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Summary. This article introduces various Boolean operators which are used in dis-
cussing the properties and stability of a 2’s complement circuit. We present the definitions
and related theorems for the following logical operators which include negative input/output:
’and2a’, ’or2a’, ’xor2a’ and ’nand2a’, ’nor2a’, etc. We formalize the concept of a 2’s comple-
ment circuit, define the structures of complementors/incrementors for binary operations, and
prove the stability of the circuit.

MML Identifier: TWOSCOMP.

WWW: http://mizar.org/JFM/Vol8/twoscomp.html

The articles [9], [11], [12], [2], [3], [13], [4], [8], [10], [6], [7], [5], and [1] provide the notation and
terminology for this paper.

1. BOOLEAN OPERATORS

Let Sbe an unsplit non void non empty many sorted signature, letA be a Boolean circuit ofS, let s
be a state ofA, and letv be a vertex ofS. Thens(v) is an element ofBoolean.

The function and2 from Boolean2 into Booleanis defined by:

(Def. 1) For all elementsx, y of Booleanholds and2(〈x,y〉) = x∧y.

The function and2a from Boolean2 into Booleanis defined as follows:

(Def. 2) For all elementsx, y of Booleanholds(and2a)(〈x,y〉) = ¬x∧y.

The function and2b from Boolean2 into Booleanis defined as follows:

(Def. 3) For all elementsx, y of Booleanholds(and2b)(〈x,y〉) = ¬x∧¬y.

The function nand2 from Boolean2 into Booleanis defined by:

(Def. 4) For all elementsx, y of Booleanholds nand2(〈x,y〉) = ¬(x∧y).

The function nand2a from Boolean2 into Booleanis defined by:

(Def. 5) For all elementsx, y of Booleanholds(nand2a)(〈x,y〉) = ¬(¬x∧y).

The function nand2b from Boolean2 into Booleanis defined by:

(Def. 6) For all elementsx, y of Booleanholds(nand2b)(〈x,y〉) = ¬(¬x∧¬y).

The function or2 from Boolean2 into Booleanis defined as follows:

(Def. 7) For all elementsx, y of Booleanholds or2(〈x,y〉) = x∨y.

1 c© Association of Mizar Users

http://mizar.org/JFM/Vol8/twoscomp.html


2’S COMPLEMENT CIRCUIT 2

The function or2a from Boolean2 into Booleanis defined by:

(Def. 8) For all elementsx, y of Booleanholds(or2a)(〈x,y〉) = ¬x∨y.

The function or2b from Boolean2 into Booleanis defined by:

(Def. 9) For all elementsx, y of Booleanholds(or2b)(〈x,y〉) = ¬x∨¬y.

The function nor2 from Boolean2 into Booleanis defined by:

(Def. 10) For all elementsx, y of Booleanholds nor2(〈x,y〉) = ¬(x∨y).

The function nor2a from Boolean2 into Booleanis defined by:

(Def. 11) For all elementsx, y of Booleanholds(nor2a)(〈x,y〉) = ¬(¬x∨y).

The function nor2b from Boolean2 into Booleanis defined as follows:

(Def. 12) For all elementsx, y of Booleanholds(nor2b)(〈x,y〉) = ¬(¬x∨¬y).

The function xor2 from Boolean2 into Booleanis defined as follows:

(Def. 13) For all elementsx, y of Booleanholds xor2(〈x,y〉) = x⊕y.

The function xor2a from Boolean2 into Booleanis defined as follows:

(Def. 14) For all elementsx, y of Booleanholds(xor2a)(〈x,y〉) = ¬x⊕y.

The function xor2b from Boolean2 into Booleanis defined by:

(Def. 15) For all elementsx, y of Booleanholds(xor2b)(〈x,y〉) = ¬x⊕¬y.

The following propositions are true:

(3)1 For all elementsx, y of Booleanholds and2(〈x,y〉) = x∧y and(and2a)(〈x,y〉) =¬x∧y and
(and2b)(〈x,y〉) = ¬x∧¬y.

