JOURNAL OF FORMALIZED MATHEMATICS
Volume8, Released 1996, Published 2003
Inst. of Computer Science, Univ. of Bialystok

2's Complement Circuit

Katsumi Wasaki Pauline N. Kawamoto
National College of Technology Shinshu University
Nagano Nagano

Summary. This article introduces various Boolean operators which are used in dis-
cussing the properties and stability of a 2's complement circuit. We present the definitions
and related theorems for the following logical operators which include negative input/output:
'and2a’, 'or2a’, 'xor2a’ and 'nand2a’, 'nor2a’, etc. We formalize the concept of a 2's comple-
ment circuit, define the structures of complementors/incrementors for binary operations, and
prove the stability of the circuit.

MML Identifier: TWOSCOMP.

WWW: http://mizar.org/JFM/Vol8/twoscomp. html

The articles([9],[[11],[[12],[[2],13],[[13],[[4],18],[[10],1[6], 7], 5], and [1] provide the notation and
terminology for this paper.

1. BOOLEAN OPERATORS

Let Sbe an unsplit non void non empty many sorted signature ket a Boolean circuit of, lets
be a state oA, and letv be a vertex o Thens(v) is an element oBoolean
The function ang from Boolearf into Booleanis defined by:

(Def. 1) For all elements, y of Booleanholds and((x,y)) = XAY.

The function angh from Boolear? into Booleanis defined as follows:
(Def. 2) For all elements, y of Booleanholds(anda)((X,y)) = —=XAY.
The function ang, from Boolear? into Booleanis defined as follows:
(Def. 3) For all elements, y of Booleanholds (andy)((X,y)) = =XA =Y.
The function nangfrom Boolear? into Booleanis defined by:

(Def. 4) For all elements, y of Booleanholds nand((x,y)) = —(xAY).
The function nangh from Boolearf into Booleanis defined by:

(Def. 5) For all elements, y of Booleanholds(nanda) ((X,y)) = = (=xAY).
The function nangl, from Boolearf into Booleanis defined by:

(Def. 6) For all elements, y of Booleanholds(nandy) ((X,y)) = =(—=xA —y).
The function os from Boolearf into Booleanis defined as follows:

(Def. 7) For all elementg, y of Booleanholds op((x,y)) =X V.

1 © Association of Mizar Users

http://mizar.org/JFM/Vol8/twoscomp.html

2’'S COMPLEMENT CIRCUIT 2

The function os, from Boolearf into Booleanis defined by:
(Def. 8) For all elements, y of Booleanholds(0rza) ({(X,y)) = =X VY.
The function og, from Boolearf into Booleanis defined by:
(Def. 9) For all elementg, y of Booleanholds(orzp) ({X,y)) = —xV —y.
The function nos from Boolear? into Booleanis defined by:
(Def. 10) For all elements, y of Booleanholds nog((x,y)) = =(xVy).
The function nog, from Boolearf into Booleanis defined by:
(Def. 11) For all elements, y of Booleanholds(nora) ((X,y)) = = (—=xVy).
The function nog, from Boolearf into Booleanis defined as follows:
(Def. 12) For all elements, y of Booleanholds(noray) ((X,y)) = —(—=xV —y).
The function xos from Boolearf into Booleanis defined as follows:
(Def. 13) For all elements, y of Booleanholds xop({X,y)) = X®Y.
The function xo, from Boolearf into Booleanis defined as follows:
(Def. 14) For all elements, y of Booleanholds (xorza) ((X,Y)) = —X®Y.
The function xo, from Boolearf into Booleanis defined by:
(Def. 15) For all elements, y of Booleanholds (xorap) ((X,Y)) = X @ .

The following propositions are true:

(3H For all elements, y of Booleanholds and((x,y)) = xAy and(anta)({X,y)) = -xAyand
(@nd)({xy)) = XA -y.

(4) For all elements, y of Booleanholds nand({x,y)) = —~(xAy) and (nancs)((x,y)) =
—(—xAYy) and(nandy)((X,y)) = 2 (=XAy).

(5) For all elements, y of Booleanholds op((x,y)) = xVy and(0orz)({X,y)) = -xVy and
(0rap) ((X,y)) = =XV =y.

