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Summary. A Turing machine can be viewed as a simple kind of computer, whose
operations are constrainted to reading and writing symbols on a tape, or moving along the
tape to the left or right. In theory, one has proven that the computability of Turing machines
is equivalent to recursive functions. This article defines and verifies the Turing machines of
summation and three primitive functions which are successor, zero and project functions. It is
difficult to compute sophisticated functions by simple Turing machines. Therefore, we define
the combination of two Turing machines.
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The articles [18], [9], [24], [2], [21], [3], [15], [1], [22], [14], [19], [17], [6], [7], [12], [4], [11],
[20], [10], [8], [16], [23], [13], [25], and [5] provide the notation and terminology for this paper.

1. PRELIMINARIES

In this papern, i, j, k are natural numbers.
Let A, B be non empty sets, letf be a function fromA into B, and letg be a partial function from

A to B. Then f+·g is a function fromA into B.
Let X, Y be non empty sets, leta be an element ofX, and letb be an element ofY. Thena7−→. b

is a partial function fromX to Y.
Let n be a natural number. The functor SegM n yielding a subset ofN is defined as follows:

(Def. 1) SegM n = {k : k≤ n}.

Let n be a natural number. One can verify that SegM n is finite and non empty.
One can prove the following propositions:

(1) k∈ SegM n iff k≤ n.

(2) For every functionf and for all setsx, y, z, u, v such thatu 6= x holds( f+·(〈〈x, y〉〉7−→. z))(〈〈u,
v〉〉) = f (〈〈u, v〉〉).

(3) For every functionf and for all setsx, y, z, u, v such thatv 6= y holds( f+·(〈〈x, y〉〉7−→. z))(〈〈u,
v〉〉) = f (〈〈u, v〉〉).

In the sequeli1, i2, i3, i4 are elements ofZ.
One can prove the following propositions:

(4) ∑〈i1, i2〉= i1 + i2.
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(5) ∑〈i1, i2, i3〉= i1 + i2 + i3.

(6) ∑〈i1, i2, i3, i4〉= i1 + i2 + i3 + i4.

Let f be a finite sequence of elements ofN and leti be a natural number. The functor Prefix( f , i)
yielding a finite sequence of elements ofZ is defined as follows:

(Def. 2) Prefix( f , i) = f �Segi.

The following propositions are true:

(7) For all natural numbersx1, x2 holds∑Prefix(〈x1,x2〉,1) = x1 and∑Prefix(〈x1,x2〉,2) =
x1 +x2.

(8) For all natural numbersx1, x2, x3 holds∑Prefix(〈x1,x2,x3〉,1) = x1 and∑Prefix(〈x1,x2,
x3〉,2) = x1 +x2 and∑Prefix(〈x1,x2,x3〉,3) = x1 +x2 +x3.

2. DEFINITIONS AND TERMINOLOGY FORTURING MACHINE

We consider Turing machine structures as systems
〈 symbols, control states, a transition, an initial state, an accepting state〉,

where the symbols and the control states constitute finite non empty sets, the transition is a function
from [: the control states, the symbols :] into [: the control states, the symbols, {−1,0,1} :], and the
initial state and the accepting state are elements of the control states.

Let T be a Turing machine structure. A state ofT is an element of the control states ofT. A
tape ofT is an element of (the symbols ofT)Z. A symbol ofT is an element of the symbols ofT.

Let T be a Turing machine structure, lett be a tape ofT, leth be an integer, and letsbe a symbol
of T. The functor Tape-Chg(t,h,s) yields a tape ofT and is defined by:

(Def. 3) Tape-Chg(t,h,s) = t+·(h7−→. s).

Let T be a Turing machine structure. A State ofT is an element of[: the control states ofT,
Z, (the symbols ofT)Z :]. A transition-source ofT is an element of[: the control states ofT, the
symbols ofT :]. A transition-target ofT is an element of[: the control states ofT, the symbols ofT,
{−1,0,1} :].