(4) For all elementsx, y of Booleanholds nand2(〈x,y〉) = ¬(x∧ y) and (nand2a)(〈x,y〉) =
¬(¬x∧y) and(nand2b)(〈x,y〉) = ¬(¬x∧¬y).

(5) For all elementsx, y of Booleanholds or2(〈x,y〉) = x∨ y and(or2a)(〈x,y〉) = ¬x∨ y and
(or2b)(〈x,y〉) = ¬x∨¬y.

(6) For all elementsx, y of Booleanholds nor2(〈x,y〉) = ¬(x∨y) and(nor2a)(〈x,y〉) = ¬(¬x∨
y) and(nor2b)(〈x,y〉) = ¬(¬x∨¬y).

(7) For all elementsx, y of Booleanholds xor2(〈x,y〉) = x⊕y and(xor2a)(〈x,y〉) = ¬x⊕y and
(xor2b)(〈x,y〉) = ¬x⊕¬y.

(8) For all elementsx, y of Booleanholds and2(〈x,y〉) = (nor2b)(〈x,y〉) and(and2a)(〈x,y〉) =
(nor2a)(〈y,x〉) and(and2b)(〈x,y〉) = nor2(〈x,y〉).

(9) For all elementsx, y of Booleanholds or2(〈x,y〉) = (nand2b)(〈x,y〉) and(or2a)(〈x,y〉) =
(nand2a)(〈y,x〉) and(or2b)(〈x,y〉) = nand2(〈x,y〉).

(10) For all elementsx, y of Booleanholds(xor2b)(〈x,y〉) = xor2(〈x,y〉).

(11) and2(〈0,0〉) = 0 and and2(〈0,1〉) = 0 and and2(〈1,0〉) = 0 and and2(〈1,1〉) = 1 and
(and2a)(〈0,0〉) = 0 and(and2a)(〈0,1〉) = 1 and(and2a)(〈1,0〉) = 0 and(and2a)(〈1,1〉) = 0
and (and2b)(〈0,0〉) = 1 and (and2b)(〈0,1〉) = 0 and (and2b)(〈1,0〉) = 0 and (and2b)(〈1,
1〉) = 0.

1 The propositions (1) and (2) have been removed.
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(12) or2(〈0,0〉) = 0 and or2(〈0,1〉) = 1 and or2(〈1,0〉) = 1 and or2(〈1,1〉) = 1 and(or2a)(〈0,
0〉) = 1 and(or2a)(〈0,1〉) = 1 and(or2a)(〈1,0〉) = 0 and(or2a)(〈1,1〉) = 1 and(or2b)(〈0,
0〉) = 1 and(or2b)(〈0,1〉) = 1 and(or2b)(〈1,0〉) = 1 and(or2b)(〈1,1〉) = 0.

(13) xor2(〈0,0〉) = 0 and xor2(〈0,1〉) = 1 and xor2(〈1,0〉) = 1 and xor2(〈1,1〉) = 0 and
(xor2a)(〈0,0〉) = 1 and(xor2a)(〈0,1〉) = 0 and(xor2a)(〈1,0〉) = 0 and(xor2a)(〈1,1〉) = 1.

The function and3 from Boolean3 into Booleanis defined as follows:

(Def. 16) For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = x∧y∧z.

The function and3a from Boolean3 into Booleanis defined by:

(Def. 17) For all elementsx, y, z of Booleanholds(and3a)(〈x,y,z〉) = ¬x∧y∧z.

The function and3b from Boolean3 into Booleanis defined by:

(Def. 18) For all elementsx, y, z of Booleanholds(and3b)(〈x,y,z〉) = ¬x∧¬y∧z.

The function and3c from Boolean3 into Booleanis defined as follows:

(Def. 19) For all elementsx, y, z of Booleanholds(and3c)(〈x,y,z〉) = ¬x∧¬y∧¬z.

The function nand3 from Boolean3 into Booleanis defined as follows:

(Def. 20) For all elementsx, y, z of Booleanholds nand3(〈x,y,z〉) = ¬(x∧y∧z).

