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Summary. This article introduces various Boolean operators which are used in dis-
cussing the properties and stability of a 2's complement circuit. We present the definitions
and related theorems for the following logical operators which include negative input/output:
'and2a’, 'or2a’, 'xor2a’ and 'nand2a’, 'nor2a’, etc. We formalize the concept of a 2's comple-
ment circuit, define the structures of complementors/incrementors for binary operations, and
prove the stability of the circuit.

MML Identifier: TWOSCOMP.

WWW: http://mizar.org/JFM/Vol8/twoscomp. html

The articles([9],[[11],[[12],[[2],13],[[13],[[4],18],[[10],1[6], 7], 5], and [1] provide the notation and
terminology for this paper.

1. BOOLEAN OPERATORS

Let Sbe an unsplit non void non empty many sorted signature ket a Boolean circuit of, lets
be a state oA, and letv be a vertex o Thens(v) is an element oBoolean
The function ang from Boolearf into Booleanis defined by:

(Def. 1) For all elements, y of Booleanholds and((x,y)) = XAY.

The function angh from Boolear? into Booleanis defined as follows:
(Def. 2) For all elements, y of Booleanholds(anda)((X,y)) = —=XAY.
The function ang, from Boolear? into Booleanis defined as follows:
(Def. 3) For all elements, y of Booleanholds (andy)((X,y)) = =XA =Y.
The function nangfrom Boolear? into Booleanis defined by:

(Def. 4) For all elements, y of Booleanholds nand((x,y)) = —(xAY).
The function nangh from Boolearf into Booleanis defined by:

(Def. 5) For all elements, y of Booleanholds(nanda) ((X,y)) = = (=xAY).
The function nangl, from Boolearf into Booleanis defined by:

(Def. 6) For all elements, y of Booleanholds(nandy) ((X,y)) = =(—=xA —y).
The function os from Boolearf into Booleanis defined as follows:

(Def. 7) For all elementg, y of Booleanholds op((x,y)) =X V.

1 © Association of Mizar Users
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The function os, from Boolearf into Booleanis defined by:
(Def. 8) For all elements, y of Booleanholds(0rza) ({(X,y)) = =X VY.
The function og, from Boolearf into Booleanis defined by:
(Def. 9) For all elementg, y of Booleanholds(orzp) ({X,y)) = —xV —y.
The function nos from Boolear? into Booleanis defined by:
(Def. 10) For all elements, y of Booleanholds nog((x,y)) = =(xVy).
The function nog, from Boolearf into Booleanis defined by:
(Def. 11) For all elements, y of Booleanholds(nora) ((X,y)) = = (—=xVy).
The function nog, from Boolearf into Booleanis defined as follows:
(Def. 12) For all elements, y of Booleanholds(noray) ((X,y)) = —(—=xV —y).
The function xos from Boolearf into Booleanis defined as follows:
(Def. 13) For all elements, y of Booleanholds xop({X,y)) = X®Y.
The function xo, from Boolearf into Booleanis defined as follows:
(Def. 14) For all elements, y of Booleanholds (xorza) ((X,Y)) = —X®Y.
The function xo, from Boolearf into Booleanis defined by:
(Def. 15) For all elements, y of Booleanholds (xorap) ((X,Y)) = X @ .

The following propositions are true:

(3H For all elements, y of Booleanholds and((x,y)) = xAy and(anta)({X,y)) = -xAyand
(@nd)({xy)) = XA -y.

(4) For all elements, y of Booleanholds nand({x,y)) = —~(xAy) and (nancs)((x,y)) =
—(—xAYy) and(nandy)((X,y)) = 2 (=XAy).

(5) For all elements, y of Booleanholds op((x,y)) = xVy and(0orz)({X,y)) = -xVy and
(0rap) ((X,y)) = =XV =y.

(6) For all elements, y of Booleanholds nog((x,y)) = =(xVy) and(nora) ({(X,y)) = =(—xV
y) and(norzp) ((x,y)) = =(=xV =y).

(7) For all elements, y of Booleanholds Xop((x,y)) = x@Yy and(Xorza)((X,y)) = -x@®y and
(xorzp)((%,y)) = —X& .

(8) For all elementg, y of Booleanholds and(({x,y)) = (norp)({x,y)) and(anca)({X,y)) =
(norza) ({y; X)) and(andsp)((x,y)) = norz({x,y)).