(6) For all elements, y of Booleanholds nog((x,y)) = =(xVy) and(nora) ({(X,y)) = =(—xV
y) and(norzp) ((x,y)) = =(=xV =y).

(7) For all elements, y of Booleanholds Xop((x,y)) = x@Yy and(Xorza)((X,y)) = -x@®y and
(xorzp)((%,y)) = —X& .

(8) For all elementg, y of Booleanholds and(({x,y)) = (norp)({x,y)) and(anca)({X,y)) =
(norza) ({y; X)) and(andsp)((x,y)) = norz({x,y)).

(9) For all elements;, y of Booleanholds op((x,y)) = (nandy)({x,y)) and(orza)({X,y)) =
(nanda)((y.X)) and (oran) ({x,y)) = nand((x.y)).

(10) For all elements, y of Booleanholds(xora) ((X,y)) = Xorz2({X,y)).

(11) and((0,0)) = 0 and angd({0,1)) = 0 and and({1,0)) = 0 and and({1,1)) = 1 and
(anda)({0,0)) = 0 and(anca)((0, 1)) = 1 and(ancka)((1,0)) = 0 and(ancka)((1,1)) = 0
and (andgb)(<0,0>) = 1 and (andy)((0,1)) = 0 and (andy)((1,0)) = 0 and (andgb)(<
1)=0.

1 The propositions (1) and (2) have been removed.

2’'S COMPLEMENT CIRCUIT 3

(12) or({(0,0)) =0 and 0p({0,1)) =1 and 05({1,0)) = 1 and op((1,1)) = 1 and(orx4)({0,
0)) = 1 and(0rz3)((0,1)) = 1 and(orz4)({1,0)) = 0 and(0ra)({1,1)) = 1 and(ory,) ({0,
0)) = 1 and(ory)((0,1)) = 1 and(orxp)((1,0)) = 1 and(orx)({1,1)) = 0.

(13) xor({0,0)) = 0 and xo05({0,1)) = 1 and xop({1,0)) = 1 and xop({1
(x0r23)({0,0)) = 1 and(xor24)({0,1)) = 0 and(Xorza)((1,0)) = 0 and(xo0rza)

The function anglfrom Boolear! into Booleanis defined as follows:
(Def. 16) For all elements, y, zof Booleanholds and((x,y,2)) = XAyAz
The function ang, from Boolear! into Booleanis defined by:
(Def. 17) For all elements, y, z of Booleanholds(anda)((X,y,2)) = -XAYAZ
The function angl, from Boolear! into Booleanis defined by:
(Def. 18) For all elements, y, z of Booleanholds(ands,)((X,Y,2)) = XA —-yAZ
The function ang. from Boolear! into Booleanis defined as follows:
(Def. 19) For all elements, y, z of Booleanholds(ands)((X,Y,2)) = -XA -y A -z
The function nanglfrom Boolear! into Booleanis defined as follows:
(Def. 20) For all elements, y, zof Booleanholds nand({X,y,2)) = —=(XAYA2).
The function nangk from Boolear? into Booleanis defined as follows:
(Def. 21) For all elements, y, z of Booleanholds(nanaa) ((X,Y,2)) = =(=XAYAZ2).
The function nangh, from Booleart into Booleanis defined by:
(Def. 22) For all elements, y, zof Booleanholds(nandy) ({(X,,2)) = = (=XA —yAZ).
The function nangk from Boolears into Booleanis defined by:
(Def. 23) For all elements, y, zof Booleanholds(nandg)((X,Y,2)) = —(=XA =y A —2z).
The function og from Boolear! into Booleanis defined by:
(Def. 24) For all elements, y, zof Booleanholds 0g((x,y,2)) =xVyVz
The function og, from Boolear? into Booleanis defined as follows:
(Def. 25) For all elements, y, zof Booleanholds(orsa)((X,¥,2)) = -XVyVz
The function og, from Booleart into Booleanis defined by:
(Def. 26) For all elements, y, zof Booleanholds(orsp) ({(X,Y,2)) = =XV -yVz
The function og. from Booleari into Booleanis defined by:
(Def. 27) For all elements, y, z of Booleanholds(orsc)({X,Y,2)) = =XV —yV =z
The function nog from Boolear! into Booleanis defined as follows:
(Def. 28) For all elements, y, zof Booleanholds nog({x,y,2)) = ~(xVyV z).
The function nog, from Boolear! into Booleanis defined by:
(Def. 29) For all elements, y, zof Booleanholds(norsa) ((x,Y,2)) = = (—xVyVz).
The function nog, from Boolear! into Booleanis defined as follows:
(Def. 30) For all elements, y, zof Booleanholds(norsy) ((X,Y,2)) = —(=xV ~yV z).