The function nand3a from Boolean3 into Booleanis defined as follows:

(Def. 21) For all elementsx, y, z of Booleanholds(nand3a)(〈x,y,z〉) = ¬(¬x∧y∧z).

The function nand3b from Boolean3 into Booleanis defined by:

(Def. 22) For all elementsx, y, z of Booleanholds(nand3b)(〈x,y,z〉) = ¬(¬x∧¬y∧z).

The function nand3c from Boolean3 into Booleanis defined by:

(Def. 23) For all elementsx, y, z of Booleanholds(nand3c)(〈x,y,z〉) = ¬(¬x∧¬y∧¬z).

The function or3 from Boolean3 into Booleanis defined by:

(Def. 24) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = x∨y∨z.

The function or3a from Boolean3 into Booleanis defined as follows:

(Def. 25) For all elementsx, y, z of Booleanholds(or3a)(〈x,y,z〉) = ¬x∨y∨z.

The function or3b from Boolean3 into Booleanis defined by:

(Def. 26) For all elementsx, y, z of Booleanholds(or3b)(〈x,y,z〉) = ¬x∨¬y∨z.

The function or3c from Boolean3 into Booleanis defined by:

(Def. 27) For all elementsx, y, z of Booleanholds(or3c)(〈x,y,z〉) = ¬x∨¬y∨¬z.

The function nor3 from Boolean3 into Booleanis defined as follows:

(Def. 28) For all elementsx, y, z of Booleanholds nor3(〈x,y,z〉) = ¬(x∨y∨z).

The function nor3a from Boolean3 into Booleanis defined by:

(Def. 29) For all elementsx, y, z of Booleanholds(nor3a)(〈x,y,z〉) = ¬(¬x∨y∨z).

The function nor3b from Boolean3 into Booleanis defined as follows:

(Def. 30) For all elementsx, y, z of Booleanholds(nor3b)(〈x,y,z〉) = ¬(¬x∨¬y∨z).

The function nor3c from Boolean3 into Booleanis defined as follows:
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(Def. 31) For all elementsx, y, z of Booleanholds(nor3c)(〈x,y,z〉) = ¬(¬x∨¬y∨¬z).

The function xor3 from Boolean3 into Booleanis defined by:

(Def. 32) For all elementsx, y, z of Booleanholds xor3(〈x,y,z〉) = x⊕y⊕z.

The following propositions are true:

(14) For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = x∧ y∧ z and(and3a)(〈x,y,z〉) =
¬x∧y∧z and(and3b)(〈x,y,z〉) = ¬x∧¬y∧z and(and3c)(〈x,y,z〉) = ¬x∧¬y∧¬z.

(15) Letx, y, z be elements ofBoolean. Then nand3(〈x,y,z〉) = ¬(x∧y∧z) and(nand3a)(〈x,y,
z〉) = ¬(¬x∧y∧z) and(nand3b)(〈x,y,z〉) = ¬(¬x∧¬y∧z) and(nand3c)(〈x,y,z〉) = ¬(¬x∧
¬y∧¬z).

(16) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = x∨ y∨ z and (or3a)(〈x,y,z〉) =
¬x∨y∨z and(or3b)(〈x,y,z〉) = ¬x∨¬y∨z and(or3c)(〈x,y,z〉) = ¬x∨¬y∨¬z.

(17) Letx, y, zbe elements ofBoolean. Then nor3(〈x,y,z〉) =¬(x∨y∨z) and(nor3a)(〈x,y,z〉) =
¬(¬x∨y∨z) and(nor3b)(〈x,y,z〉) = ¬(¬x∨¬y∨z) and(nor3c)(〈x,y,z〉) = ¬(¬x∨¬y∨¬z).

(19)2 For all elementsx, y, z of Booleanholds and3(〈x,y,z〉) = (nor3c)(〈x,y,z〉) and(and3a)(〈x,
y,z〉) = (nor3b)(〈z,y,x〉) and (and3b)(〈x,y,z〉) = (nor3a)(〈z,y,x〉) and (and3c)(〈x,y,z〉) =
nor3(〈x,y,z〉).

