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Summary. A Turing machine can be viewed as a simple kind of computer, whose
operations are constrainted to reading and writing symbols on a tape, or moving along the
tape to the left or right. In theory, one has proven that the computability of Turing machines
is equivalent to recursive functions. This article defines and verifies the Turing machines of
summation and three primitive functions which are successor, zero and project functions. Itis
difficult to compute sophisticated functions by simple Turing machines. Therefore, we define
the combination of two Turing machines.

MML Identifier: TURING_1.
WWW: http://mizar.orqg/JFM/Voll3/turing_1.html

The articles[[18],[[9], [[24], [[2], [211], [[B], [[15], [[1], [[22],[[14],[[19],[[2/7],[[6],[{I7],[.[12],[[4],[T11],
[20], [10], [8], [16], [23], [13], [25], and[[5] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papem, i, j, k are natural numbers.
Let A, B be non empty sets, Idtbe a function fromA into B, and letg be a partial function from

AtoB. Thenf+-gis a function fromA into B.
Let X, Y be non empty sets, letbe an element ok, and letb be an element of. Thena——b

is a partial function fronX to Y.
Let n be a natural number. The functor Sguyielding a subset aN is defined as follows:

(Def. 1) Segyn={k:k<n}.

Let n be a natural number. One can verify that Gegs finite and non empty.
One can prove the following propositions:

(1) keSeg,niff k<n.

(2) Forevery functiorf and for all sets, y, z, u, vsuch that = x holds( f+-({x, y)——2))({u,
V) = f({u,v)).

(3) Forevery functiorf and for all sets, y, z, u, v such that/ # y holds( f+-({x, y)——2))({u,
V) = f({u,v)).

In the sequels, iy, i3, i are elements df.
One can prove the following propositions:

(4) 3(ig,iz) =i1+i2.
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(5) z<|17|27|3> :|1+|2+|3
(6) z<i1,i2,i3,i4> =i1+ip+iz+ig.

Let f be afinite sequence of elementbénd leti be a natural number. The functor Préfixi)
yielding a finite sequence of elements/fs defined as follows:

(Def. 2) PrefiXf,i) = f|Sed.
The following propositions are true:

(7) For all natural numbersgy, x> holds y Prefix((x1,%2),1) = x1 and § Prefix((x¢,%2),2) =
X1+ Xo.

(8) For all natural numbersy, Xz, X3 holds ¥ Prefix((x1,X2,X3),1) = x1 and § Prefix((x1, X2,
X3),2) = X1+ Xz andy Prefix((X1,X2,X3),3) = X1 + X2 + X3.

2. DEFINITIONS AND TERMINOLOGY FORTURING MACHINE

We consider Turing machine structures as systems
( symbols, control states, a transition, an initial state, an accepting state
where the symbols and the control states constitute finite non empty sets, the transition is a function
from [:the control stateghe symbolg:into [ the control statethe symbols{—1,0,1} ], and the
initial state and the accepting state are elements of the control states.
Let T be a Turing machine structure. A stateTofs an element of the control statesf A
tape ofT is an element of (the symbols &)%. A symbol ofT is an element of the symbols ®f
LetT be a Turing machine structure, tdte a tape of’, leth be an integer, and Istbe a symbol
of T. The functor Tape-Chg, h, s) yields a tape o and is defined by:

(Def. 3) Tape-Chg,h,s) =t+-(h——s).

Let T be a Turing machine structure. A StateTois an element of the control states of,
Z, (the symbols ofT)Z]. A transition-source oT is an element of.the control states of, the
symbols ofT . A transition-target ofl is an element of the control states oF, the symbols of,
{-1,0,1} 1.

Let T be a Turing machine structure and ¢ehbe a transition-target of. The functor offseig)
yields an integer and is defined as follows:

(Def. 4) offsetg) = gs.

Let T be a Turing machine structure and $be a State off. The functor Heatk) yields an
integer and is defined as follows:

(Def.5) Heads) =s,.