Let T be a Turing machine structure and letg be a transition-target ofT. The functor offset(g)
yields an integer and is defined as follows:

(Def. 4) offset(g) = g3.

Let T be a Turing machine structure and lets be a State ofT. The functor Head(s) yields an
integer and is defined as follows:

(Def. 5) Head(s) = s2.

Let T be a Turing machine structure and lets be a State ofT. The functors-target yielding a
transition-target ofT is defined by:

(Def. 6) s-target= (the transition ofT)(〈〈s1, (s3 qua tape ofT)(Head(s))〉〉).

Let T be a Turing machine structure and letsbe a State ofT. The functor Following(s) yields a
State ofT and is defined as follows:

(Def. 7) Following(s)=
{
〈〈s-target1, Head(s)+offset(s-target), Tape-Chg(s3,Head(s),s-target2)〉〉, if s1 6= the accepting state ofT,
s, otherwise.

Let T be a Turing machine structure and lets be a State ofT. The functor Computation(s)
yielding a function fromN into [: the control states ofT, Z, (the symbols ofT)Z :] is defined by:

(Def. 8) (Computation(s))(0)= sand for everyi holds(Computation(s))(i+1)= Following((Computation(s))(i)).
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In the sequelT is a Turing machine structure ands is a State ofT.
We now state several propositions:

(9) LetT be a Turing machine structure andsbe a State ofT. If s1 = the accepting state ofT,
thens= Following(s).

(10) (Computation(s))(0) = s.

(11) (Computation(s))(k+1) = Following((Computation(s))(k)).

(12) (Computation(s))(1) = Following(s).

(13) (Computation(s))(i +k) = (Computation((Computation(s))(i)))(k).

(14) If i≤ j and Following((Computation(s))(i))= (Computation(s))(i), then(Computation(s))( j)=
(Computation(s))(i).

(15) If i ≤ j and(Computation(s))(i)1 = the accepting state ofT, then(Computation(s))( j) =
(Computation(s))(i).

Let T be a Turing machine structure and lets be a State ofT. We say thats is accepting if and
only if:

(Def. 9) There existsk such that(Computation(s))(k)1 = the accepting state ofT.

Let T be a Turing machine structure and lets be a State ofT. Let us assume thats is accepting.
The functor Result(s) yields a State ofT and is defined as follows:

(Def. 10) There existsk such that Result(s) = (Computation(s))(k) and(Computation(s))(k)1 = the
accepting state ofT.

One can prove the following proposition

(16) LetT be a Turing machine structure ands be a State ofT. Supposes is accepting. Then
there exists a natural numberk such that

(i) (Computation(s))(k)1 = the accepting state ofT,

(ii) Result(s) = (Computation(s))(k), and

(iii) for every natural numberi such thati < k holds(Computation(s))(i)1 6= the accepting state
of T.

Let A, B be non empty sets and lety be a set. Let us assume thaty∈ B. The functor id(A,B,y)
yields a function fromA into [:A, B:] and is defined by:

(Def. 11) For every elementx of A holds(id(A,B,y))(x) = 〈〈x, y〉〉.

The function SumTran from[:SegM 5, {0,1} :] into [:SegM 5, {0,1}, {−1,0,1} :] is defined by:

(Def. 12) SumTran= id([:SegM 5, {0,1} :],{−1,0,1},0)+·(〈〈0, 0〉〉7−→. 〈〈0, 0, 1〉〉)+·(〈〈0, 1〉〉7−→. 〈〈1, 0,
1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 1, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0,−1〉〉)+·(〈〈3,
1〉〉7−→. 〈〈4, 0,−1〉〉)+·(〈〈4, 1〉〉7−→. 〈〈4, 1,−1〉〉)+·(〈〈4, 0〉〉7−→. 〈〈5, 0, 0〉〉).