(20) For all elementsx, y, z of Booleanholds or3(〈x,y,z〉) = (nand3c)(〈x,y,z〉) and(or3a)(〈x,
y,z〉) = (nand3b)(〈z,y,x〉) and (or3b)(〈x,y,z〉) = (nand3a)(〈z,y,x〉) and (or3c)(〈x,y,z〉) =
nand3(〈x,y,z〉).

(21) and3(〈0,0,0〉) = 0 and and3(〈0,0,1〉) = 0 and and3(〈0,1,0〉) = 0 and and3(〈0,1,1〉) = 0
and and3(〈1,0,0〉) = 0 and and3(〈1,0,1〉) = 0 and and3(〈1,1,0〉) = 0 and and3(〈1,1,1〉) = 1.

(22) (and3a)(〈0,0,0〉) = 0 and(and3a)(〈0,0,1〉) = 0 and(and3a)(〈0,1,0〉) = 0 and(and3a)(〈0,
1,1〉) = 1 and(and3a)(〈1,0,0〉) = 0 and(and3a)(〈1,0,1〉) = 0 and(and3a)(〈1,1,0〉) = 0 and
(and3a)(〈1,1,1〉) = 0.

(23) (and3b)(〈0,0,0〉) = 0 and(and3b)(〈0,0,1〉) = 1 and(and3b)(〈0,1,0〉) = 0 and(and3b)(〈0,
1,1〉) = 0 and(and3b)(〈1,0,0〉) = 0 and(and3b)(〈1,0,1〉) = 0 and(and3b)(〈1,1,0〉) = 0 and
(and3b)(〈1,1,1〉) = 0.

(24) (and3c)(〈0,0,0〉) = 1 and(and3c)(〈0,0,1〉) = 0 and(and3c)(〈0,1,0〉) = 0 and(and3c)(〈0,
1,1〉) = 0 and(and3c)(〈1,0,0〉) = 0 and(and3c)(〈1,0,1〉) = 0 and(and3c)(〈1,1,0〉) = 0 and
(and3c)(〈1,1,1〉) = 0.

(25) or3(〈0,0,0〉) = 0 and or3(〈0,0,1〉) = 1 and or3(〈0,1,0〉) = 1 and or3(〈0,1,1〉) = 1 and
or3(〈1,0,0〉) = 1 and or3(〈1,0,1〉) = 1 and or3(〈1,1,0〉) = 1 and or3(〈1,1,1〉) = 1.

(26) (or3a)(〈0,0,0〉) = 1 and (or3a)(〈0,0,1〉) = 1 and (or3a)(〈0,1,0〉) = 1 and (or3a)(〈0,1,
1〉) = 1 and (or3a)(〈1,0,0〉) = 0 and (or3a)(〈1,0,1〉) = 1 and (or3a)(〈1,1,0〉) = 1 and
(or3a)(〈1,1,1〉) = 1.

(27) (or3b)(〈0,0,0〉) = 1 and (or3b)(〈0,0,1〉) = 1 and (or3b)(〈0,1,0〉) = 1 and (or3b)(〈0,1,
1〉) = 1 and (or3b)(〈1,0,0〉) = 1 and (or3b)(〈1,0,1〉) = 1 and (or3b)(〈1,1,0〉) = 0 and
(or3b)(〈1,1,1〉) = 1.

(28) (or3c)(〈0,0,0〉) = 1 and(or3c)(〈0,0,1〉) = 1 and(or3c)(〈0,1,0〉) = 1 and(or3c)(〈0,1,1〉) =
1 and(or3c)(〈1,0,0〉) = 1 and(or3c)(〈1,0,1〉) = 1 and(or3c)(〈1,1,0〉) = 1 and(or3c)(〈1,1,
1〉) = 0.

(29) xor3(〈0,0,0〉) = 0 and xor3(〈0,0,1〉) = 1 and xor3(〈0,1,0〉) = 1 and xor3(〈0,1,1〉) = 0
and xor3(〈1,0,0〉) = 1 and xor3(〈1,0,1〉) = 0 and xor3(〈1,1,0〉) = 0 and xor3(〈1,1,1〉) = 1.