The function nos. from Boolear! into Booleanis defined as follows:

2’'S COMPLEMENT CIRCUIT 4

(Def. 31) For all elements, y, z of Booleanholds(norsg)((x,y,2)) = —(—=xV —yV —2z).
The function xo% from Boolear? into Booleanis defined by:
(Def. 32) For all elements, y, z of Booleanholds xo0g({X,y,2)) = x®y® z

The following propositions are true:

(14) For all elements, y, z of Booleanholds and((x,y,2)) = xAyAzand(anda)((X,y,2)) =
—-XAyAzand(andy)((x,y,2)) = XA —-yAzand(andy)((X,y,2)) = “XA —-yA -z

(15) Letx,y, zbe elements oBoolean Then nand({(x,y,2)) = ~(xAy A z) and(nanda)((X, Y,
z)) = ~(—xAyAZz) and(nandyp)((x,y,2)) = =(-xA-yAZz) and(nandg)((X,y,2)) = =(-XA
—yA—2).

(16) For all elements, y, z of Booleanholds og(({x,y,2)) = xVyV z and (orss)({X,y,2)) =
—XxVyVzand(ors)((X,Y,2)) = ~xV -yVzand(ors)((X,y,2)) = XV yV -z

(17) Letx,y, zbe elements dBoolean Then nog((x,y,2)) = —~(xVyVz) and(nors,)({X,y,2)) =
—(=xVyVz) and(nors,)({X,y,2)) = =(=xV =yVz) and(nors) ({X,y,2)) = =(=xV =y V =2z).

(19E] For all elements, y, z of Booleanholds ang((x,y,z)) = (norsc)({x,Y,2)) and(andy)({x
y,Z>)(<: (n(;;3b)(<zvyax>) and (an@b)«xvya Z>) = (nor3a)(<z,y,x>) and (andEC)«vaa Z>)
nors((x,y,2)).

(20) For all elements, y, z of Booleanholds og(({x,y,z)) = (nands)({X,y,2)) and (0orsa)((X,

y,Z>) = (nan@b)(<zayvx>) and (Orgb)(<X,y, Z>) - (na”dza)«zvya)(» and (Orgc)(<X,y, Z>)
nang((x,y,z)).

(21) and((0,0,0)) = 0 and ang({0,0,1)) = 0 and and({(0,
and ang((1,0,0)) =0 and ang({1,0,1)) =0 and ang((1,1,0)) = 0 and angd((1,1,1))
al

1,
1
(22) (andka)((0,0,0)) =0 and(and,)({0,0,1)) =0 and(Nka)((0,1,0)) = 0 and(ands,) ({0,
1,1)) =1 and(anda)((1,0,0)) = 0 and(anda)((1,0,1)) = 0 and(ands)((1,1,0)) = 0 and
(andy)((1,1,1)) = 0.

(23) (andy)((0,0,0)) = 0 and(andsy)((0,0,1)) = 1 and(ands)((0,1,0)) = 0 and(ands) ({0,
1, >) 0 and(and,)((1,0,0)) = 0 and(andsy)((1,0,1)) = 0 and(andy)((1,1,0)) = 0 and
(andy)((1,1,1)) = 0.

0)) =0 and ang((0,1,1)) =0
=1

(24) (andk)((0,0,0)) =1 and(ands:)((0,0,1)) = 0 and(ands)((0,1,0)) = 0 and(ands)((0,
1,1)) = 0 and(and:)((1,0,0)) = 0 and(andk:)({1,0,1)) = 0 and(ands)((1,1,0)) = 0 and
(andsc)((1,1,1)) =0.