Next we state the proposition

(17) SumTran(〈〈0, 0〉〉) = 〈〈0, 0, 1〉〉 and SumTran(〈〈0, 1〉〉) = 〈〈1, 0, 1〉〉 and SumTran(〈〈1, 1〉〉) = 〈〈1,
1, 1〉〉 and SumTran(〈〈1, 0〉〉) = 〈〈2, 1, 1〉〉 and SumTran(〈〈2, 1〉〉) = 〈〈2, 1, 1〉〉 and SumTran(〈〈2,
0〉〉) = 〈〈3, 0,−1〉〉 and SumTran(〈〈3, 1〉〉) = 〈〈4, 0,−1〉〉 and SumTran(〈〈4, 1〉〉) = 〈〈4, 1,−1〉〉 and
SumTran(〈〈4, 0〉〉) = 〈〈5, 0, 0〉〉.

Let T be a Turing machine structure, lett be a tape ofT, and leti, j be integers. We say thatt is
1 betweeni, j if and only if:

(Def. 13) t(i) = 0 andt( j) = 0 and for every integerk such thati < k andk < j holdst(k) = 1.
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Let f be a finite sequence of elements ofN, let T be a Turing machine structure, and lett be a
tape ofT. We say thatt stores dataf if and only if:

(Def. 14) For every natural numberi such that 1≤ i andi < len f holdst is 1 between∑Prefix( f , i)+
2· (i−1), ∑Prefix( f , i +1)+2· i.

Next we state several propositions:

(18) Let T be a Turing machine structure,t be a tape ofT, ands, n be natural numbers. Ift
stores data〈s,n〉, thent is 1 betweens, s+n+2.

(19) LetT be a Turing machine structure,t be a tape ofT, ands, n be natural numbers. Ift is 1
betweens, s+n+2, thent stores data〈s,n〉.

(20) LetT be a Turing machine structure,t be a tape ofT, ands, n be natural numbers. Suppose
t stores data〈s,n〉. Thent(s) = 0 andt(s+n+2) = 0 and for every integeri such thats< i
andi < s+n+2 holdst(i) = 1.

(21) Let T be a Turing machine structure,t be a tape ofT, ands, n1, n2 be natural numbers.
Supposet stores data〈s,n1,n2〉. Thent is 1 betweens, s+n1 +2 and 1 betweens+n1 +2,
s+n1 +n2 +4.

(22) Let T be a Turing machine structure,t be a tape ofT, ands, n1, n2 be natural numbers.
Supposet stores data〈s,n1,n2〉. Then

(i) t(s) = 0,

(ii) t(s+n1 +2) = 0,

(iii) t(s+n1 +n2 +4) = 0,

(iv) for every integeri such thats< i andi < s+n1 +2 holdst(i) = 1, and

(v) for every integeri such thats+n1 +2 < i andi < s+n1 +n2 +4 holdst(i) = 1.

(23) Let f be a finite sequence of elements ofN ands be a natural number. If lenf ≥ 1, then
∑Prefix(〈s〉a f ,1) = s and∑Prefix(〈s〉a f ,2) = s+ f1.

(24) Let f be a finite sequence of elements ofN ands be a natural number. Suppose lenf ≥ 3.
Then∑Prefix(〈s〉a f ,1) = s and∑Prefix(〈s〉a f ,2) = s+ f1 and∑Prefix(〈s〉a f ,3) = s+
f1 + f2 and∑Prefix(〈s〉a f ,4) = s+ f1 + f2 + f3.

(25) LetT be a Turing machine structure,t be a tape ofT, s be a natural number, andf be a
finite sequence of elements ofN. If len f ≥ 1 andt stores data〈s〉a f , thent is 1 betweens,
s+ f1 +2.

(26) LetT be a Turing machine structure,t be a tape ofT, s be a natural number, andf be a
finite sequence of elements ofN. Suppose lenf ≥ 3 andt stores data〈s〉a f . Then t is 1
betweens, s+ f1 + 2, 1 betweens+ f1 + 2, s+ f1 + f2 + 4, and 1 betweens+ f1 + f2 + 4,
s+ f1 + f2 + f3 +6.

3. SUMMATION OF TWO NATURAL NUMBERS

The strict Turing machine structure SumTuring is defined by the conditions (Def. 15).