Let T be a Turing machine structure and $dbe a State off. The functors-target yielding a
transition-target off is defined by:

(Def. 6) s-target= (the transition ofT )({s, (s3 quatape ofT)(Heads)))).

Let T be a Turing machine structure and$die a State of . The functor Followings) yields a
State ofT and is defined as follows:

(s-target, Heads) + offset(s-targe}, Tape-Chgss, Heads), s-targe})), if s; # the accepting

(Def. 7) Following{s):{ s otherwise.

Let T be a Turing machine structure and &be a State off. The functor Computatigis)
yielding a function fromN into [: the control states 6F, Z, (the symbols off )% ] is defined by:

(Def. 8) (Computatioris))(0) = sand for every holds(Computatiof(s)) (i + 1) = Following((Computatioits))(i)).
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In the sequeT is a Turing machine structure asds a State off .
We now state several propositions:

(9) LetT be a Turing machine structure astle a State of . If s; = the accepting state df,
thens = Following(s).

(10)
11)

(Computations))(0) = s.

(Computations)) (k+ 1) = Following((Computatiofis) ) (k)).
(12) (Computatiotts))(1) = Following(s).
(13) (

(14) Ifi < jand Followind(Computatiors))(i)) = (Computatioiis))(i), then(Computatiofs) ) (j) =
(Computatioifs))(i).

Computatiofis)) (i + k) = (Computatiofi(Computatiofis))(i))) (k).

(15) Ifi < jand(Computatiofis))(i)1 = the accepting state df, then(Computatiofs))(j) =
(Computations))(i).

Let T be a Turing machine structure and $dte a State of. We say thas is accepting if and
only if:
(Def. 9) There existk such thaf Computatioris)) (k)1 = the accepting state df.

Let T be a Turing machine structure and $die a State of . Let us assume thatis accepting.
The functor Resuls) yields a State of and is defined as follows:

(Def. 10) There existk such that Resuls) = (Computatiorfs)) (k) and(Computatioifs)) (k)1 = the
accepting state of.

One can prove the following proposition
(16) LetT be a Turing machine structure aatbe a State off. Supposesis accepting. Then
there exists a natural numbesuch that
(i) (Computationis))(k); = the accepting state df,
(i) Result(s) = (Computationis))(k), and
(iii)  for every natural numbeirsuch that < k holds(Computatiofs))(i)1 # the accepting state
of T.

Let A, B be non empty sets and lgbe a set. Let us assume tlyat B. The functor idA,B,y)
yields a function fromAinto [ A, B] and is defined by:

(Def. 11) For every elementof A holds(id(A,B,y))(x) = (X, y).
The function SumTran fromSeg, 5, {0,1} ] into | Seq, 5, {0,1}, {—1,0,1} ] is defined by:

(Def. 12) SumTran= id([:Seg,5, {0,1}],{—1,0,1},0)+-({0, 0)——(0, 0, 1))+-({0, 1)—(1, O,
1)'—>(4’ 07 71))+((4a 1)'—>(47 15 71))4»((4’ 0)}—>(57 07 0))

Next we state the proposition

(A7) SumTraf(0, 0)) = (0, 0, 1) and SumTraf{0, 1)) = (1, 0, 1) and SumTraf(1, 1)) = (1,
1,1) and SumTraf{1,0)) = (2,1,1) and SumTraf{2, 1)) = (2,1, 1) and SumTraf{2,
0)) = (3,0, —1) and SumTraf{3, 1)) = (4,0, —1) and SumTraf{4, 1)) = (4, 1, —1) and
SumTrari(4, 0}) = (5, 0, 0).

Let T be a Turing machine structure, tdbe a tape off, and leti, j be integers. We say thais
1 between, j if and only if:

(Def. 13) t(i) = 0 andt(j) = 0 and for every integek such thai < k andk < j holdst(k) = 1.
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Let f be a finite sequence of elementsNyflet T be a Turing machine structure, andtidte a
tape of T. We say that stores datd if and only if:

(Def. 14) For every natural numbisuch that K i andi < lenf holdst is 1 betweery Prefix(f,i)+
2-(i—1), yPrefixf,i+1)+2-i.
Next we state several propositions:

(18) LetT be a Turing machine structurepe a tape off, ands, n be natural numbers. tf
stores datds, n), thent is 1 betweers, s+n+ 2.