2 The proposition (18) has been removed.
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2. 2’S COMPLEMENT CIRCUIT PROPERTIES

Let x, b be sets. The functor CompStr(x,b) yielding an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows:

(Def. 33) CompStr(x,b) = 1GateCircStr(〈x,b〉,xor2a).

Let x, b be sets. The functor CompCirc(x,b) yielding a strict Boolean circuit of CompStr(x,b)
with denotation held in gates is defined by:

(Def. 34) CompCirc(x,b) = 1GateCircuit(x,b,xor2a).

Letx, bbe sets. The functor CompOutput(x,b) yielding an element of InnerVertices(CompStr(x,b))
is defined by:

(Def. 35) CompOutput(x,b) = 〈〈〈x,b〉, xor2a 〉〉.

Let x, b be sets. The functor IncrementStr(x,b) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates is defined as
follows:

(Def. 36) IncrementStr(x,b) = 1GateCircStr(〈x,b〉,and2a).

Let x, b be sets. The functor IncrementCirc(x,b) yields a strict Boolean circuit of
IncrementStr(x,b) with denotation held in gates and is defined as follows:

(Def. 37) IncrementCirc(x,b) = 1GateCircuit(x,b,and2a).

Let x, b be sets. The functor IncrementOutput(x,b) yielding an element of
InnerVertices(IncrementStr(x,b)) is defined by:

(Def. 38) IncrementOutput(x,b) = 〈〈〈x,b〉, and2a 〉〉.

Let x, b be sets. The functor BitCompStr(x,b) yields an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates and is defined by:

(Def. 39) BitCompStr(x,b) = CompStr(x,b)+· IncrementStr(x,b).

Let x, b be sets. The functor BitCompCirc(x,b) yields a strict Boolean circuit of
BitCompStr(x,b) with denotation held in gates and is defined as follows:

(Def. 40) BitCompCirc(x,b) = CompCirc(x,b)+· IncrementCirc(x,b).

One can prove the following propositions:

(30) For all non pair setsx, b holds InnerVertices(CompStr(x,b)) is a binary relation.

(31) For all non pair setsx, b holds x ∈ the carrier of CompStr(x,b) and b ∈ the carrier of
CompStr(x,b) and〈〈〈x,b〉, xor2a 〉〉 ∈ the carrier of CompStr(x,b).

(32) For all non pair setsx, b holds the carrier of CompStr(x,b) = {x,b}∪{〈〈〈x,b〉, xor2a 〉〉}.

(33) For all non pair setsx, b holds InnerVertices(CompStr(x,b)) = {〈〈〈x,b〉, xor2a 〉〉}.

(34) For all non pair setsx, b holds〈〈〈x,b〉, xor2a 〉〉 ∈ InnerVertices(CompStr(x,b)).

(35) For all non pair setsx, b holds InputVertices(CompStr(x,b)) = {x,b}.

(36) For all non pair setsx, b holds x ∈ InputVertices(CompStr(x,b)) and b ∈
InputVertices(CompStr(x,b)).

(37) For all non pair setsx, b holds InputVertices(CompStr(x,b)) has no pairs.

(38) For all non pair setsx, b holds InnerVertices(IncrementStr(x,b)) is a binary relation.
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(39) For all non pair setsx, b holdsx∈ the carrier of IncrementStr(x,b) andb∈ the carrier of
IncrementStr(x,b) and〈〈〈x,b〉, and2a 〉〉 ∈ the carrier of IncrementStr(x,b).

(40) For all non pair setsx, b holds the carrier of IncrementStr(x,b) = {x,b}∪{〈〈〈x,b〉, and2a 〉〉}.

(41) For all non pair setsx, b holds InnerVertices(IncrementStr(x,b)) = {〈〈〈x,b〉, and2a 〉〉}.

(42) For all non pair setsx, b holds〈〈〈x,b〉, and2a 〉〉 ∈ InnerVertices(IncrementStr(x,b)).