(Def. 15)(i) The symbols of SumTuring= {0,1},
(ii) the control states of SumTuring= SegM 5,

(iii) the transition of SumTuring= SumTran,

(iv) the initial state of SumTuring= 0, and

(v) the accepting state of SumTuring= 5.

One can prove the following propositions:
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(27) LetT be a Turing machine structure,s be a State ofT, andp, h, t be sets. Ifs= 〈〈p, h, t〉〉,
then Head(s) = h.

(28) LetT be a Turing machine structure,t be a tape ofT, h be an integer, andsbe a symbol of
T. If t(h) = s, then Tape-Chg(t,h,s) = t.

(29) Let T be a Turing machine structure,s be a State ofT, and p, h, t be sets. Suppose
s = 〈〈p, h, t〉〉 and p 6= the accepting state ofT. Then Following(s) = 〈〈s-target1, Head(s) +
offset(s-target), Tape-Chg(s3,Head(s),s-target2)〉〉.

(30) LetT be a Turing machine structure,t be a tape ofT, h be an integer,s be a symbol ofT,
andi be a set. Then(Tape-Chg(t,h,s))(h) = sand if i 6= h, then(Tape-Chg(t,h,s))(i) = t(i).

(31) Letsbe a State of SumTuring,t be a tape of SumTuring, andh1, n1, n2 be natural numbers.
Supposes= 〈〈0, h1, t〉〉 andt stores data〈h1,n1,n2〉. Thens is accepting and(Result(s))2 =
1+h1 and(Result(s))3 stores data〈1+h1,n1 +n2〉.

Let T be a Turing machine structure and letF be a function. We say thatT computesF if and
only if the condition (Def. 16) is satisfied.

(Def. 16) Lets be a State ofT, t be a tape ofT, a be a natural number, andx be a finite sequence
of elements ofN. Supposex∈ domF ands= 〈〈the initial state ofT, a, t〉〉 andt stores data
〈a〉a x. Thens is accepting and there exist natural numbersb, y such that(Result(s))2 = b
andy = F(x) and(Result(s))3 stores data〈b〉a 〈y〉.

We now state two propositions:

(32) dom[+]⊆ N2.

(33) SumTuring computes[+].

4. COMPUTING SUCCESSORFUNCTION

The function SuccTran from[:SegM 4, {0,1} :] into [:SegM 4, {0,1}, {−1,0,1} :] is defined by:

(Def. 17) SuccTran= id([:SegM 4, {0,1} :],{−1,0,1},0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1, 1,
1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 1, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0,−1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3, 0,−1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈3, 1,
−1〉〉)+·(〈〈3, 0〉〉7−→. 〈〈4, 0, 0〉〉).

We now state the proposition

(34) SuccTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and SuccTran(〈〈1, 1〉〉) = 〈〈1, 1, 1〉〉 and SuccTran(〈〈1, 0〉〉) =
〈〈2, 1, 1〉〉 and SuccTran(〈〈2, 0〉〉) = 〈〈3, 0,−1〉〉 and SuccTran(〈〈2, 1〉〉) = 〈〈3, 0,−1〉〉 and
SuccTran(〈〈3, 1〉〉) = 〈〈3, 1,−1〉〉 and SuccTran(〈〈3, 0〉〉) = 〈〈4, 0, 0〉〉.

The strict Turing machine structure SuccTuring is defined by the conditions (Def. 18).

(Def. 18)(i) The symbols of SuccTuring= {0,1},
(ii) the control states of SuccTuring= SegM 4,

(iii) the transition of SuccTuring= SuccTran,

(iv) the initial state of SuccTuring= 0, and

(v) the accepting state of SuccTuring= 4.

The following two propositions are true:

(36)1 Let s be a State of SuccTuring,t be a tape of SuccTuring, andh1, n be natural numbers.
Supposes= 〈〈0, h1, t〉〉 andt stores data〈h1,n〉. Thens is accepting and(Result(s))2 = h1 and
(Result(s))3 stores data〈h1,n+1〉.