)
(25) o0r((0,0,0)) = 0 and 0§({0,0,1)) = 1 and 0g((0,1,0)) = 1 and 0g((0,1,1)) =1 and
or3((1,0,0)) =1 and 0g((1,0,1)) = 1 and 0g((1,1,0)) = 1 and og((1,1 1>) 1

(26) (0rs)((0,0,0)) = 1 and(orss)((0,0,1)) = 1 and (ors4)({0,1,0)) = 1 and (orza)((0, 1,
1)) = 1 and (ors3)({1,0,0)) = 0 and (ors5)({1,0,1)) = 1 and (ors5)({1,1,0)) = 1 and
(orsa)((1,1,1)) = 1.

(27) (orsy)((0,0,0)) = 1 and(orsy)((0,0,1)) = 1 and (ors,)({0,1,0)) = 1 and (orap)((0,1,
1)) = 1 and (ors,)((1,0,0)) = 1 and (ors)({1,0,1)) = 1 and (ors)({1,1,0)) = 0 and
(orsp)((1,1,1)) = 1.

(28) (ors:)({0,0,0)) =1 and(ors:)({0,0,1)) = 1 and(ors:)((0,1,0)) = 1 and(ors:) ({0, 1, 1))
1 and(ors)({1,0,0)) = 1 and(ors:)({1,0,1)) = 1 and(ors:)({1,1,0)) = 1 and(o 30) (1,
1)=0.

(29) xo0r;((0,0,0)) = 0 and x0§((0,0,1)) = 1 and xo0g((0,1,0)) = 1 and x0g((0,1,1)) =
and xo0g((1,0,0)) = 1 and xog({1,0,1)) = 0 and xog({1,1,0)) = 0 and xog({1,1,1)) = 1.

1,

o

2 The proposition (18) has been removed.

2’'S COMPLEMENT CIRCUIT 5

2. 2'sCOMPLEMENT CIRCUIT PROPERTIES

Let x, b be sets. The functor Comp8trb) yielding an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates is defined as follows:

(Def. 33) CompSiix, b) = 1GateCircStf(x, b),xor;,).

Letx, b be sets. The functor CompCircb) yielding a strict Boolean circuit of Comp$k; b)
with denotation held in gates is defined by:

(Def. 34) CompCir¢x, b) = 1GateCircuifx, b, xorz3).

Letx, bbe sets. The functor CompOutpxtb) yielding an element of InnerVerticBSompSt(x, b))
is defined by:

(Def. 35) CompOutpyk,b) = (({x, b}, x0rz).

Let x, b be sets. The functor IncrementStib) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in gates is defined as
follows:

(Def. 36) IncrementStK, b) = 1GateCircSti(x, b),ands).

Let x, b be sets. The functor IncrementQixchb) yields a strict Boolean circuit of
IncrementStix, b) with denotation held in gates and is defined as follows:

(Def. 37) IncrementCing, b) = 1GateCircuifx, b,ancs).

Let x, b be sets. The functor IncrementOutpyb) yielding an element of
InnerVerticeg$incrementStx, b)) is defined by:

(Def. 38) IncrementOutp(x, b) = ((x,b), ancy).

Letx, b be sets. The functor BitComp$trb) yields an unsplit non void strict non empty many
sorted signature with arity held in gates and Boolean denotation held in gates and is defined by:

(Def. 39) BitCompStfx,b) = CompSttx, b)+- IncrementStx, b).

Let X, b be sets. The functor BitCompCicb) yields a strict Boolean circuit of
BitCompSt(x, b) with denotation held in gates and is defined as follows:

(Def. 40) BitCompCir¢x,b) = CompCirgx, b)+- IncrementCiréx, b).
One can prove the following propositions:
(30) For all non pair sets, b holds InnerVertice€CompSttx, b)) is a binary relation.

(31) For all non pair setg, b holds x € the carrier of CompStk,b) andb € the carrier of
CompsSitex, b) and{(x,b), xorza) € the carrier of CompStk,b).

(32) For all non pair sets, b holds the carrier of CompS, b) = {x,b} U {{(x,b), x0rza}}.
(33) For all non pair sets, b holds InnerVertice€CompSt(x, b)) = {{(x,b), xorza) }.