(9) For all elements;, y of Booleanholds op((x,y)) = (nandy)({x,y)) and(orza)({X,y)) =
(nanda)((y.X)) and (oran) ({x,y)) = nand((x.y)).

(10) For all elements, y of Booleanholds(xora) ((X,y)) = Xorz2({X,y)).

(11) and((0,0)) = 0 and angd({0,1)) = 0 and and({1,0)) = 0 and and({1,1)) = 1 and
(anda)({0,0)) = 0 and(anca)((0, 1)) = 1 and(ancka)((1,0)) = 0 and(ancka)((1,1)) = 0
and (andgb)(<0,0>) = 1 and (andy)((0,1)) = 0 and (andy)((1,0)) = 0 and (andgb)(<
1)=0.

1 The propositions (1) and (2) have been removed.
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(12) or({(0,0)) =0 and 0p({0,1)) =1 and 05({1,0)) = 1 and op((1,1)) = 1 and(orx4)({0,
0)) = 1 and(0rz3)((0,1)) = 1 and(orz4)({1,0)) = 0 and(0ra)({1,1)) = 1 and(ory,) ({0,
0)) = 1 and(ory)((0,1)) = 1 and(orxp)((1,0)) = 1 and(orx)({1,1)) = 0.

(13) xor({0,0)) = 0 and xo05({0,1)) = 1 and xop({1,0)) = 1 and xop({1
(x0r23)({0,0)) = 1 and(xor24)({0,1)) = 0 and(Xorza)((1,0)) = 0 and(xo0rza)

The function anglfrom Boolear! into Booleanis defined as follows:
(Def. 16) For all elements, y, zof Booleanholds and((x,y,2)) = XAyAz
The function ang, from Boolear! into Booleanis defined by:
(Def. 17) For all elements, y, z of Booleanholds(anda)((X,y,2)) = -XAYAZ
The function angl, from Boolear! into Booleanis defined by:
(Def. 18) For all elements, y, z of Booleanholds(ands,)((X,Y,2)) = XA —-yAZ
The function ang. from Boolear! into Booleanis defined as follows:
(Def. 19) For all elements, y, z of Booleanholds(ands)((X,Y,2)) = -XA -y A -z
The function nanglfrom Boolear! into Booleanis defined as follows:
(Def. 20) For all elements, y, zof Booleanholds nand({X,y,2)) = —=(XAYA2).
The function nangk from Boolear? into Booleanis defined as follows:
(Def. 21) For all elements, y, z of Booleanholds(nanaa) ((X,Y,2)) = =(=XAYAZ2).
The function nangh, from Booleart into Booleanis defined by:
(Def. 22) For all elements, y, zof Booleanholds(nandy) ({(X,,2)) = = (=XA —yAZ).
The function nangk from Boolears into Booleanis defined by:
(Def. 23) For all elements, y, zof Booleanholds(nandg)((X,Y,2)) = —(=XA =y A —2z).
The function og from Boolear! into Booleanis defined by:
(Def. 24) For all elements, y, zof Booleanholds 0g((x,y,2)) =xVyVz
The function og, from Boolear? into Booleanis defined as follows:
(Def. 25) For all elements, y, zof Booleanholds(orsa)((X,¥,2)) = -XVyVz
The function og, from Booleart into Booleanis defined by:
(Def. 26) For all elements, y, zof Booleanholds(orsp) ({(X,Y,2)) = =XV -yVz
The function og. from Booleari into Booleanis defined by:
(Def. 27) For all elements, y, z of Booleanholds(orsc)({X,Y,2)) = =XV —yV =z
The function nog from Boolear! into Booleanis defined as follows:
(Def. 28) For all elements, y, zof Booleanholds nog({x,y,2)) = ~(xVyV z).
The function nog, from Boolear! into Booleanis defined by:
(Def. 29) For all elements, y, zof Booleanholds(norsa) ((x,Y,2)) = = (—xVyVz).
The function nog, from Boolear! into Booleanis defined as follows:
(Def. 30) For all elements, y, zof Booleanholds(norsy) ((X,Y,2)) = —(=xV ~yV z).