(19) LetT be a Turing machine structurebe a tape off, ands, n be natural numbers. tfis 1
betweers, s+n+ 2, thent stores datds, n).

(20) LetT be a Turing machine structurtehe a tape o, ands, n be natural numbers. Suppose
t stores datds,n). Thent(s) = 0 andt(s+ n+2) = 0 and for every integersuch thas < i
andi < s+n+2 holdst(i) = 1.

(21) LetT be a Turing machine structurepe a tape off, ands, ny, n; be natural numbers.
Supposé stores datds,ni,nz). Thent is 1 betweers, s+n; +2 and 1 betwees+n; + 2,
Ss+ni+n+4

(22) LetT be a Turing machine structurebpe a tape off, ands, n1, n; be natural numbers.
Supposé stores datds, ni, nz). Then

0 ts=0,
(i) t(s+m+2)=0,
(i)  t(s+ni+n2+4)=0,
(iv) for every integeii such thas < i andi < s+n;+2 holdst(i) = 1, and
(v) for every integer such thas+n; +2 < i andi < s+n;+nz+4 holdst(i) = 1.

(23) Letf be a finite sequence of elementsdfinds be a natural number. If leh> 1, then
s Prefix((s) ~ f,1) = sandy Prefix((s) ~ f,2) = s+ f1.

(24) Letf be afinite sequence of elementsddands be a natural number. Suppose fer 3.
Theny Prefix((s) ~ f,1) = sand Prefix((s) ~ f,2) = s+ fy and S Prefix((s) ~ f,3) = s+
f1+ fo andy Prefix((s) ~ f,4) = s+ f1+ fo+ f3.

(25) LetT be a Turing machine structurepe a tape ofl, s be a natural number, andbe a
finite sequence of elements Xt If len f > 1 andt stores datgs) ~ f, thent is 1 betweers,
s+ f1+2.

(26) LetT be a Turing machine structurepe a tape off, s be a natural number, anidbe a
finite sequence of elements Bf Suppose lefi > 3 andt stores datgs) ~ f. Thent is 1
betweers, s+ f; + 2, 1 betweers+ f; + 2, s+ f1 + fo + 4, and 1 betwees+ f1 + fo + 4,
s+ f1+ fo+ f3+6.

3. SUMMATION OF Two NATURAL NUMBERS

The strict Turing machine structure SumTuring is defined by the conditions (Def. 15).

(Def. 15)()) The symbols of SumTuring {0,1},
(i) the control states of SumTuring Seg, 5,
(iii)  the transition of SumTuring= SumTran
(iv) theinitial state of SumTuring- 0, and
(v) the accepting state of SumTuriagb.

One can prove the following propositions:
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(27) LetT be a Turing machine structurebe a State oT, andp, h, t be sets. Is= (p, h, t},
then Heads) = h.

(28) LetT be a Turing machine structurehe a tape of, h be an integer, anslbe a symbol of
T. If t(h) = s, then Tape-Chg, h,s) =t.

(29) LetT be a Turing machine structure,be a State ofl, andp, h, t be sets. Suppose
s=(p, h,t) and p # the accepting state af. Then Followinds) = (s-target, Heads) +
offset(s-targey, Tape-Chdgss, Heads), s-target)).

(30) LetT be a Turing machine structurebe a tape of, h be an integers be a symbol ofT,
andi be a set. The(Tape-Chdt, h,s))(h) = sand ifi # h, then(Tape-Chdt, h,s))(i) =t(i).

(31) Letsbe a State of SumTuringbe a tape of SumTuring, afd, ny, nz be natural numbers.
Supposes = {0, hy, t) andt stores datgh;,n1,np). Thensis accepting andResul{s)), =
1+ h; and(Results))s stores datd1+ hg,ng + ny).