(37) SuccTuring computes succ1(1).
1 The proposition (35) has been removed.
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5. COMPUTING ZERO FUNCTION

The function ZeroTran from[:SegM 4, {0,1} :] into [:SegM 4, {0,1}, {−1,0,1} :] is defined by:

(Def. 19) ZeroTran= id([:SegM 4, {0,1} :],{−1,0,1},1)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈2, 1,
1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0,−1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈3, 0,−1〉〉)+·(〈〈3, 1〉〉7−→. 〈〈4, 1,−1〉〉).

The following proposition is true

(38) ZeroTran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 and ZeroTran(〈〈1, 1〉〉) = 〈〈2, 1, 1〉〉 and ZeroTran(〈〈2, 0〉〉) = 〈〈3,
0,−1〉〉 and ZeroTran(〈〈2, 1〉〉) = 〈〈3, 0,−1〉〉 and ZeroTran(〈〈3, 1〉〉) = 〈〈4, 1,−1〉〉.

The strict Turing machine structure ZeroTuring is defined by the conditions (Def. 20).

(Def. 20)(i) The symbols of ZeroTuring= {0,1},
(ii) the control states of ZeroTuring= SegM 4,

(iii) the transition of ZeroTuring= ZeroTran,

(iv) the initial state of ZeroTuring= 0, and

(v) the accepting state of ZeroTuring= 4.

Next we state two propositions:

(39) Let s be a State of ZeroTuring,t be a tape of ZeroTuring,h1 be a natural number, andf
be a finite sequence of elements ofN. Suppose lenf ≥ 1 ands= 〈〈0, h1, t〉〉 andt stores data
〈h1〉a f . Thens is accepting and(Result(s))2 = h1 and(Result(s))3 stores data〈h1,0〉.

(40) If n≥ 1, then ZeroTuring computes constn(0).

6. COMPUTING n-ARY PROJECTFUNCTION

The functionn-proj3Tran from[:SegM 3, {0,1} :] into [:SegM 3, {0,1}, {−1,0,1} :] is defined as fol-
lows:

(Def. 21) n-proj3Tran = id([:SegM 3, {0,1} :],{−1,0,1},0)+·(〈〈0, 0〉〉7−→. 〈〈1, 0, 1〉〉)+·(〈〈1, 1〉〉7−→. 〈〈1,
0, 1〉〉)+·(〈〈1, 0〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2, 1〉〉7−→. 〈〈2, 0, 1〉〉)+·(〈〈2, 0〉〉7−→. 〈〈3, 0, 0〉〉).

The following proposition is true

(41) n-proj3Tran(〈〈0, 0〉〉) = 〈〈1, 0, 1〉〉 andn-proj3Tran(〈〈1, 1〉〉) = 〈〈1, 0, 1〉〉 andn-proj3Tran(〈〈1,
0〉〉) = 〈〈2, 0, 1〉〉 andn-proj3Tran(〈〈2, 1〉〉) = 〈〈2, 0, 1〉〉 andn-proj3Tran(〈〈2, 0〉〉) = 〈〈3, 0, 0〉〉.

The strict Turing machine structuren-proj3Turing is defined by the conditions (Def. 22).

(Def. 22)(i) The symbols ofn-proj3Turing= {0,1},
(ii) the control states ofn-proj3Turing= SegM 3,

(iii) the transition ofn-proj3Turing= n-proj3Tran,

(iv) the initial state ofn-proj3Turing= 0, and

(v) the accepting state ofn-proj3Turing= 3.

One can prove the following propositions:

(42) Letsbe a State ofn-proj3Turing,t be a tape ofn-proj3Turing,h1 be a natural number, and
f be a finite sequence of elements ofN. Suppose lenf ≥ 3 ands= 〈〈0, h1, t〉〉 andt stores data
〈h1〉a f . Thens is accepting and(Result(s))2 = h1 + f1 + f2 +4 and(Result(s))3 stores data
〈h1 + f1 + f2 +4, f3〉.