(43) For all non pair setsx, b holds InputVertices(IncrementStr(x,b)) = {x,b}.

(44) For all non pair setsx, b holds x ∈ InputVertices(IncrementStr(x,b)) and b ∈
InputVertices(IncrementStr(x,b)).

(45) For all non pair setsx, b holds InputVertices(IncrementStr(x,b)) has no pairs.

(46) For all non pair setsx, b holds InnerVertices(BitCompStr(x,b)) is a binary relation.

(47) Letx, b be non pair sets. Then

(i) x∈ the carrier of BitCompStr(x,b),

(ii) b∈ the carrier of BitCompStr(x,b),

(iii) 〈〈〈x,b〉, xor2a 〉〉 ∈ the carrier of BitCompStr(x,b), and

(iv) 〈〈〈x,b〉, and2a 〉〉 ∈ the carrier of BitCompStr(x,b).

(48) For all non pair setsx, b holds the carrier of BitCompStr(x,b) = {x,b} ∪ {〈〈〈x,b〉,
xor2a 〉〉,〈〈〈x,b〉, and2a 〉〉}.

(49) For all non pair setsx, b holds InnerVertices(BitCompStr(x,b)) = {〈〈〈x,b〉, xor2a 〉〉,〈〈〈x,b〉,
and2a 〉〉}.

(50) For all non pair setsx, b holds〈〈〈x,b〉, xor2a 〉〉 ∈ InnerVertices(BitCompStr(x,b)) and〈〈〈x,
b〉, and2a 〉〉 ∈ InnerVertices(BitCompStr(x,b)).

(51) For all non pair setsx, b holds InputVertices(BitCompStr(x,b)) = {x,b}.

(52) For all non pair setsx, b holds x ∈ InputVertices(BitCompStr(x,b)) and b ∈
InputVertices(BitCompStr(x,b)).

(53) For all non pair setsx, b holds InputVertices(BitCompStr(x,b)) has no pairs.

(54) For all non pair setsx, b and for every states of CompCirc(x,b) holds
(Following(s))(CompOutput(x,b)) = (xor2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(55) Let x, b be non pair sets,s be a state of CompCirc(x,b), and a1, a2 be elements of
Boolean. If a1 = s(x) and a2 = s(b), then (Following(s))(CompOutput(x,b)) = ¬a1⊕ a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(56) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds
(Following(s))(CompOutput(x,b)) = (xor2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(57) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(CompOutput(x,b)) = ¬a1⊕a2 and
(Following(s))(x) = a1 and(Following(s))(b) = a2.

(58) For all non pair setsx, b and for every states of IncrementCirc(x,b) holds
(Following(s))(IncrementOutput(x,b)) = (and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x)
and(Following(s))(b) = s(b).
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(59) Let x, b be non pair sets,s be a state of IncrementCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(IncrementOutput(x,b)) = ¬a1∧a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(60) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds
(Following(s))(IncrementOutput(x,b)) = (and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x)
and(Following(s))(b) = s(b).

(61) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. If a1 = s(x) anda2 = s(b), then(Following(s))(IncrementOutput(x,b)) = ¬a1∧a2

and(Following(s))(x) = a1 and(Following(s))(b) = a2.

(62) Let x, b be non pair sets ands be a state of BitCompCirc(x,b). Then
(Following(s))(CompOutput(x,b))= (xor2a)(〈s(x),s(b)〉) and(Following(s))(IncrementOutput(x,b))=
(and2a)(〈s(x),s(b)〉) and(Following(s))(x) = s(x) and(Following(s))(b) = s(b).

(63) Let x, b be non pair sets,s be a state of BitCompCirc(x,b), anda1, a2 be elements of
Boolean. Supposea1 = s(x) anda2 = s(b). Then(Following(s))(CompOutput(x,b)) =¬a1⊕
a2 and (Following(s))(IncrementOutput(x,b)) = ¬a1∧ a2 and (Following(s))(x) = a1 and
(Following(s))(b) = a2.

(64) For all non pair setsx, b and for every states of BitCompCirc(x,b) holds Following(s) is
stable.
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