Let T be a Turing machine structure and kebe a function. We say thdt computed- if and
only if the condition (Def. 16) is satisfied.

(Def. 16) Letsbe a State off, t be a tape off, a be a natural number, andbe a finite sequence
of elements ofN. Supposex € domF ands = (the initial state ofT, a, t) andt stores data
(a) ~ x. Thensis accepting and there exist natural numberg such that Results)), = b
andy = F(x) and(Resuls))3 stores datab) ~ (y).

We now state two propositions:
(32) donj+] C N2
(33) SumTuring computels-].

4. COMPUTING SUCCESSORFUNCTION

The function SuccTran frohSeq, 4, {0,1} ] into | Seg, 4, {0,1}, {—1,0,1} ] is defined by:

(Def. 17) SuccTran= id([:Seg, 4, {0,1}],{—1,0,1},0)+-({0, 0)y——(1, 0, 1))+-({1, 1)—(1, 1,
1))"'((1’ 0)'—>(27 1’ 1))+((27 O)'—)(S’ 07 _1))+((2a 1)'—>(37 Ov _1))+((3’ 1)’—>(37 1a
—1))+((3,0)——(4,0,0)).

We now state the proposition
(34) SuccTraf{0,0)) = (1,0,1) and SuccTraf{1, 1)) = (1,1, 1) and SuccTraf(1,0)) =
(2,1,1) and SuccTraf{2,0)) = (3,0,—1) and SuccTraf{2,1)) = (3,0,—1) and
SuccTrafi(3, 1)) = (3, 1, —1) and SuccTraf(3, 0)) = (4, 0, 0).
The strict Turing machine structure SuccTuring is defined by the conditions (Def. 18).
(Def. 18)(i) The symbols of SuccTuring {0,1},
(i) the control states of SuccTuring Seg, 4,
(i)  the transition of SuccTuring= SuccTran
(iv) the initial state of SuccTuring 0, and
(v) the accepting state of SuccTuriagd.

The following two propositions are true:

(36@ Let sbe a State of SuccTuring,be a tape of SuccTuring, aid, n be natural numbers.
Supposes= (0, hy, t) andt stores datdh;, n). Thensis accepting andResul{s)), = h; and
(Resulfs))3 stores datghy,n+1).

(37) SuccTuring computes su¢d).

1 The proposition (35) has been removed.
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5. COMPUTING ZERO FUNCTION
The function ZeroTran fromSeg, 4, {0,1} ] into [ Seg, 4, {0,1}, {—1,0,1} ] is defined by:

(Def. 19) ZeroTran= id([:Seg, 4, {0,1}],{—1,0,1},1)+-({0, 0)——(1, O, 1))+ ({1, 1)——(2, 1,
1))—’_((2’ 0)'_)(37 07 _1))+((27 1)’_>(3a 07 _1))+((37 1)'—}<47 1, _1))

The following proposition is true

(38) ZeroTrarf(0, 0)) = (1,0, 1) and ZeroTraf{1, 1)) = (2, 1, 1) and ZeroTraf{2, 0)) = (3,
0, —1) and ZeroTraf(2, 1)) = (3, 0, —1) and ZeroTraf(3, 1)) = (4, 1, —1).

The strict Turing machine structure ZeroTuring is defined by the conditions (Def. 20).

(Def. 20)()) The symbols of ZeroTuring {0, 1},
(i) the control states of ZeroTuring Seg, 4,
(i)  the transition of ZeroTuring= ZeroTran
(iv) theinitial state of ZeroTuring- 0, and
(v) the accepting state of ZeroTurirg4.

Next we state two propositions:

(39) Letsbe a State of ZeroTuring,be a tape of ZeroTurind); be a natural number, and
be a finite sequence of elementsMaf Suppose lefi > 1 ands = (0, hy, t) andt stores data
(hy) ~ f. Thensis accepting an@Results)). = h; and(Results))s stores datdh;, 0).

(40) Ifn>1, then ZeroTuring computes copfd).