(43) If n≥ 3, thenn-proj3Turing computes projn(3).
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7. COMBINING TWO TURING MACHINES INTO ONE

Let t1, t2 be Turing machine structures. The functor SeqStates(t1, t2) yields a finite non empty set
and is defined by the condition (Def. 23).

(Def. 23) SeqStates(t1, t2) = [: the control states oft1, {the initial state oft2} :]∪ [:{the accepting state
of t1}, the control states oft2 :].

We now state four propositions:

(44) Lett1, t2 be Turing machine structures. Then

(i) 〈〈the initial state oft1, the initial state oft2〉〉 ∈ SeqStates(t1, t2), and

(ii) 〈〈the accepting state oft1, the accepting state oft2〉〉 ∈ SeqStates(t1, t2).

(45) For all Turing machine structuress, t and for every statex of s holds〈〈x, the initial state of
t〉〉 ∈ SeqStates(s, t).

(46) For all Turing machine structuress, t and for every statex of t holds〈〈the accepting state of
s, x〉〉 ∈ SeqStates(s, t).

(47) Let s, t be Turing machine structures andx be an element of SeqStates(s, t). Then there
exists a statex1 of s and there exists a statex2 of t such thatx = 〈〈x1, x2〉〉.

Lets, t be Turing machine structures and letxbe a transition-target ofs. The functor 1stSeqTran(s, t,x)
yields an element of[:SeqStates(s, t), (the symbols ofs)∪ (the symbols oft),{−1,0,1} :] and is de-
fined by:

(Def. 24) 1stSeqTran(s, t,x) = 〈〈〈〈x1, the initial state oft〉〉, x2, x3〉〉.

Lets, t be Turing machine structures and letxbe a transition-target oft. The functor 2ndSeqTran(s, t,x)
yields an element of[:SeqStates(s, t), (the symbols ofs)∪ (the symbols oft),{−1,0,1} :] and is de-
fined as follows:

(Def. 25) 2ndSeqTran(s, t,x) = 〈〈〈〈the accepting state ofs, x1〉〉, x2, x3〉〉.

Let s, t be Turing machine structures and letx be an element of SeqStates(s, t). Thenx1 is a state
of s. Thenx2 is a state oft.

Let s, t be Turing machine structures and letx be an element of[:SeqStates(s, t), (the symbols
of s)∪ (the symbols oft) :]. The functor 1stSeqStatex yields a state ofs and is defined as follows:

(Def. 26) 1stSeqStatex = (x1)1.

The functor 2ndSeqStatex yields a state oft and is defined as follows:

(Def. 27) 2ndSeqStatex = (x1)2.

Let X, Y, Z be non empty sets and letx be an element of[:X, Y∪Z :]. Let us assume that there
exist a setu and an elementy of Y such thatx = 〈〈u, y〉〉. The functor 1stSeqSymbolx yielding an
element ofY is defined by:

(Def. 28) 1stSeqSymbolx = x2.

Let X, Y, Z be non empty sets and letx be an element of[:X, Y∪Z :]. Let us assume that there
exist a setu and an elementz of Z such thatx = 〈〈u, z〉〉. The functor 2ndSeqSymbolx yielding an
element ofZ is defined as follows:

(Def. 29) 2ndSeqSymbolx = x2.

Let s, t be Turing machine structures and letx be an element of[:SeqStates(s, t), (the symbols
of s)∪ (the symbols oft) :]. The functor SeqTran(s, t,x) yielding an element of[:SeqStates(s, t), (the
symbols ofs)∪ (the symbols oft),{−1,0,1} :] is defined as follows:
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(Def. 30) SeqTran(s, t,x)=


1stSeqTran(s, t, (the transition ofs)(〈〈1stSeqStatex, 1stSeqSymbolx〉〉)), if thereexists a statep of s and thereexists a symboly of s such thatx = 〈〈〈〈p, the initial state oft〉〉, y〉〉 andp 6= the accepting state ofs,
2ndSeqTran(s, t, (the transition oft)(〈〈2ndSeqStatex, 2ndSeqSymbolx〉〉)), if thereexists a stateq of t and thereexists a symboly of t such thatx = 〈〈〈〈the accepting state ofs, q〉〉, y〉〉,
〈〈x1, x2,−1〉〉, otherwise.

