ² The proposition (18) has been removed. ## 2. 2'S COMPLEMENT CIRCUIT PROPERTIES Let x, b be sets. The functor CompStr(x,b) yielding an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows: (Def. 33) CompStr(x, b) = 1GateCircStr($\langle x, b \rangle$, xor_{2a}). Let x, b be sets. The functor CompCirc(x,b) yielding a strict Boolean circuit of CompStr(x,b) with denotation held in gates is defined by: (Def. 34) $\operatorname{CompCirc}(x, b) = 1\operatorname{GateCircuit}(x, b, \operatorname{xor}_{2a}).$ Let x, b be sets. The functor CompOutput(x,b) yielding an element of InnerVertices(CompStr(x,b)) is defined by: (Def. 35) CompOutput $(x,b) = \langle \langle x,b \rangle, xor_{2a} \rangle$. Let x, b be sets. The functor IncrementStr(x,b) yielding an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows: (Def. 36) IncrementStr(x,b) = 1GateCircStr($\langle x, b \rangle$, and_{2a}). Let x, b be sets. The functor IncrementCirc(x,b) yields a strict Boolean circuit of IncrementStr(x,b) with denotation held in gates and is defined as follows: (Def. 37) IncrementCirc(x,b) = 1GateCircuit(x,b, and_{2a}). Let x, b be sets. The functor IncrementOutput(x,b) yielding an element of InnerVertices(IncrementStr(x,b)) is defined by: (Def. 38) IncrementOutput(x,b) = $\langle \langle x, b \rangle$, and_{2a} \rangle . Let x, b be sets. The functor BitCompStr(x,b) yields an unsplit non void strict non empty many sorted signature with arity held in gates and Boolean denotation held in gates and is defined by: (Def. 39) BitCompStr(x,b) = CompStr(x,b)+·IncrementStr(x,b). Let x, b be sets. The functor BitCompCirc(x,b) yields a strict Boolean circuit of BitCompStr(x,b) with denotation held in gates and is defined as follows: (Def. 40) BitCompCirc(x, b) = CompCirc(x, b)+·IncrementCirc(x, b). One can prove the following propositions: - (30) For all non pair sets x, b holds InnerVertices(CompStr(x, b)) is a binary relation. - (31) For all non pair sets x, b holds $x \in \text{the carrier of CompStr}(x,b)$ and $b \in \text{the carrier of CompStr}(x,b)$ and $\langle \langle x,b \rangle, xor_{2a} \rangle \in \text{the carrier of CompStr}(x,b)$. - (32) For all non pair sets x, b holds the carrier of CompStr $(x,b) = \{x,b\} \cup \{\langle \langle x,b \rangle, xor_{2a} \rangle\}$. - (33) For all non pair sets x, b holds InnerVertices(CompStr(x,b)) = { $\langle \langle x, b \rangle, xor_{2a} \rangle$ }. - (34) For all non pair sets x, b holds $\langle \langle x, b \rangle, xor_{2a} \rangle \in InnerVertices(CompStr(<math>x$,b)). - (35) For all non pair sets x, b holds InputVertices(CompStr(x,b)) = {x,b}. - (36) For all non pair sets x, b holds $x \in \text{InputVertices}(\text{CompStr}(x,b))$ and $b \in \text{InputVertices}(\text{CompStr}(x,b))$. - (37) For all non pair sets x, b holds InputVertices(CompStr(x,b)) has no pairs. - (38) For all non pair sets x, b holds InnerVertices(IncrementStr(x,b)) is a binary relation. - (39) For all non pair sets x, b holds $x \in \text{the carrier of IncrementStr}(x,b)$ and $b \in \text{the carrier of IncrementStr}(x,b)$ and $\langle \langle x,b \rangle, \text{ and}_{2a} \rangle \in \text{the carrier of IncrementStr}(x,b)$. - (40) For all non pair sets x, b holds the carrier of IncrementStr $(x,b) = \{x,b\} \cup \{\langle \langle x,b \rangle, \text{ and } 2a \rangle\}$. - (41) For all non pair sets x, b holds InnerVertices(IncrementStr(x,b)) = $\{\langle \langle x,b \rangle, \text{ and } 2a \rangle \}$. - (42) For all non pair sets x, b holds $\langle \langle x, b \rangle$, and $a \geq a \geq a$. InnerVertices(IncrementStr(x, b)). - (43) For all non pair sets x, b holds InputVertices(IncrementStr(x,b)) = $\{x,b\}$. - (44) For all non pair sets x, b holds $x \in \text{InputVertices}(\text{IncrementStr}(x,b))$ and $b \in \text{InputVertices}(\text{IncrementStr}(x,b))$. - (45) For all non pair sets x, b holds InputVertices(IncrementStr(x,b)) has no pairs. - (46) For all non pair sets x, b holds InnerVertices(BitCompStr(x,b)) is a binary relation. - (47) Let x, b be non pair sets. Then - (i) $x \in \text{the carrier of BitCompStr}(x, b)$, - (ii) $b \in \text{the carrier of BitCompStr}(x, b)$, - (iii) $\langle \langle x, b \rangle, xor_{2a} \rangle \in \text{the carrier of BitCompStr}(x, b), \text{ and}$ - (iv) $\langle \langle x, b \rangle$, and_{2a} $\rangle \in$ the carrier of BitCompStr(x, b). - (48) For all non pair sets x, b holds the carrier of BitCompStr $(x,b) = \{x,b\} \cup \{\langle \langle x,b \rangle, xor_{2a} \rangle, \langle \langle x,b \rangle, and_{2a} \rangle\}$. - (49) For all non pair sets x, b holds InnerVertices(BitCompStr(x,b)) = $\{\langle \langle x,b \rangle, xor_{2a} \rangle, \langle \langle x,b \rangle, and_{2a} \rangle \}$. - (50) For all non pair sets x, b holds $\langle \langle x, b \rangle, xor_{2a} \rangle \in