6. COMPUTING Nn-ARY PROJECTFUNCTION

The functionn-proj3Tran from[: Seg, 3, {0,1} ]| into : Seg, 3, {0,1}, {—1,0,1} ] is defined as fol-
lows:

(Def. 21) n-proj3Tran = id([:Seg, 3, {0,1} ],{—1,0,1},0)+((0, 0)——(1, 0, 1))+ ({1, 1)~—(1,
07 1))+'((17 O)'_>(27 0> 1))+'((27 1)’._>(27 07 1))+'((27 O)'_)<37 0> O))

The following proposition is true

(41) n-proj3Trar({0, 0)) = (1, 0, 1) andn-proj3Trar({1, 1)) = (1, 0, 1) andn-proj3Trar({1,
0)) = (2,0, 1) andn-proj3Trar({2, 1)) = (2, 0, 1) andn-proj3Trar((2, 0}) = (3, 0, 0).

The strict Turing machine structureproj3Turing is defined by the conditions (Def. 22).
(Def. 22)()) The symbols oh-proj3Turing= {0, 1},
(i) the control states ofi-proj3Turing= Seg, 3,
(iii)  the transition ofn-proj3Turing= n-proj3Tran
(iv) theinitial state of-proj3Turing= 0, and
(v) the accepting state of-proj3Turing= 3.

One can prove the following propositions:

(42) Letsbe a State ofi-proj3Turing,t be a tape oh-proj3Turing,h; be a natural number, and
f be a finite sequence of elementNfSuppose lef > 3 ands= (0, hy, t) andt stores data
(h1) ~ f. Thensis accepting andResults)), = hy + f1 + f2 +4 and(Results) )3 stores data
(h1+ f1+ fo+ 4, fa).

(43) If n> 3, thenn-proj3Turing computes prg{3).
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7. COMBINING TWO TURING MACHINES INTO ONE

Letts, to be Turing machine structures. The functor SeqStates) yields a finite non empty set
and is defined by the condition (Def. 23).

(Def. 23) SeqStat¢t,to) = [:the control states df, {the initial state of,} ] U[: {the accepting state
of t1}, the control states df .

We now state four propositions:

(44) Letty, tp be Turing machine structures. Then
() (theinitial state ofy, the initial state of,) € SeqState$;,t2), and
(i)  (the accepting state ¢f, the accepting state ¢f) € SeqState$;, t).

(45) For all Turing machine structursst and for every stat& of s holds(x, the initial state of
t) € SeqStates,t).

(46) For all Turing machine structurest and for every state of t holds(the accepting state of
S, X) € SeqStates,t).

(47) Lets, t be Turing machine structures arde an element of SeqStatgs). Then there
exists a state; of sand there exists a statg of t such thak = (x, X2).

Lets, t be Turing machine structures andxdte a transition-target af The functor #!SeqTrarfs; t,x)
yields an element df SeqStates, t), (the symbols of) U (the symbols of),{—1,0,1} ] and is de-
fined by:

(Def. 24) P'SeqTrafs,t,x) = ((xy, the initial state of), x,, X3).

Lets, t be Turing machine structures andxéte a transition-target of The functor 29SeqTrars,t, x)
yields an element df SeqStates, t), (the symbols of) U (the symbols of),{—1,0,1} ] and is de-
fined as follows:

(Def. 25) 29SeqTraifs,t,x) = ((the accepting state &f x1), Xo, X3).

Lets, t be Turing machine structures andxdie an element of SeqStateg). Thenx; is a state
of s. Thenxs is a state of.

Let s, t be Turing machine structures and Jelbe an element of SeqStates,t), (the symbols
of s) U (the symbols of) ]. The functor #SeqState yields a state o§ and is defined as follows:

(Def. 26) PF'SeqStat& = (x1);.
The functor 29SeqState yields a state of and is defined as follows:
(Def. 27) 29SeqState = (x1)2.

Let X, Y, Z be non empty sets and kebe an element ofX,YUZ]. Let us assume that there
exist a seu and an elemeny of Y such thatx = (u, y). The functor $!SeqSymbak yielding an
element ofY is defined by:

(Def. 28) P'SeqSymbak = x,.