Let s, t be Turing machine structures. The functor SeqTran(s, t) yielding a function from
[:SeqStates(s, t), (the symbols ofs)∪ (the symbols oft) :] into [:SeqStates(s, t), (the symbols of
s)∪ (the symbols oft),{−1,0,1} :] is defined by:

(Def. 31) For every elementx of [:SeqStates(s, t), (the symbols ofs)∪ (the symbols oft) :] holds
(SeqTran(s, t))(x) = SeqTran(s, t,x).

Let T1, T2 be Turing machine structures. The functorT1; T2 yielding a strict Turing machine
structure is defined by the conditions (Def. 32).

(Def. 32)(i) The symbols ofT1; T2 = (the symbols ofT1)∪ (the symbols ofT2),

(ii) the control states ofT1; T2 = SeqStates(T1,T2),

(iii) the transition ofT1; T2 = SeqTran(T1,T2),

(iv) the initial state ofT1; T2 = 〈〈the initial state ofT1, the initial state ofT2〉〉, and

(v) the accepting state ofT1; T2 = 〈〈the accepting state ofT1, the accepting state ofT2〉〉.

The following propositions are true:

(48) LetT1, T2 be Turing machine structures,g be a transition-target ofT1, p be a state ofT1,
andy be a symbol ofT1. Supposep 6= the accepting state ofT1 andg = (the transition of
T1)(〈〈p, y〉〉). Then (the transition ofT1; T2)(〈〈〈〈p, the initial state ofT2〉〉, y〉〉) = 〈〈〈〈g1, the initial
state ofT2〉〉, g2, g3〉〉.

(49) Let T1, T2 be Turing machine structures,g be a transition-target ofT2, q be a state ofT2,
andy be a symbol ofT2. Supposeg = (the transition ofT2)(〈〈q, y〉〉). Then (the transition of
T1; T2)(〈〈〈〈the accepting state ofT1, q〉〉, y〉〉) = 〈〈〈〈the accepting state ofT1, g1〉〉, g2, g3〉〉.

(50) LetT1, T2 be Turing machine structures,s1 be a State ofT1, h be a natural number,t be a
tape ofT1, s2 be a State ofT2, ands3 be a State ofT1; T2. Suppose that

(i) s1 is accepting,

(ii) s1 = 〈〈the initial state ofT1, h, t〉〉,
(iii) s2 is accepting,

(iv) s2 = 〈〈the initial state ofT2, (Result(s1))2, (Result(s1))3〉〉, and

(v) s3 = 〈〈the initial state ofT1; T2, h, t〉〉.
Thens3 is accepting and(Result(s3))2 = (Result(s2))2 and(Result(s3))3 = (Result(s2))3.

(51) Let t3, t4 be Turing machine structures andt be a tape oft3. If the symbols oft3 = the
symbols oft4, thent is a tape oft3; t4.

(52) Let t3, t4 be Turing machine structures andt be a tape oft3; t4. Suppose the symbols of
t3 = the symbols oft4. Thent is a tape oft3 and a tape oft4.

(53) Let f be a finite sequence of elements ofN, t3, t4 be Turing machine structures,t1 be a tape
of t3, andt2 be a tape oft4. If t1 = t2 andt1 stores dataf , thent2 stores dataf .

(54) Let s be a State of ZeroTuring; SuccTuring, t be a tape of ZeroTuring, andh1, n be nat-
ural numbers. Supposes= 〈〈〈〈0, 0〉〉, h1, t〉〉 andt stores data〈h1,n〉. Thens is accepting and
(Result(s))2 = h1 and(Result(s))3 stores data〈h1,1〉.
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