(34) For all non pair sets, b holds{(x,b), xorz3) € InnerVertice$CompsStcx,b)).

(35) For all non pair sets, b holds InputVertice€CompSt(x, b)) = {x,b}.

(36) For all non pair setsx, b holds x € InputVertice§CompSt(x,b)) and b €
InputVerticegCompSt(x, b)).

(37) For all non pair sets, b holds InputVertice®CompSttx, b)) has no pairs.

(38) For all non pair sets, b holds InnerVerticegncrementStix, b)) is a binary relation.

2’'S COMPLEMENT CIRCUIT 6

(39) For all non pair sets, b holdsx € the carrier of IncrementSix, b) andb € the carrier of
IncrementStfx,b) and((x,b), anck,) € the carrier of IncrementSix, b).

(40) For all non pair setg b holds the carrier of Increment$trb) = {x,b} U{((x,b), anca) }.
(41) For all non pair sets, b holds InnerVerticedncrementStfx, b)) = {{((x,b), ancha) }.
(42) For all non pair sets, b holds{(x,b), anck,) € InnerVerticegincrementStx, b)).

(43) For all non pair sets, b holds InputVerticedncrementStix, b)) = {x,b}.

(44) For all non pair setsx, b holds x € InputVerticegincrementStix,b)) and b €
InputVerticegIncrementStx, b)).

(45) For all non pair sets, b holds InputVerticedncrementStix, b)) has no pairs.
(46) For all non pair sets, b holds InnerVerticeBitCompSt(x, b)) is a binary relation.

(47) Letx, bbe non pair sets. Then

(i) xe the carrier of BitCompStx,b),

(i) b e the carrier of BitCompStx, b),
(i) {(x,b), xorza} € the carrier of BitCompStx,b), and
(iv) {(x,b),anda) € the carrier of BitCompS{x, b).

(48) For all non pair setx, b holds the carrier of BitCompSix,b) = {x,b} U {{(x,b),
XOr2a), {(X,b), ancha) }.

(49) For all non pair sets, b holds InnerVerticeBitCompStx, b)) = {{((x,b), xor2a}, ((X, b},
anca)}.

(50) For all non pair sets, b holds {(x,b), xorz3) € InnerVertice$BitCompSt(x, b)) and{(x,
b), anta) € InnerVertice$BitCompSt(x,b)).

(51) For all non pair sets, b holds InputVertice@BitCompStKx, b)) = {x,b}.

(52) For all non pair setsx, b holds x € InputVerticeBitCompStfx,b)) and b €
InputVerticegBitCompStix, b)).

(53) For all non pair sets, b holds InputVerticeBitCompSt(x, b)) has no pairs.

(54) For all non pair setsx, b and for every states of CompCirdx,b) holds
(Following(s)) (CompOutpux, b)) = (xora)({s(x),s(b))) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(55) Letx, b be non pair setss be a state of CompCi(g,b), anda;, a, be elements of
Boolean If a; = s(x) anda, = s(b), then (Following(s))(CompOutpufx,b)) = —a; @ ap
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(56) For all non pair setsx, b and for every states of BitCompCirgdx,b) holds
(Following(s)) (CompOutpufx, b)) = (xorza)({s(x),s(b)}) and(Following(s))(x) = s(x) and
(Following(s))(b) = s(b).

(57) Letx, b be non pair setss be a state of BitCompCifg,b), anda;, a, be elements of
Boolean If a3 = s(x) anda, = s(b), then(Following(s))(CompOutpux, b)) = —a; ¢ a2 and
(Following(s))(x) = a1 and(Following(s))(b) = ay.

(58) For all non pair setx, b and for every states of IncrementCir¢x,b) holds
(Following(s))(IncrementOutpuk, b)) = (anda) ({s(x),s(b))) and(Following(s))(x) = s(X)
and(Following(s))(b) = s(b).

2’'S COMPLEMENT CIRCUIT 7

(59) Letx, b be non pair setss be a state of IncrementCitcb), anda;, ay be elements of
Boolean If a; = s(x) andaz = s(b), then(Following(s)) (IncrementOutpyk, b)) = —a; A&y
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(60) For all non pair setsx, b and for every states of BitCompCirgx,b) holds
(Following(s))(IncrementOutpuk, b)) = (ana) ({s(x),s(b))) and(Following(s))(x) = s(X)
and(Following(s))(b) = s(b).