The function nos. from Boolear! into Booleanis defined as follows:
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(Def. 31) For all elements, y, z of Booleanholds(norsg)((x,y,2)) = —(—=xV —yV —2z).
The function xo% from Boolear? into Booleanis defined by:
(Def. 32) For all elements, y, z of Booleanholds xo0g({X,y,2)) = x®y® z

The following propositions are true:

(14) For all elements, y, z of Booleanholds and((x,y,2)) = xAyAzand(anda)((X,y,2)) =
—-XAyAzand(andy)((x,y,2)) = XA —-yAzand(andy)((X,y,2)) = “XA —-yA -z

(15) Letx,y, zbe elements oBoolean Then nand({(x,y,2)) = ~(xAy A z) and(nanda)((X, Y,
z)) = ~(—xAyAZz) and(nandyp)((x,y,2)) = =(-xA-yAZz) and(nandg)((X,y,2)) = =(-XA
—yA—2).

(16) For all elements, y, z of Booleanholds og(({x,y,2)) = xVyV z and (orss)({X,y,2)) =
—XxVyVzand(ors)((X,Y,2)) = ~xV -yVzand(ors)((X,y,2)) = XV yV -z

(17) Letx,y, zbe elements dBoolean Then nog((x,y,2)) = —~(xVyVz) and(nors,)({X,y,2)) =
—(=xVyVz) and(nors,)({X,y,2)) = =(=xV =yVz) and(nors) ({X,y,2)) = =(=xV =y V =2z).

(19E] For all elements, y, z of Booleanholds ang((x,y,z)) = (norsc)({x,Y,2)) and(andy)({x
y,Z>)(<: (n(;;3b)(<zvyax>) and (an@b)«xvya Z>) = (nor3a)(<z,y,x>) and (andEC)«vaa Z>)
nors((x,y,2)).

(20) For all elements, y, z of Booleanholds og(({x,y,z)) = (nands)({X,y,2)) and (0orsa)((X,

y,Z>) = (nan@b)(<zayvx>) and (Orgb)(<X,y, Z>) - (na”dza)«zvya)(» and (Orgc)(<X,y, Z>)
nang((x,y,z)).

(21) and((0,0,0)) = 0 and ang({0,0,1)) = 0 and and({(0,
and ang((1,0,0)) =0 and ang({1,0,1)) =0 and ang((1,1,0)) = 0 and angd((1,1,1))
al

1,
1
(22) (andka)((0,0,0)) =0 and(and,)({0,0,1)) =0 and( Nka)((0,1,0)) = 0 and(ands,) ({0,
1,1)) =1 and(anda)((1,0,0)) = 0 and(anda)((1,0,1)) = 0 and(ands)((1,1,0)) = 0 and
(andy)((1,1,1)) = 0.

(23) (andy)((0,0,0)) = 0 and(andsy)((0,0,1)) = 1 and(ands)((0,1,0)) = 0 and(ands) ({0,
1, >) 0 and(and,)((1,0,0)) = 0 and(andsy)((1,0,1)) = 0 and(andy)((1,1,0)) = 0 and
(andy)((1,1,1)) = 0.

0)) =0 and ang((0,1,1)) =0
=1

(24) (andk)((0,0,0)) =1 and(ands:)((0,0,1)) = 0 and(ands)((0,1,0)) = 0 and(ands)((0,
1,1)) = 0 and(and:)((1,0,0)) = 0 and(andk:)({1,0,1)) = 0 and(ands)((1,1,0)) = 0 and
(andsc)((1,1,1)) =0.

)
(25) o0r((0,0,0)) = 0 and 0§({0,0,1)) = 1 and 0g((0,1,0)) = 1 and 0g((0,1,1)) =1 and
or3((1,0,0)) =1 and 0g((1,0,1)) = 1 and 0g((1,1,0)) = 1 and og((1,1 1>) 1

(26) (0rs)((0,0,0)) = 1 and(orss)((0,0,1)) = 1 and (ors4)({0,1,0)) = 1 and (orza)((0, 1,
1)) = 1 and (ors3)({1,0,0)) = 0 and (ors5)({1,0,1)) = 1 and (ors5)({1,1,0)) = 1 and
(orsa)((1,1,1)) = 1.