InnerVertices(BitCompStr(<math>x$, b)) and $\langle \langle x, b \rangle, and_{2a} \rangle \in InnerVertices(BitCompStr(<math>x$, b)). - (51) For all non pair sets x, b holds InputVertices(BitCompStr(x,b)) = $\{x,b\}$. - (52) For all non pair sets x, b holds $x \in InputVertices(BitCompStr(<math>x$,b)) and $b \in InputVertices(BitCompStr(<math>x$,b)). - (53) For all non pair sets x, b holds InputVertices(BitCompStr(x, b)) has no pairs. - (54) For all non pair sets x, b and for every state s of CompCirc(x,b) holds $(Following(s))(CompOutput(x,b)) = (xor_{2a})(\langle s(x), s(b) \rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b). - (55) Let x, b be non pair sets, s be a state of CompCirc(x,b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(CompOutput(x,b)) = $\neg a_1 \oplus a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(b) = a_2$. - (56) For all non pair sets x, b and for every state s of BitCompCirc(x,b) holds (Following(s))(CompOutput(x,b)) = (xor_{2a})($\langle s(x), s(b) \rangle$) and (Following(s))(x) = x(x) and (Following(x))(x) (Following(x)(x) = x(x) and (Following(x)(x) = x(x) = x(x) and (Following(x)(x) = x(x) - (57) Let x, b be non pair sets, s be a state of BitCompCirc(x,b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(CompOutput(x,b)) = $\neg a_1 \oplus a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(x) = a_2$. - (58) For all non pair sets x, b and for every state s of IncrementCirc(x,b) holds (Following(s))(IncrementOutput(x,b)) = $(\text{and}_{2a})(\langle s(x),s(b)\rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b). - (59) Let x, b be non pair sets, s be a state of IncrementCirc(x,b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(IncrementOutput(x,b)) = $\neg a_1 \land a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(x) = a_2$. - (60) For all non pair sets x, b and for every state s of BitCompCirc(x,b) holds (Following(s))(IncrementOutput(x,b)) = $(\text{and}_{2a})(\langle s(x),s(b)\rangle)$ and (Following(s))(x) = s(x) and (Following(s))(b) = s(b). - (61) Let x, b be non pair sets, s be a state of BitCompCirc(x,b), and a_1 , a_2 be elements of *Boolean*. If $a_1 = s(x)$ and $a_2 = s(b)$, then (Following(s))(IncrementOutput(x,b)) = $\neg a_1 \land a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(x) = a_2$. - (62) Let x, b be non pair sets and s be a state of BitCompCirc(x,b). Then (Following(s))(CompOutput(x,b)) = $(xor_{2a})(\langle s(x),s(b)\rangle)$ and (Following(s))(IncrementOutput(x,b)) = $(and_{2a})(\langle s(x),s(b)\rangle)$ and (Following(s))(x) = s(x) = s(x) and (Following(s))(x) = s(x) - (63) Let x, b be non pair sets, s be a state of BitCompCirc(x,b), and a_1 , a_2 be elements of *Boolean*. Suppose $a_1 = s(x)$ and $a_2 = s(b)$. Then (Following(s))(CompOutput(x,b)) = $\neg a_1 \oplus a_2$ and (Following(s))(IncrementOutput(x,b)) = $\neg a_1 \land a_2$ and (Following(s)) $(x) = a_1$ and (Following(s)) $(x) = a_2$. - (64) For all non pair sets x, b and for every state s of BitCompCirc(x,b) holds Following(s) is stable. ## REFERENCES - Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/JFM/Vo17/facirc 1.html. - [2] Czesław Byliński. Functions and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_1.html. - [3] Czesław Byliński. Functions from a set to a set. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/funct_2.html. - [4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. *Journal of Formalized Mathematics*, 2, 1990. http://mizar.org/JFM/Vol2/finseq_2.html. - [5] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Journal of Formalized Mathematics, 7, 1995. http://mizar.org/ JFM/Vol7/circcomb.html. - [6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, II. *Journal of Formalized Mathematics*, 6, 1994. http://mizar.org/JFM/Vol6/msafree2.html. - [7] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuits, II. *Journal of Formalized Mathematics*, 7, 1995. http://mizar.org/JFM/Vol7/circuit2.html. - [8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Journal of Formalized Mathematics, 5, 1993. http://mizar.org/JFM/ Vol5/binarith.html. - [9] Andrzej Trybulec. Tarski Grothendieck set theory. Journal of Formalized Mathematics, Axiomatics, 1989. http://mizar.org/JFM/Axiomatics/tarski.html. - [10] Andrzej Trybulec. Many sorted algebras. Journal of Formalized Mathematics, 6, 1994. http://mizar.org/JFM/Vol6/msualg_1. html. - [11] Zinaida Trybulec. Properties of subsets. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Vol1/subset_1.html. - [12] Edmund Woronowicz. Relations and their basic properties. Journal of Formalized Mathematics, 1, 1989. http://mizar.org/JFM/Voll/relat_1.html. [13] Edmund Woronowicz. Many-argument relations. Journal of Formalized Mathematics, 2, 1990. http://mizar.org/JFM/Vol2/margrell.html. Received October 25, 1996 Published January 2, 2004 ____