Let X, Y, Z be non empty sets and kebe an element ofX,YUZ]. Let us assume that there
exist a seu and an elemere of Z such thatx = (u, z). The functor 29SeqSymbat yielding an
element ofZ is defined as follows:

(Def. 29) 29SeqSymbak = x,.

Let s, t be Turing machine structures and ¥ebe an element of SeqStatgs,t), (the symbols
of s)U(the symbols of) ]. The functor SeqTras,t,x) yielding an element of SeqStatgs, t), (the
symbols ofs) U (the symbols of), {—1,0,1} ] is defined as follows:
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18SeqTrais, t, (the transition of)({ 15'SeqState, 15'SeqSymbat))), if thereexists a statp
(Def. 30) SeqTrafs,t,x) =< 2"9SeqTratst, (the transition of ) ({2"9SeqState, 2"9SeqSymbat))), if thereexists a state
(X1, X2, —1), otherwise.

Let s, t be Turing machine structures. The functor SeqTsan yielding a function from
[ SeqStates,t), (the symbols ofs) U (the symbols oft) ] into [ SeqStates,t), (the symbols of
s) U (the symbols of),{—1,0,1} ] is defined by:

(Def. 31) For every element of [ SeqStatgs,t), (the symbols ofs) U (the symbols oft)] holds
(SeqTraifs,t))(x) = SeqTraifs,t,x).

Let T1, T» be Turing machine structures. The funciiar T, yielding a strict Turing machine
structure is defined by the conditions (Def. 32).
(Def. 32)()) The symbols ofy; T, = (the symbols off;) U (the symbols ofl),
(i) the control states of; T, = SeqStated1, Tz),
(iiiy  the transition ofTy; T, = SeqTrai(Ty, Ty),
(iv) the initial state ofTy; T, = (the initial state ofTy, the initial state off), and
(v) the accepting state df; T, = (the accepting state df, the accepting state d5).

The following propositions are true:

(48) LetTy, T> be Turing machine structureg,be a transition-target df;, p be a state ofy,
andy be a symbol ofl;. Supposep # the accepting state df andg = (the transition of
T1)({p,y)). Then (the transition oT1; T2)({{p, the initial state ofT»), y)) = ({91, the initial
state ofT), 0y, ds).

(49) LetTy, T, be Turing machine structureg,be a transition-target of,, q be a state ofl,,
andy be a symbol ofl,. Supposea = (the transition ofT>)({q, y}). Then (the transition of
Ti; T2)({{the accepting state df, q), y)) = ((the accepting state df, g1}, g2, 93)-

(50) LetTy, T» be Turing machine structures, be a State off;, h be a natural numbet,be a
tape ofTy, s, be a State of,, andsz be a State ofy; T,. Suppose that
(i) s isaccepting,
(i) s = (theinitial state offy, h,t),
(i) s is accepting,
(iv) s = (theinitial state ofT,, (Resul{s:)),, (Results;))s), and
(v) sz = (the initial state offy; T, h, t}.
Thens; is accepting an@Resul{s3) ), = (Resultsy)), and(Resul{s;) )3 = (Resultsy))3.

(51) Letts, t4 be Turing machine structures ahdbe a tape ofz. If the symbols oftz = the
symbols ofty, thent is a tape ofs; t4.

(52) Letts, t4 be Turing machine structures ahdbe a tape ofs; t4. Suppose the symbols of
t3 = the symbols ofs. Thent is a tape of3 and a tape off.

(53) Letf be afinite sequence of elementNft, t4 be Turing machine structurds,be a tape
of t3, andt; be a tape of;. If t; =t andt; stores datd, thent, stores datd.

(54) Letsbe a State of ZeroTuring; SuccTuringbe a tape of ZeroTuring, arg, n be nat-
ural numbers. Suppoge= ((0, 0}, hy, t) andt stores datgh;,n). Thensis accepting and
(Results)), = h; and(Results))3 stores datghs, 1).
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