(27) (orsy)((0,0,0)) = 1 and(orsy)((0,0,1)) = 1 and (ors,)({0,1,0)) = 1 and (orap)((0,1,
1)) = 1 and (ors,)((1,0,0)) = 1 and (ors)({1,0,1)) = 1 and (ors)({1,1,0)) = 0 and
(orsp)((1,1,1)) = 1.

(28) (ors:)({0,0,0)) =1 and(ors:)({0,0,1)) = 1 and(ors:)((0,1,0)) = 1 and(ors:) ({0, 1, 1))
1 and(ors)({1,0,0)) = 1 and(ors:)({1,0,1)) = 1 and(ors:)({1,1,0)) = 1 and(o 30) (1,
1)=0.

(29) xo0r;((0,0,0)) = 0 and x0§((0,0,1)) = 1 and xo0g((0,1,0)) = 1 and x0g((0,1,1)) =
and xo0g((1,0,0)) = 1 and xog({1,0,1)) = 0 and xog({1,1,0)) = 0 and xog({1,1,1)) = 1.

1,

o

2 The proposition (18) has been removed.
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2. 2'sCOMPLEMENT CIRCUIT PROPERTIES

Let x, b be sets. The functor Comp8trb) yielding an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows:

(Def. 33) CompSiix, b) = 1GateCircStf(x, b),xor;,).

Letx, b be sets. The functor CompCircb) yielding a strict Boolean circuit of Comp$k; b)
with denotation held in gates is defined by:

(Def. 34) CompCir¢x, b) = 1GateCircuifx, b, xorz3).

Letx, bbe sets. The functor CompOutpxtb) yielding an element of InnerVerticBSompSt(x, b))
is defined by:

(Def. 35) CompOutpyk,b) = (({x, b}, x0rz ).

Let x, b be sets. The functor IncrementStib) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates is defined as
follows:

(Def. 36) IncrementStK, b) = 1GateCircSti(x, b),ands).

Let x, b be sets. The functor IncrementQixchb) yields a strict Boolean circuit of
IncrementStix, b) with denotation held in gates and is defined as follows:

(Def. 37) IncrementCing, b) = 1GateCircuifx, b,ancs).

Let x, b be sets. The functor IncrementOutpyb) yielding an element of
InnerVerticeg$incrementStx, b)) is defined by:

(Def. 38) IncrementOutp(x, b) = ((x,b), ancy ).

Letx, b be sets. The functor BitComp$trb) yields an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates and is defined by:

(Def. 39) BitCompStfx,b) = CompSttx, b)+- IncrementStx, b).

Let X, b be sets. The functor BitCompCicb) yields a strict Boolean circuit of
BitCompSt(x, b) with denotation held in gates and is defined as follows:

(Def. 40) BitCompCir¢x,b) = CompCirgx, b)+- IncrementCiréx, b).
One can prove the following propositions:
(30) For all non pair sets, b holds InnerVertice€CompSttx, b)) is a binary relation.

(31) For all non pair setg, b holds x € the carrier of CompStk,b) andb € the carrier of
CompsSitex, b) and{(x,b), xorza) € the carrier of CompStk,b).

(32) For all non pair sets, b holds the carrier of CompS, b) = {x,b} U {{(x,b), x0rza}}.
(33) For all non pair sets, b holds InnerVertice€CompSt(x, b)) = {{(x,b), xorza ) }.

(34) For all non pair sets, b holds{(x,b), xorz3) € InnerVertice$CompsStcx,b)).

(35) For all non pair sets, b holds InputVertice€CompSt(x, b)) = {x,b}.

(36) For all non pair setsx, b holds x € InputVertice§CompSt(x,b)) and b €
InputVerticegCompSt(x, b)).

(37) For all non pair sets, b holds InputVertice®CompSttx, b)) has no pairs.

(38) For all non pair sets, b holds InnerVerticegncrementStix, b)) is a binary relation.
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(39) For all non pair sets, b holdsx € the carrier of IncrementSix, b) andb € the carrier of
IncrementStfx,b) and((x,b), anck, ) € the carrier of IncrementSix, b).

(40) For all non pair setg b holds the carrier of Increment$trb) = {x,b} U{((x,b), anca ) }.
(41) For all non pair sets, b holds InnerVerticedncrementStfx, b)) = {{((x,b), ancha ) }.
(42) For all non pair sets, b holds{(x,b), anck,) € InnerVerticegincrementStx, b)).