(61) Letx, b be non pair setss be a state of BitCompCi(g,b), anda;, a; be elements of
Boolean If a; = s(x) anday = s(b), then(Following(s))(IncrementOutpuk, b)) = —a; Aa
and(Following(s))(x) = a1 and(Following(s))(b) = ay.

(62) Let x, b be non pair sets ands be a state of BitCompCi(g,b). Then
(Following(s)) (CompOutpufx, b)) = (xora) ({s(X), s(b)}) and(Following(s)) (IncrementOutpui, b)) =
(anda)((s(x),s(b))) and(Following(s))(x) = s(x) and(Following(s))(b) = s(b).

(63) Letx, b be non pair setss be a state of BitCompCi(g,b), anda;, a, be elements of
Boolean Suppose; = s(x) andaz = s(b). Then(Following(s))(CompOutpux, b)) = ~a; &
ap and (Following(s))(IncrementOutpyk, b)) = —ay A a; and (Following(s))(x) = a1 and
(Following(s))(b) = ay.

(64) For all non pair sets, b and for every state of BitCompCirdx, b) holds Followingds) is
stable.

REFERENCES

[1] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Pddurnal of Formalized Mathematic3, 1995.http://mizar.
org/JFM/Vol7/facirc_1.html}

[2] Czestaw Bylhski. Functions and their basic propertidsurnal of Formalized Mathematic, 1989 http://mizar.org/JFM/Voll/
funct_1.html.

[3] Czestaw Bylhski. Functions from a set to a séburnal of Formalized Mathematics, 1989/http://mizar.org/JFM/Voll/funct_|
2.htmll

[4] Czestaw Byliski. Finite sequences and tuples of elements of a non-emptyJsetmal of Formalized Mathematicg, 1990.http:
//mizar.orq/JFM/Vol2/finseq_2.html.

[5] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circldtstnal of Formalized Mathematic, 1995 http://mizar.org/
JFM/Vol7/circcomb. htmll

[6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuisuthal of Formalized
Mathematics6, 1994/http://mizar.orqg/JFM/Vol6/msafree2.html.

[7] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Introduction to circuilsuhinal of Formalized
Mathematics7, 1995/http://mizar.orqg/JFM/Vol7/circuit2.html.

[8] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmeticsirnal of Formalized Mathematic§, 1993/http://mizar.org/JFM/
Vol5/binarith.htmll

[9] Andrzej Trybulec. Tarski Grothendieck set theodpurnal of Formalized Mathematicé\xiomatics, 1989http://mizar.org/JrFM/
Axiomatics/tarski.html.

[10] Andrzej Trybulec. Many sorted algebradournal of Formalized Mathematic§, 1994./http://mizar.org/JFM/Vol6/msualg_1.
html.

[11] Zinaida Trybulec. Properties of subselsurnal of Formalized Mathematic$, 1989http://mizar.org/JFM/Voll/subset_1.html}

[12] Edmund Woronowicz. Relations and their basic propertisirnal of Formalized Mathematic4, 1989./http://mizar.org/JFM/
Voll/relat_1.html}

http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol7/facirc_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_1.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol1/funct_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol2/finseq_2.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol7/circcomb.html
http://mizar.org/JFM/Vol6/msafree2.html
http://mizar.org/JFM/Vol7/circuit2.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Vol5/binarith.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Axiomatics/tarski.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol6/msualg_1.html
http://mizar.org/JFM/Vol1/subset_1.html
http://mizar.org/JFM/Vol1/relat_1.html
http://mizar.org/JFM/Vol1/relat_1.html

2’'S COMPLEMENT CIRCUIT 8

[13] Edmund Woronowicz. Many-argument relationdournal of Formalized Mathematic®, 1990. http://mizar.org/JFM/Vol2/
margrell.html,

Received October 25, 1996

Published January 2, 2004

http://mizar.org/JFM/Vol2/margrel1.html
http://mizar.org/JFM/Vol2/margrel1.html

	2's complement circuit By katsumi wasaki and pauline n. kawamoto