(43) For all non pair sets, b holds InputVerticedncrementStix, b)) = {x,b}.

(44) For all non pair setsx, b holds x € InputVerticegincrementStix,b)) and b €
InputVerticegIncrementStx, b)).

(45) For all non pair sets, b holds InputVerticedncrementStix, b)) has no pairs.
(46) For all non pair sets, b holds InnerVerticeBitCompSt(x, b)) is a binary relation.

(47) Letx, bbe non pair sets. Then

(i) xe the carrier of BitCompStx,b),

(i) b e the carrier of BitCompStx, b),
(i) {(x,b), xorza} € the carrier of BitCompStx,b), and
(iv)  {(x,b),anda) € the carrier of BitCompS{x, b).

(48) For all non pair setx, b holds the carrier of BitCompSix,b) = {x,b} U {{(x,b),
XOr2a ), {(X,b), ancha ) }.

(49) For all non pair sets, b holds InnerVerticeBitCompStx, b)) = {{((x,b), xor2a}, ((X, b},
anca)}.

(50) For all non pair sets, b holds {(x,b), xorz3) € InnerVertice$BitCompSt(x, b)) and{(x,
b), anta ) € InnerVertice$BitCompSt(x,b)).

(51) For all non pair sets, b holds InputVertice@BitCompStKx, b)) = {x,b}.

(52) For all non pair setsx, b holds x € InputVerticeBitCompStfx,b)) and b €
InputVerticegBitCompStix, b)).

(53) For all non pair sets, b holds InputVerticeBitCompSt(x, b)) has no pairs.

(54) For all non pair setsx, b and for every states of CompCirdx,b) holds
(Following(s)) (CompOutpux, b)) = (xora)({s(x),s(b))) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(55) Letx, b be non pair setss be a state of CompCi(g,b), anda;, a, be elements of
Boolean If a; = s(x) anda, = s(b), then (Following(s))(CompOutpufx,b)) = —a; @ ap
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(56) For all non pair setsx, b and for every states of BitCompCirgdx,b) holds
(Following(s)) (CompOutpufx, b)) = (xorza)({s(x),s(b)}) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(57) Letx, b be non pair setss be a state of BitCompCifg,b), anda;, a, be elements of
Boolean If a3 = s(x) anda, = s(b), then(Following(s))(CompOutpux, b)) = —a; ¢ a2 and
(Following(s))(x) = a1 and(Following(s))(b) = ay.

(58) For all non pair setx, b and for every states of IncrementCir¢x,b) holds
(Following(s))(IncrementOutpuk, b)) = (anda) ({s(x),s(b))) and(Following(s))(x) = s(X)
and(Following(s))(b) = s(b).
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(59) Letx, b be non pair setss be a state of IncrementCitcb), anda;, ay be elements of
Boolean If a; = s(x) andaz = s(b), then(Following(s)) (IncrementOutpyk, b)) = —a; A&y
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(60) For all non pair setsx, b and for every states of BitCompCirgx,b) holds
(Following(s))(IncrementOutpuk, b)) = (ana) ({s(x),s(b))) and(Following(s))(x) = s(X)
and(Following(s))(b) = s(b).

(61) Letx, b be non pair setss be a state of BitCompCi(g,b), anda;, a; be elements of
Boolean If a; = s(x) anday = s(b), then(Following(s))(IncrementOutpuk, b)) = —a; Aa
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(62) Let x, b be non pair sets ands be a state of BitCompCi(g,b). Then
(Following(s)) (CompOutpufx, b)) = (xora) ({s(X), s(b)}) and(Following(s) ) (IncrementOutpui, b)) =
(anda)((s(x),s(b))) and(Following(s))(x) = s(x) and(Following(s))(b) = s(b).

(63) Letx, b be non pair setss be a state of BitCompCi(g,b), anda;, a, be elements of
Boolean Suppose; = s(x) andaz = s(b). Then(Following(s))(CompOutpux, b)) = ~a; &
ap and (Following(s))(IncrementOutpyk, b)) = —ay A a; and (Following(s))(x) = a1 and
(Following(s))(b) = ay.

(64) For all non pair sets, b and for every state of BitCompCirdx, b) holds Followingds) is
stable.
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